Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral...

72
Noncommutative Geometry Raimar Wulkenhaar Mathematisches Institut der Westf¨ alischen Wilhelms-Universit¨ at unster, Germany Raimar Wulkenhaar (M¨ unster) Noncommutative Geometry

Transcript of Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral...

Page 1: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

Noncommutative Geometry

Raimar Wulkenhaar

Mathematisches Institut der Westfalischen Wilhelms-Universitat

Munster, GermanyaRaimar Wulkenhaar (Munster) Noncommutative Geometry

Page 2: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

Contents

1 Introduction

2 Operator algebras

3 Tools in noncommutative geometry

4 The standard model in NCG

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 3: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG

Part I

Introduction

1 Fundamental interactions

2 Noncommutative geometry

3 Spectral geometry

4 Dirac operators

5 QFT on NCG

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 4: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG

Fundamental interactions

Two distinct frameworks for fundamental interations in Nature:1 General Relativity to describe gravity2 Standard Model of particle physics to describe

electro-weak and strong interaction

Both frameworkds are geometrical, albeit of different type:

1 General Relativity is the dynamics of semi-Riemannianmanifolds (M,g) in response to the stress-energy tensor.

2 Standard Model is the geometry of (principal+vector) fibrebundles over a fixed (3+1)-dimensional space-timemanifold.

Their mutual relation is described by Einstein’s equation

Rµν −12gµνR + Λgµν = κTµν

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 5: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG

Kaluza-Klein theory

First geometrical unification of General Relativity with (part of)Standard Model was proposed by [Kaluza, 1919] & [Klein, 1926]:

General Relativity in 5 dimensions, but viewed on 4Dsubmanifold, is 4D General Relativity plus Maxwellelectrodynamics.

More generally one studies a geometrical theory on totalmanifold M × Σ restricted to M.

Revived in String Theory (a different unification of gravityand Yang-Mills theory):

The total 10D target space manifold is split as M × Σ into4D space-time manifold M and a ‘tiny’ 6D manifold Σ(typically Calabi-Yau).

[Connes, Douglas & Schwarz, 1998] studied Σ being thenoncommutative torus.

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 6: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG

Noncommutative Geometry

NCG is an enormous extension of topology and geometryformulated in the language of operator algebras.

Some influential milestones:

Mathematical foundation of quantum mechanics [vonNeumann, 1932], extended to theory of operator algebras[Murray & von Neumann, 1936–1943].

[Gelfand & Naimark, 1943] duality theorem: commutativeC∗-algebras are 1:1 with locally-compact Hausdorff spaces

Classification of factors in von Neumann algebras[Tomita, 1967], [Takesaki, 1970], [Connes, 1973–1976]

Bivariant K-theory [Kasparov, 1980]

Cyclic (co)homology and noncommutative index theory[Connes, 1979–1985]

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 7: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG

Fredholm modules

Key ingredients in Kasparov’s KK-theory are Fredholm modules(A,H,F ) .

A is a ∗-algebra acting on a Hilbert space H

F is a self-adjoint operator on H with F 2 = 1 and [A,F ]compact

Such Fredholm modules describe topology.

[Connes, 1986] emphasised that geometry is encoded inspectral data of Dirac operator D = |D|F .

D contains:1 the spectrum of the Laplace operator −∆ = |D|2

(‘Can one hear the shape of a drum?’)2 the topological information of its phase F .

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 8: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG

The Pioneer plaque [NASA, 1972]

Geometry encoded in spectral data:1 Hyperfine transition of H-atom as unit for length (21cm)

and frequency (1420 MHz)2 Spectra of strong pulsars to locate position of the sun.

Change of rotation period with time yields fabrication date.

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 9: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG

Euclidean gravity and heat kernel expansion

[Weyl, 1919]-formula: Laplace op. on compact n-dim. manifold Mhas tr(χ[0,Λ](−∆)) ≈ ωn

(2π)n vol(M)Λn2 eigenvalues ≤ Λ

Any function tr(f (D2)) =∫∞

0 dt f (t)tr(e−tD2) of D2 computable

from the the heat operator e−tD2(functional calculus).

Asymptotic expansion tr(e−tD2) ∼

∑∞k=0 t−

n2+kak (D2)

yields Seeley-de Witt coefficients ak (D2).

The ak(D2) are integrals over curvature invariants:a0(D2) = 1

16π2

M dx√

|det g|, a2(D2) = 196π2

M dx√

|det g|R, .

tr(f (D2)), restricted to 0th and 1st order of the asymptoticexpansion, is Einstein-Hilbert action of Euclidean gravity.

Spectral action principle [Chamseddine & Connes,1996]

tr(f (D2)) is the physical action of a geometrical theory (A,H,D)

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 10: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG

What is a Dirac operator?

Clear for spin manifolds, but we ask for a purelyoperator-algebraic characterisation of (A,H,D).

1 Dimension d : N th eigenvalue of |D|−1 is ∼ N−1/d

2 First order: [[D,A],A] = 0 (for A commutative)

3 Smoothness of A: δmA and δm[D,A] are all bounded,for δT := [|D|,T ]

4 Orientability: volume form ∈ span(A [D,A] · · · [D,A]︸ ︷︷ ︸

d

)

5 Spin structure: smooth part of H is of the form eAn,for e a projection.

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 11: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG

Reconstruction & noncommutative generalisation

These requirements can be made so precise that they allow (forA commutative) to reconstruct the differentiable manifold Mfrom (A,H,D) [Connes, 2007].

Obvious generalisation to noncommutative A withTomita-Takesaki operator J that implements Aop = JAJ−1:

[A,Aop] = 0 and [[D,A],Aop] = 0 (first order)

Commutation relations of J with D and volume form definea Clifford dimension KO.

Simplest example is matrix-valued functions for A.‘Reconstruction’ corresponds to noncommutative manifoldof Kaluza-Klein type M × Σ with Σ a discrete space.

The conditions give, for KO=6, almost uniquely theStandard Model as simplest solution.

tr(f (D2)) is Einstein-Hilbert gravity coupled to full bosonicstandard model (strong+electroweak+Higgs).

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 12: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG

Quantum field theory on noncommutative geometriesThere are truly noncommutative manifolds (A,H,D) which aresimple enough to do QFT (e.g. NC torus, Moyal space)

Yang-Mills+Higgs fields obtained via ‘inner fluctuations’D 7→ D +A[D,A] + JA[D,A]J−1

Scalar fields obtained as elements of eAn.

Euclidean QFT for (Yang-Mills-Higgs, scalar) fields Φ

defined via partition function Z =∫DΦ exp(−S[Φ])

S[Φ] is spectral action for Yang-Mills-Higgs or naturally builtfor scalar fields

Directly Lorentzian NCGs are a major open problem. Firstattempts by [Paschke & Verch, 2004].

Osterwalder-Schrader only established for Moyal spacewith commutative time [Grosse, Lechner, Ludwig & Verch, 2013]

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 13: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Topological spaces Banach & C∗-algebras Operator topologies Von Neumann algebras Projective modules Dictionary

Part II

Operator algebras

1 Topological spaces

2 Banach & C∗-algebras

3 Operator topologies

4 Von Neumann algebras

5 Projective modules

6 DictionaryRaimar Wulkenhaar (Munster) Noncommutative Geometry

Page 14: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Topological spaces Banach & C∗-algebras Operator topologies Von Neumann algebras Projective modules Dictionary

Topological spaces

topological space X : set of points together with collection T(topology) of open subsets

1 Y ⊂ X closed if X \ Y open2 sufficies to define convergence of sequences3 suffices to define continuity: φ : X → Y continuous if for

every open Z ⊂ Y the pre-image φ−1(Z ) is open in X4 φ : X → Y homeomorphism if bijective and both φ, φ−1

continuous5 X is compact if any open cover has a finite subcover;

X is sequentially compact if any sequence has aconvergent subsequence (equivalent for metric spaces)

X may carry different topologies which leads to different notionsof convergence and continuity!

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 15: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Topological spaces Banach & C∗-algebras Operator topologies Von Neumann algebras Projective modules Dictionary

Hausdorff spaces

Hausdorff space X : topological space in which distinct pointsare separated by open neighbourhoods

1 limit of a convergent sequence is unique2 compact subsets are closed3 all metric spaces are Hausdorff

Hausdorff space X is locally-compact if every point has acompact neighbourhood

a locally-compact Hausdorff space can be embedded in acompact Hausdorff space which has only one extra point atinfinity

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 16: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Topological spaces Banach & C∗-algebras Operator topologies Von Neumann algebras Projective modules Dictionary

C∗-algebras

algebra A: vector space over K + ring + compatibilitywe assume 1 ∈ A and K = C

normed algebra: ‖ ‖ : A → R satisfying norm axioms ofvector spaces, ‖ab‖ ≤ ‖a‖ ‖b‖ and ‖1‖ = 1Banach algebra: completeness, i.e. Cauchy sequences inA have a limit in Ainvolution: (a+λb)∗ = a∗+λb∗ , (ab)∗ = b∗a∗ , (a∗)∗ = aC∗-algebra: Banach ∗-algebra with ‖a∗a‖ = ‖a‖2

The C∗-property is very restrictive:

1 ‖ ‖ unique: ‖a‖2 = sup|λ| : a∗a − λ1 not invertible in A2 φ : A → B isomorphism ⇒ ‖φ(a)‖ = ‖a‖3 any C∗-algebra is ∗-isomorphic to a norm-closed

subalgebra of B(H) (bounded operators on Hilbert space)

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 17: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Topological spaces Banach & C∗-algebras Operator topologies Von Neumann algebras Projective modules Dictionary

Standard example: continuous functions

A = C(X ) continuous functions on compact Hausdorff space Xwith ‖f‖ := supx∈X |f (x)|, (f ⋆)(x) := f (x)

Theorem. C(X ) is a C∗-algebra

1 norm-closed: Cauchy sequence fk in C(X ) definespointwise limit function f ; it follows ‖f − fk‖ → 0ǫ3 -trick proves continuity of f

2 C∗-property: ∃p ∈ X with ‖f‖ = supx∈X |f (x)| = |f (p)|

‖f ∗f‖ = supx∈X |f (x)|2 = |f (p)|2 = ‖f‖2

For X locally-compact: continuous functions vanishing at ∞C0(X ) = f ∈ C(X ) : ∀ǫ > 0 ∃K ⊂ X compact with

|f (x)| < ǫ ∀x ∈ X \ K

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 18: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Topological spaces Banach & C∗-algebras Operator topologies Von Neumann algebras Projective modules Dictionary

Standard example: bounded operators

H complex Hilbert space, B(H) algebra of bounded linearoperators on H with ‖a‖ := supx∈H,‖x‖=1 ‖ax‖

adjoint operator 〈a∗x , y〉 = 〈x ,ay〉 from Riesz representationtheorem, with ‖a∗‖ = ‖a‖

Theorem. B(H) is a C∗-algebra

1 norm-closed: same argument as for C(X )

2 C∗-property: from Cauchy-Schwarz

0≤‖ax‖2=〈ax ,ax〉=〈a∗ax , x〉≤‖a∗ax‖‖x‖≤‖a∗a‖‖x‖2

Example: The compact operators K(H) form an important(sub-) C∗-algebra.

One of many characterisations is norm-closure offinite-rank operators.

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 19: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Topological spaces Banach & C∗-algebras Operator topologies Von Neumann algebras Projective modules Dictionary

Important subclasses of bounded operators

selfadjoint: a = a∗

normal: aa∗ = a∗apositive: a = b∗bidempotent: e2 = eprojection: p = p∗ = p2

unitary: uu∗ = u∗u = 1 ≡ idHisometry: v∗v = 1partial isometry: v∗v = p = p∗ = p2

Further remarks:1 Operators in a subclass have particular spectrum.2 The classification of projections and unitaries is central in

K-theory.3 The comparison of projections is central in von Neumann

algebras.

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 20: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Topological spaces Banach & C∗-algebras Operator topologies Von Neumann algebras Projective modules Dictionary

The spectrum

A - Banach algebra, 1 ∈ A

sp(a) = λ ∈ C : a − λ1 not invertible in Ais the spectrum of a ∈ A

resolvent set R(a) = C \ sp(a), always open;resolvent function z 7→ (a − z1)−1 holomorphic on R(a)

sp(a) nonempty and compact in C

Further remarks:

Selfadjoint, positive, unitary operators and projections haveparticular spectrum.

A functional calculus which defines functions of a ∈ Arelies on the spectrum.

The spectrum can also be defined for closed denselydefined unbounded operators on Hilbert space.

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 21: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Topological spaces Banach & C∗-algebras Operator topologies Von Neumann algebras Projective modules Dictionary

Locally-convex algebras

Norm topology and norm convergence are often too restrictive.

Many useful topologies arise from family pk of seminorms:pk (a+b)≤pk (a)+pk (b), pk (λa)=|λ|pk (a), (pk (a)=0) 6⇔ (a=0)

The subsets a : pkj(b − a) < ǫ for finitely many pkj

playthe role of the open ǫ-balls centered at b.

pk defines a Hausdorff topology iff⋂

k p−1k (0) = 0.

Example:1 Topology of pointwise convergence: Functions f on

manifold M with px (f ) = |f (x)|

2 Smooth topology C∞(M): Functions f on compact manifoldM with pα(f ) = supx∈M |(∂αf )(x)|

3 Schwartz topology S(M): C∞-functions on M withpm,α(f ) = supx∈M(1 + ‖x‖m)|(∂αf )(x)|

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 22: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Topological spaces Banach & C∗-algebras Operator topologies Von Neumann algebras Projective modules Dictionary

Locally-convex operator topologies

On B(H), natural in quantum mechanics:1 Strong operator topology: px(a) = ‖ax‖H, for x ∈ H

2 Weak operator topology: px,y(a) = |〈x ,ay〉|, for x , y ∈ H

These are coarser (or weaker) than norm topology (less open &closed sets, more compact sets, more convergent sequences).

X–Banach space, X ∗=f : X → C linear & bounded dual space

1 Weak topology on X : pf (x) = |f (x)|, for f ∈ X ∗

(coarsest topology in which all f ∈ X ∗ continuous)2 Weak∗ topology on X ∗: px(f ) = |f (x)|, for x ∈ X

(Unit ball in X ∗ is weak∗-compact [Banach-Alaoglu])

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 23: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Topological spaces Banach & C∗-algebras Operator topologies Von Neumann algebras Projective modules Dictionary

The Gelfand-Naimark duality theoremLet X := Spec(A) = χ : χ character on A

A character on commutative Banach-algebra A is anon-zero ∗-algebra homomorphism χ : A → C

X ⊂ A∗1 (the unit ball in dual space A∗)

Equipped with weak-∗-topology, X is a compact topologicalHausdorff space.

Gelfand transform: ρ : A ∋ a 7→ a ∈ C(Spec(A))defined for commutative Banach algebra A by a(χ) := χ(a)

Theorem

Let A be a commutative C∗-algebra and X = Spec(A).Then ρ : A → C(X ) is an isometric isomorphism.

Proof establishes correspondence between λ ∈ sp(a) andcharacter with χ(a) = λ. Surjectivity by Stone-Weierstraß.

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 24: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Topological spaces Banach & C∗-algebras Operator topologies Von Neumann algebras Projective modules Dictionary

Von Neumann algebrasIf A ⊂ B(H), then A′ = b ∈ B(H) : [b,A]=0 is the commutant.

Von Neumann bicommutant theorem

For M ⊂ B(H) a ∗-subalgebra with 1 ∈ M are equivalent:1 M′′ = M

2 M is closed in strong operator topology.3 M is closed in weak operator topology.

Such M is called von Neumann algebra.

S ⊂ B(H) arbitrary subset, then (S ∪ S∗)′′ is von Neumannalgebra.

Von Neumann algebras are generated by its projections.

Von Neumann algebras are (large) C∗-algebras.

There are less von Neumann algebras than C∗-algebras,which made it possible to classify von Neumann algebras.

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 25: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Topological spaces Banach & C∗-algebras Operator topologies Von Neumann algebras Projective modules Dictionary

Factors

A factor is a von Neumann algebra M with M∩M′ = C1.

Any von Neumann algebra is isomorphic to a direct integralof factors.

Classification of factors rests on a comparison of projections:

There is a natural partial order p ≤ q iff pH ⊂ qH.

We define p - q if p = uu∗ and u∗u ≤ q for a partialisometry u ∈ M

p ≈ q (Murray-von Neumann equivalent) if p = uu∗ andq = u∗u

In a factor one has either p q, q p or p ≈ q.

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 26: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Topological spaces Banach & C∗-algebras Operator topologies Von Neumann algebras Projective modules Dictionary

Types of factors

Type I

Factor M with minimal projection.

p 6= 0 is minimal projection if (q ≤ p) ⇒ (q = 0 or q = p).Minimal projections fulfil pMp = Cp.

Standard form: M = u∗(B(H)⊗ 1)u

Type II

Infinite factor M with ultraweakly-continuous trace tr 6= 0.

A factor is infinite if there is p < 1 with p ≈ 1.

tr(ab) = tr(ba), tr(a∗a) ≥ 0; faithful if tr(a∗a) = 0 ⇔ a = 0

Standard form: GNS construction for (faithful) tracial state.

Type III

everything elseRaimar Wulkenhaar (Munster) Noncommutative Geometry

Page 27: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Topological spaces Banach & C∗-algebras Operator topologies Von Neumann algebras Projective modules Dictionary

[Haag & Kastler, 1964] axioms in Algebraic QFTNet of abstract C∗-algebras A(O) assigned to bounded, open,causally complete regions O in Minkowski space, satisfying:

1 Isotony: O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2)

2 Covariance: Poincare group is realised as group ofautomorphisms of the net.

3 Locality: For O1,O2 causally independent,[A(O1),A(O2)] = 0

4 Time slice axiom: If O1 ⊂ O2 have a common Cauchyhypersurface, then A(O1) = A(O2).

Further remarks:The A(O) are usually Type-III von Neumann algebras.QFT profits from deep results about operator algebras.Bounded functions of field op’s. provide coordinates on A(O).Applies (in contrast to Wightman) to curved space-time.

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 28: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Topological spaces Banach & C∗-algebras Operator topologies Von Neumann algebras Projective modules Dictionary

Projective modules

A (right) module over an algebra A is a space E with a mapE ×A → E satisfying η(ab) = (ηa)b.

Easiest example is a free module E =⊕

I A.We write this as E = An for finite I.E is projective if there is another A-module F such thatE ⊕ F is free.In this case e : E ⊕ F → E is a idempotent e2 = e.A finite projective module is of the form E = eAn.

Example: Space Γ(E) of sections of vector bundle E

Ep

−→ X vector bundle over topological space Xfibre p−1(x) is finite-dim. vector space ∀x ∈ X .Sections Γ(E ,X ) := s : X → E : p s = idX form amodule over algebra of functions: (sf )(x) = s(x)f (x).

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 29: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Topological spaces Banach & C∗-algebras Operator topologies Von Neumann algebras Projective modules Dictionary

The Serre-Swan theorem

Theorem [Swan, 1962]

Let X be a compact Hausdorff space. A C(X )-module E isisomorphic to a module Γ(E ,X ) for a locally-trivial vector

bundle Ep→ X if and only iff E is finitely projective.

Remarks:

Local triviality: For every x ∈ X there is a neighbourhoodUx and m ∈ N such that p−1(Ux ) ≃ Cm × U (homeomorphic)

Finitely many sx,1, . . . sx,k generate p−1(Ux).

By compactness, finitely many s1, . . . , sn generate Γ(E ,X )

Image of projection e : Γ(Cn × X ,X ) → Γ(E ,X ) has locallyconstant dimension.

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 30: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Topological spaces Banach & C∗-algebras Operator topologies Von Neumann algebras Projective modules Dictionary

The dictionary of NCG

compact Hausdorff space commutative C∗-algebrameasure space (X , µ) commut. von Neumann algebragroup commutative Hopf algebravector bundle over X finitely generated projective mod-

ule over C(X )

vector field derivationK-theory K-theoryde Rham complex Hochschild cohomologyde Rham cohomology cyclic homologydifferentiable manifold M commutative spectral triplediffeomorphism of M automorphism of commutative

spectral triple(real/infinitesimal) variable linear (selfadjoint/compact) oper-

ator on Hilbert spaceintegral trace

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 31: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC K-theory Hochschild & cyclic (co)homology Compact operators Spectral triples

Part III

Tools in noncommutative geometry

1 K-theory

2 Hochschild & cyclic (co)homology

3 Compact operators

4 Spectral triples

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 32: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC K-theory Hochschild & cyclic (co)homology Compact operators Spectral triples

Operator K-theoryFor A a C∗-algebra, let [p] be the Murray-von Neumannequivalence class of projection p ∈ A. We assume 1 ∈ A.

K0(A) = [p]− [q] : p,q projections in A

K0(A) is abelian group with [p] + [q] =[( p 0

0 q

)]

Covariance: ∗-homomorphism φ : A → B inducesφ∗ : K0(A) → K0(B)

Homotopic ∗-homomorphisms φ,ψ : A → B induceφ∗ = ψ∗ : K0(A) → K0(B)

Exact sequence 0 → I → A → A/I → 0 inducesK0(I) → K0(A) → (A/I) which is exact at K0(A)

Morita invariance K0(A) = K0(A⊗K(H))

Serre-Swan: K0(C(X )) ≃ K 0(X ) (topological K-theory)

Remark: α−→ A

β−→ exact at A if ker β = imα

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 33: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC K-theory Hochschild & cyclic (co)homology Compact operators Spectral triples

Higher K -theory groupsgroup Un(A) := U(Mn(A)) of unitaries in A-valued matricesU1(A) ⊂ U2(A) ⊂ · · · ⊂ U∞(A) by identifying u ≡

( u 00 1

)

K1(A) = π0(U∞(A)) = homotopy classes [u] : u ∈ U∞(A)

K1(A) is abelian group with [u][v ] =[( u 0

0 v

)]

Observation: K1(A) isomorphic to K0(SA) (suspension):For u ∈ Un(A) there is path αt ∈ U2n(A) connectingdiag(u,u−1) ∼ diag(1n,1n).

[u] 7→ [αt diag(1n,0)α−1t ]− [diag(1n,0)] is isomorphism

between K1(A) and K0(SA) := K0(C0(]0,1[,A))

all functorial properties of K0 transfer to K1

Generalisation to Kn+1(A) := Kn(C0(R,A)).Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 34: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC K-theory Hochschild & cyclic (co)homology Compact operators Spectral triples

The index map

Given an exact sequence 0 → Ii

−→ Aπ

−→ A/I → 0 andu ∈ Un(A/I).

Since π is surjective, there is v ∈ U2n(A) withπ(v) = diag(u,u−1).

Consider v diag(1n,0)v−1]− diag(1n,0) ∈ M2n(A).

Since v diag(1n,0)v−1 − diag(1n,0)) ∈ kerπ, there is byexactness a p ∈ I with i(p) = v diag(1n,0)v−1 − diag(1n,0)).

By injectivity of i , this p is unique and defines byfunctoriality a map ∂ : K1(A/I) ∋ [u] 7→ [p] ∈ K0(I).

Proposition

The following induced sequence is everywhere exact:. . .

∂−→K1(I)

i∗−→K1(A)π∗−→K1(A/I)

∂−→K0(I)

i∗−→K0(A)π∗−→K0(A/I)

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 35: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC K-theory Hochschild & cyclic (co)homology Compact operators Spectral triples

Bott periodicityFor z ∈ S1 and p projection in Mn(A) definefp(z) = zp + (1n − p) ∈ Un(A) with fp(1) = 1n for all p.

Viewing fp ∈ C(]0,1[,Mn(A)) up to homotopy, one getsβ : K0(A) → K1(SA) = K2(A)

Theorem

The Bott map β : K0(A) → K2(A) is an isomorphism.

Corollary: Six-term exact sequence of K -theory

K0(I)i∗ K0(A)

π∗ K0(A/I)

∂β

K1(A/I)

K1(A)π∗

K1(I)i∗

This (and other) exact sequence(s) make K-theory computable!K-theory goups are important to distinguish C∗-algebras.

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 36: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC K-theory Hochschild & cyclic (co)homology Compact operators Spectral triples

Hochschild homologyA unital algebra, M bimodule over A and Cn(A,M) = M⊗A⊗n

Hochschild boundary operator b : Cn(A,M) → Cn−1(A,M)

b(m⊗a1 ⊗ . . . an):=ma1 ⊗ a2 ⊗ · · · ⊗ an

+n−1∑

i=1

(−1)im ⊗ a1 ⊗ . . .⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ . . .⊗ an

+(−1)nanm ⊗ a1 ⊗ · · · ⊗ an−1

b2 = 0

Definition

The homology of the chain complex (C∗(A,M),b) is calledHochschild homology and denoted HH∗(A,M)

If Zn(A,M) ∋ cn is the subspace of (closed) Hochschildn-cycles bcn = 0, then HHn(A,M) = Zn(A,M)/bCn+1(A,M)

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 37: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC K-theory Hochschild & cyclic (co)homology Compact operators Spectral triples

Hochschild and cyclic cohomology

On (dual) space Cn(A) = Hom(A⊗(n+1),C) of (n+1)-linearfunctionals, define Hochschild differential b : Cn(A) → Cn+1(A):

(bϕ)(a0, . . . ,an+1)=n∑

i=0

(−1)iϕ(a0, . . . ,aiai+1, . . . ,an+1)

+(−1)n+1ϕ(an+1a0,a1, . . . ,an)

b2 = 0, cohomology of complex (C∗(A),b) is Hochschildcohomology HH∗(A)

ϕ ∈ Cn(A) is cyclic if ϕ(a0,a1, . . . ,an) = (−1)nϕ(an,a0, . . . ,an−1)

Cnλ(A) space of cyclic cochains, preserved by b

Cyclic cohomology HC∗(A) is cohomology of complex(C∗

λ(A),b)Similarly, there is a dual cyclic homology HC∗(A)

Computable in Connes’ (b,B)-bicomplex.

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 38: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC K-theory Hochschild & cyclic (co)homology Compact operators Spectral triples

Commutative cases

Theorem (Hochschild-Kostant-Rosenberg-Connes)

HH∗(C∞(M), C∞(M)) ≃ Ω∗(M) (exterior differential algebra)

Remarkable fact: HH∗(C∞(M), C∞(M)) is local; only the

diagonal in (C∞(M))⊗(n+1) ≃ C∞(M × · · · × M) contributesVolume form in NCG is Hochschild d -cycle.

For M a n-dim. closed smooth manifold, define ϕ ∈ Cn(C(M))by ϕ(f0, . . . , fn) =

M f0df1 ∧ · · · ∧ dfnBy Leibniz rule, ϕ is Hochschild cocycle, bϕ = 0By Stokes’ law, ϕ is cyclic, hence cyclic cocyle

Theorem

HCk(C∞(M)) = Ωk (M)/

(im d ⊕

⊕[k/2]i=0 Hk−2i

dR (M))

Cyclic homology is NCG-analogon of de Rham cohomology.Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 39: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC K-theory Hochschild & cyclic (co)homology Compact operators Spectral triples

Pairing with K-theoryidentify ϕn(m0 ⊗ a0, . . . ,mn ⊗ an) := tr(m0 · · ·mn)ϕn(a0, . . . ,an)

Theorem

HC2n(A)× K0(A) ∋ ([ϕ2n], [p]) 7→ ϕ2n( p, . . . ,p︸ ︷︷ ︸

2n+1

) ∈ C and

HC2n−1(A)×K1(A)∋([ϕ2n−1], [u]) 7→ ϕ2n−1( u,u−1, . . .,u,u−1︸ ︷︷ ︸

n+n

)∈C

provide well defined pairings:

these maps are bilinear,

they only depend on the K-theory classes of p, u,

they only depend on cyclic cohomology classes of ϕk .

∃ periodicity operator S : HCn(A) → HCn+2(A) with〈[ϕ2n], [p]〉 = 〈[Sϕ2n], [p]〉 and 〈[ϕ2n−1], [u]〉 = 〈[Sϕ2n−1], [u]〉

Periodic cyclic cohomology is S-limit HP(A) = lim→

HCk(A).

Chern characters ∈ HP∗(A) yield integer pairings.Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 40: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC K-theory Hochschild & cyclic (co)homology Compact operators Spectral triples

K-homology and Chern characterFredholm module (A,H,F ) is p-summable if [A,F ]p trace class.

Chern characterLet 2n ≥ p, projection P = 1

2(1 + F ) andϕ2n−1(a0, . . .,a2n−1) = (−1)n2(n−1

2)· · ·12 tr(F [F,a0] · · · [F,a2n−1]):

ϕ2n−1 ∈ HC2n−1(A) and Sϕ2n−1 = ϕ2n+1

Chern-Connes character Chodd(F ,H) ∈ HP1(A) isperiodic cyclic cohomology class of ϕ2n−1

For u ∈ Uk(A), PuP is Fredholm operator, andindex(PuP) = 2−(2n+1)

(n− 12 )···

12〈Ch2n−1(F ,H), [u]〉 ∈ Z

Even case Cheven(F ,H) requires γ with Fγ=−γF and [γ,A]=0

F is non-local, but Ch(F ,H) has local representative.

Corresponding local index formula [Connes & Moscovici, 1995]related to BPHZ renormalisation [Connes & Kreimer, 1998]NC Chern-Simons action is not naıve [Pfante, 2012]

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 41: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC K-theory Hochschild & cyclic (co)homology Compact operators Spectral triples

Compact operators

Let K ⊂ B(H) be the ideal of compact operators on H andT ∈ K.

There is a null sequence of eigenvalues µi > 0 of |T |

The eigenspace Ei = ker(µi1 − |T |) is finite-dimensionalsp(|T |) = µii∈N ∪ 0

sk (T ) = inf‖T∣∣E⊥‖ : dim(E) = k – characteristic value

sk (T ) – k th eigenvalue µk (|T |) if arrangend decreasingly andwith multiplicity

Schatten ideal Lp

Lp :=

T ∈ K : ‖T‖p :=( ∞∑

k=0

(sk (T ))p) 1

p<∞

All (Lp, ‖ ‖p) are Banach spaces.

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 42: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC K-theory Hochschild & cyclic (co)homology Compact operators Spectral triples

L1 – trace classTr(T ) =

n〈ψn,Tψn〉 for T ∈ L1 and ψn ONB

L2 – Hilbert-Schmidt class

L∞ = K with ‖T‖∞ = ‖T‖

Inequalities

Tr(T ) ≤ Tr(|T |) = ‖T‖1 for T ∈ L1

Tr(TS) = Tr(ST ) if TS,ST ∈ L1

Holder: ‖TS‖1 ≤ ‖T‖p‖S‖q for T ∈ Lp, S ∈ Lq with1p + 1

q = 1

Lp ⊂ Lr if p ≤ r

It turns out that Tr on L1 is not the right generalisation of theintegral.

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 43: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC K-theory Hochschild & cyclic (co)homology Compact operators Spectral triples

Dixmier ideal L1+

partial sums σn(T ) =∑n−1

k=0 sk (T )

σn(T ) =sup‖TPE‖1 : PE projector to n-dim. subspace E ⊂ H

Lemma

σn(T + S) ≤ σn(T ) + σn(S) ≤ σ2n(T + S) for 0 ≤ T ,S ∈ K

Proof: first ≤ from norm, second from inequalities

‖TPE‖1 + ‖SPF‖1 = Tr(PETPE) + Tr(PF SPF )

≤ Tr(PE+F TPE+F ) + Tr(PE+F SPE+F )

= Tr(PE+F (T + S)PE+F )

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 44: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC K-theory Hochschild & cyclic (co)homology Compact operators Spectral triples

Definition (Dixmier-Ideal L1+ ⊂ K)

L1+ :=

T ∈ K : ‖T‖1+ := supn≥2

σn(T )

log n<∞

L1 ⊂ L1+ ⊂ Lp for any p > 1

If(σn(T )

log n

)

n≥2 convergent, then T ∈ L1+ is called measurable

Definition (noncommutative integral)∫

−T := limn→∞

σn(T )

log n

∫− additive on positive elements, linear by extensionσn(UTU∗) = σn(T ):∫− is trace on subspace of measurable elements of L1+∫− vanishes on L1

can be (not uniquely) generalised to Dixmier trace on L1+

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 45: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC K-theory Hochschild & cyclic (co)homology Compact operators Spectral triples

Example

∆ = −∑p

µ=1∂2

∂x2µ

Laplace operator on Tp

sp(∆) = ‖k‖2 : k ∈ Zp

Replace ∆ by 1 on ker∆ = C ⇒ ∆− q2 compact for q > 0

Determine sn(‖k‖)(∆− q

2 ) = ‖k‖−q asymptotically:n(‖k‖) = #(lattice points in ball of radius ‖k‖ in Rp)

= Vp‖k‖p with Vp = πp2

Γ( p+22 )

sn(∆− q

2 ) =( n

Vp

)− qp

σn(∆− q

2 ) =

∫ n

1du(Vp

u

) qp , ‖∆− q

2 |1+ =

∞ for q < p0 for q > p

−∆− p2 = lim

n→∞

1log n

∫ n

1du

Vp

u= Vp

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 46: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC K-theory Hochschild & cyclic (co)homology Compact operators Spectral triples

Spectral triples

Definition [Connes, 1996]

(A,H,D) – commutative spectral triple, i.e. H a Hilbert space, A acommutative involutive unital algebra represented in H,D a selfadjoint operator in H with compact resolvent, p an integer.

1 Dimension: k th characteristic value of resolvent of D is O(k−1p )

2 Order one: [[D, f ], g] = 0 ∀f , g ∈ A

3 Regularity: f and [D, f ] belong to the domain of δm, for any f ∈ Aand m ∈ Z, where δT := [|D|,T ]

4 Orientability: ∃ Hochschild p-cycle c ∈ Zp(A,A) s.t. πD(c) = 1for p odd, πD(c) = γ for p even with γ = γ∗, γ2 = 1, γD = −Dγ

5 Finiteness and absolute continuity: H∞ :=⋂

m dom(Dm) ⊂ H isfinitely generated projective A-module, H∞ = eAn, withe = e∗ = e2 ∈ Mn(A). Hermitian structure(ξ|aη) =

∑ni=1 aξ∗i ηi ∈ A satisfies 〈ξ, η〉 =

∫−(ξ|η)|D|−p

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 47: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC K-theory Hochschild & cyclic (co)homology Compact operators Spectral triples

Reconstruction theorem

Theorem [Connes, 2008]

Let (A,D,H) be a spectral triple, A commutative and unital. Letthe conditions (1)–(5) be realised in stonger form:

1 All T ∈ EndA(H∞) are regular2 The Hochschild cycle is antisymmetric,

c =∑

α a0α ⊗

β∈Spǫ(β)aβ(1)

α ⊗ · · · ⊗ aβ(p)α

Then there exists a compact oriented differentialble manifold Xwith A = C∞(X ).Conversely, every compact oriented differentiable manifoldarises in this way.

Second theorem: If in addition the multiplicity of A′′ in H is 2p/2,then A = C∞(X ) for a smooth oriented compact spinc-manifoldX . The stronger condition (1) is automatic.

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 48: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC K-theory Hochschild & cyclic (co)homology Compact operators Spectral triples

Definition (smooth compact p-dimensional manifold)

. . . is a compact Hausdorff space X together with a system oflocal charts (Uα, sα) such that

the Uα are open in X and X =⋃

α Uα

sα : Uα → sα(Uα) ⊂ Rp is a homeomorphism. In particular,sα(Uα) is open in Rp and sα is injective

sα s−1β : sβ(Uα ∩ Uβ) → sα(Uα ∩ Uβ) is smooth

Strategy:

norm-completion of A is unital commutative C∗-algebraA = C(X ) for compact Hausdorff space X = Spec(A)

build tentative charts (up to injectivity) from c

prove that there exists restriction to subsets where sα isinjective (very complicated)

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 49: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC K-theory Hochschild & cyclic (co)homology Compact operators Spectral triples

Noncommutative spectral triplesGeneralisation to noncommutative algebras requires realstructure J to formulate first-order condition. Examples:

Noncommutative torus: C∗-algebra generated by unitariesU,V with UV = e2πiθVU, smooth algebra by [Rieffel, 1993]

Crossed products [Connes & Moscovici, 1998]

Noncommutative 4-sphere S4θ [Connes & Landi, 2001]

application to instantons [Landi & van Suijlekom]

NC 3-manifolds [Connes & Dubois-Violette, 2002]

Moyal space: non-compact variant of nc torus; difficultiessolved in [Gayral, Gracia-Bondıa, Iochum, Schucker & Varilly, 2004]

SUq(2) quantum group[Dabrowski, Landi, Sitarz, van Suijlekom & Varilly, 2005]

Moyal space with harmonic propagation [Gayral & W., 2011]

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 50: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

Part IV

The standard model in NCG

1 Real structure

2 Order-one

3 Fluctuations

4 Spectral action

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 51: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

Some historical notes1 Differential geometry on matrices describes Higgs potential

[Dubois-Violette, Kerner & Madore, 1989], [Connes, 1990]

2 [Connes & Lott, 1991] model of two-sheeted universe

3 Full standard model formulated with bimodules [Connes, 1994]

4 Real structure [Connes, 1995]

5 Spectral action principle [Chamseddine & Connes, 1996]

6 Various articles by [Iochum, Kastler & Schucker (et al), 1990s]

7 Neutrino mixing in KO-dimension 6[Barret, 2006], [Connes, 2006]

8 New scalar field from right neutrinos[Chamseddine & Connes, 2010]

We follow [Chamseddine, Connes & Marcoli, 2006] at level of (7).Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 52: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

Real structure

Definition

A spectral triple (A,H,D), with A not necessarily commutative,satisfies the noncommutative order-one condition if there existsan anti-unitary operator J on H such that [a, JbJ−1] = 0 and[[D,a], JbJ−1] = 0 for all a,b ∈ A.

J defines a real structure of KO-dimension k ∈ Z/8 if

J2 = ǫ , JD = ǫ′DJ , Jγ = ǫ′′γJ for p even

where the signs ǫ, ǫ′, ǫ′′ = ±1 are functions of k mod 8:

k 0 1 2 3 4 5 6 7

ε 1 1 −1 −1 −1 −1 1 1ε′ 1 −1 1 1 1 −1 1 1ε′′ 1 −1 1 −1

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 53: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

Matrix-valued spectral triples in KO-dimension 6We look for matrix solutions of axioms for (A,H,D, J, γ) with

J2 = 1 , JD = DJ , Jγ = −γJ , [a, JbJ] = 0 , [[D,a], JbJ] = 0

γ = γ∗ , γ2 = 1 , Dγ = −γD ,

The conditions and further (more or less natural) requirementsrestrict an initial matrix algebra A eventually to AF .

Requirements

1 H has a separating vector, i.e. there is a ξ ∈ H such thatA ∋ a 7→ aξ ∈ H is injective.

2 (A,H, J) is irreducible, i.e. there is no non-trivial (e 6= 0,1)projector e ∈ B(H) which commutes with A and J.

Proposition

Let AC be the complexification of A. Then Z (AC) = Ce1 ⊕ Ce2

in KO-dimension 6 for minimal projections e1,e2 = J−1e1J.Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 54: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

Requirements from particle physics

1 One block of the real algebra A is quaternionic

A = Mk (H)⊕ M2k (C)2 The quaternionic block has a non-trivial Z2-grading γ1

The minimal solution of these requirements isA = M2(H)⊕ M4(C).

Up to isomorphisms, we have

J(

xy

)

=

(y∗

x∗

)

,

γ = (γ1,0)− J(γ1,0)J−1 ∈ AAop , γ

(xy

)

=

(γ1x−yγ1

)

with γ1 = diag(12,−12) ∈ M2(H).

Result:

The even part Aev of A is Aev = (H⊕H)⊕ M4(C)

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 55: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

Order-one condition

Proposition

Up to isomorphisms of Aev there is a unique involutivesubalgebra AF ⊂ Aev of maximal dimension which under theorder-one condition permits a connecting D, i.e. e1De2 6= 0.

This solution is the matrix algebra of the standard modelAF= H⊕ C⊕ M3(C) ⊂ M2(H)⊕ M4(C)

λ 0 0 00 λ 0 00 0 α β0 0 −β α

λ 0 0 00 m11 m12 m13

0 m21 m22 m23

0 m31 m32 m33

Non-zero part of e1De2 connects the two λ-places.

The Hilbert space is M4(C)⊕ M4(C) ∈(x

y

). We have

J(x

y

)=(y∗

x∗

), γ

(xy

)=( γ1x−yγ1

)

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 56: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

The Hilbert space is M4(C)⊕ M4(C). Its elements areparametrised by elementary fermions:

H ∋

νR uRr uRb uRg

eR dRr dRb dRg

νL uLr uLb uLg

eL dLr dLb dLg

νcR ec

Ruc

Rr dcRr

ucRb dc

Rbuc

Rg dcRg

νcL ec

Luc

Lr dcLr

ucLb dc

Lbuc

Lg dcLg

We now look for the complete D (not only e1De2) which is evenand satisfies order-one.

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 57: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

Lepton/quark decomposition

We want to represent D as a matrix acting on HF :

HF = H1 ⊕H3 , H1 ≃ C8 ∋

ℓR

ℓL

ℓcRℓc

L

, H3 ≃ C24 ∋

qRqLqc

Rqc

L

with leptons ℓR =(νR

eR

), ℓL =

(νLeL

), ℓc

R =(νc

Rec

R

), ℓc

L =(νc

Lec

L

)and

quarks qR =(uR

dR

), qL =

(uLdL

), qc

R =(uc

Rdc

R

), qc

L =(uc

Ldc

L

).

Write operators on HF as TF =

(

T11 T13

T31 T33

)

with T11 ∈ M8(C)

and T33 ∈ M24(C).

AF , JF , γF diagonal (no 13,31-blocks)D13 = 0 and D31 = 0 from order-one and DFγF = −γF DF

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 58: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

diagonal parts of AF :

(q, λ,m)11 =

qλ 0 0 00 q 0 00 0 λ12 00 0 0 λ12

, qλ =

(

λ 00 λ

)

(q, λ,m)33 =

qλ ⊗ 13 0 0 00 q ⊗ 13 0 00 0 12 ⊗ m 00 0 0 12 ⊗ m

,

with q ∈ H, λ ∈ C, m ∈ M3(C)

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 59: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

diagonal part of JF :

J11 =

0 0 12 00 0 0 12

12 0 0 00 12 0 0

CC

J33 =

0 0 12 ⊗ 13 00 0 0 12 ⊗ 13

12 ⊗ 13 0 0 00 12 ⊗ 13 0 0

CC

where CC means complex conjugation

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 60: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

diagonal part of γF :

γ11 =

12 0 0 00 −12 0 00 0 −12 00 0 0 12

,

γ33 =

12 ⊗ 13 0 0 00 −12 ⊗ 13 0 00 0 −12 ⊗ 13 00 0 0 12 ⊗ 13

.

γ2F = 1, γF = γ∗F , J2

F = 1 and γF JF = −JFγF satisfied

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 61: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

Diagonal part of DF ; from DF , γF = 0, [DF , JF ] = 0 andconnecting part:

D11 =

0 Y1 T 0Y ∗

1 0 0 0T ∗ 0 0 Y1

0 0 Y t1 0

, D33 =

0 Y 3 0 0Y ∗

3 0 0 00 0 0 Y 3

0 0 Y t3 0

,

with Y1 ∈ M2(C), Y 3 ∈ M2(C)⊗ M3(C) and

T = T t =

(

YR 00 0

)

with YR ∈ C

order-one: Y 3 = Y3 ⊗ 13 with Y3 ∈ M2(C)

Physical condition: DF commutes with representation of Cin AF , i.e. with (qλ, λ,0)

leads to Y1 =

(

Yν 00 Ye

)

, Y3 =

(

Yu 00 Yd

)

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 62: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

Cabibbo-Kobayashi-Maskawa matrices

Standard model needs 3 copies of HF .leptons ν,e ∈ C3, quarks u,d ∈ C3 ⊗ C3

Yν,e,u,d ,R ∈ M3(C) in D

We say that DF ,D′F are equivalent if D′

F = UDF U∗ for a unitarymatrix U which commutes with AF , JF , γF .

U11 =

diag(V1,V2) 0 0 00 diag(V3,V3) 0 00 0 diag(V1,V2) 00 0 0 diag(V3,V3)

U33 =

diag(W1,W2)⊗ 13 0 0 00 diag(W3,W3)⊗ 13 0 00 0 diag(W1,W2)⊗ 13 00 0 0 diag(W3,W3)⊗ 13

with Vi ,Wi ∈ U(3)Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 63: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

Product of spectral triples

A = AM ⊗AF , H = HM ⊗HF , D = DM ⊗ 1F + γM ⊗ DF ,

J = JM ⊗ JF , γ = γM ⊗ γF

withAM = C∞(M), HM = L2(M,S), γM = γ5, JM = γ2 CC and

DM = ieµaγ

a∇sµ , ∇S

µ = ∂µ +18ωabµ [γa, γb]

eaµ vierbein, ωab

µ spin connection form:

δabeaµeb

ν = gµν , ∂µeνa − Γνµρeρ

a + ωabµ eν

b = 0

Lichnerowicz formula

D2M = ∆LC+

14

R, ∆LC = −gµν(∂µ∂ν − Γρµν∂ρ), R = gµνRµν

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 64: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

Fluctuationsreplace D by fluctuated operator DA = D + A + JAJ−1,where A = A∗ =

α aα[D,bα]

DA satisfies the same axioms as D

DM ⊗ 1 generates 1-forms G = eµaγ

aGµ withGµ =

α aα∂µ(bα) ∈ A

γM ⊗ DF generates 1-forms γ5Φ = γ5∑α aα[DF ,bα]

Φ11 =

0 Φℓ 0 0Φ∗ℓ 0 0 0

0 0 0 00 0 0 0

, Φℓ =

(

MνCℓφ1 MνCℓφ2

−Meφ2 Meφ1

)

Φ33 =

0 Φq ⊗ 13 0 0Φq ⊗ 13 0 0 0

0 0 0 00 0 0 0

, Φq =

(

MuCqφ1 MuCqφ2

−Mdφ2 Mdφ1

)

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 65: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

lepton part of DA is:

DA,11 =

iγaeµa∇

S,Bµ γ5Φℓ T 0

γ5Φ∗ℓ iγaeµ

a∇S,B,Wµ 0 0

T ∗ 0 iγaeµa∇

S,Bµ γ5Φℓ

0 0 γ5Φtℓ iγaeµ

a∇S,B,Wµ

with

∇S,Bµ =

(

∇Sµ 0

0 ∇Sµ−2iBµ

)

1Y ,

∇S,B,Wµ =

(

∇Sµ + i(−Bµ − W 3

µ) −i(W 1µ − iW 2

µ)

−i(W 1µ + iW 2

µ) ∇Sµ + i(−Bµ + W 3

µ )

)

13

Bµ,W aµ ∈ C∞(X ) real-valued

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 66: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

quark part of DA is

DA,33 =

iγaeµa∇

S,B,Gµ γ5Φq 0 0

γ5Φ∗q iγaeµ

a∇S,W ,Gµ 0 0

0 0 iγaeµa∇

S,B,Gµ γ5Φq

0 0 γ5Φtq iγaeµ

a∇S,W ,Gµ

with

∇S,B,Gµ =

∇S

µ13 + i((−G0µ + Bµ)13 − Gµ) 0

0 ∇Sµ13 + i(−(G0

µ + Bµ)13 − Gµ)

13

∇S,W ,Gµ =

∇S

µ13 + i((−G0µ − W 3

µ )13 + Gµ) −i(W 1µ − iW 2

µ )13

−i(W 1µ + iW 2

µ)13 ∇Sµ13 + i((−G0

µ + W 3µ ) + Gµ)

13

G0µ ∈ C∞(X ) real Gµ ∈ M3(C∞(X )) hermitian and traceless

Unimodularity condition tr(A) = 0 ⇒ G0µ = −1

3Bµ

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 67: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

The action functional

Fermionic action functional

SF = 〈Jψ,DAψ〉

where ψ = γψ ∈ H+ are Grassmann-valued

Spectral action principle [Chanseddine-Connes]

The bosonic action is a functional only of the spectrum of D2A.

functional calculus and Laplace transformation

SA = Tr(χ(D2A)) =

∫ ∞

0dt χ(t)Tr(e−tD2

A) ,

with χ(s) =∫∞

0 dt e−st χ(t)

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 68: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

Proposition (heat kernel expansion)

Let F be a vector bundle over (M,g). A second-orderdifferential operator P = −(gµν∂µ∂ν + Aρ∂ρ + B) (locally),where Aµ,B ∈ End(F), has an asymptotic expansion

Tr(e−tP) ∼∞∑

k=0

tk−p

2

Mdx ak (x ,P) ,

where ak (x ,P) are the Seeley-de Witt coefficients.

inversion of Laplace transformation

SA ∼

∞∑

k=0

χ k−p2

Mdx ak(x ,D

2A) ,

χz=

∫ ∞

0dt tz χ(t) =

1

Γ(−z)

∫∞0 ds s−z−1χ(s) for z /∈ N

(−1)kχ(k)(0) for z = k ∈ N

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 69: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

The Seeley-de Witt coefficients are given in the book of Gilkey,but expressed in terms of P = ∆F − E , where ∆F is theconnection Laplacian for ∇f = dxµ ⊗ (∂µf + ωµf ). One finds

P = ∆F − E ⇔ ωµ =12

gµν(Aν + gρσΓνρσ)

E = B − gµν(ωµων + ∂µων − Γρµνωρ)

The first coefficients are

a0(x ,P) = (4π)−p2 tr(id) ,

a2(x ,P) =16(4π)−

p2 tr(−Rid + 6E) ,

a4(x ,P) =(4π)−

p2

360tr((5R2 − 2RµνRµν + 2RµνρσRµνρσ − 12∆LC(R))id

+ 60∆F (E)− 60RE + 180E2 + 30ΩµνΩµν)

where Ωµν = ∂µων − ∂νωµ + ωµων − ωνωµ

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 70: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

Spectral action

SA =1π2

(48χ−2 − cχ−1 + dχ0

)∫

d4x√

det g

+1

24π2

(96χ−1 − cχ0

)∫

d4x√

det g R

+χ0

10π2

d4x√

det g(11

6R∗R∗ − 3CµνρσCµνρσ

)

+1π2 (−2aχ−1 + eχ0)

d4x√

det g |φ|2

+χ0

2π2

d4x√

det g a(

|Dµφ|2 −

16

R|φ|2)

+2χ0

π2

d4x√

det g(1

2tr3(GµνGµν) +

12

tr2(WµνWµν) +53

BµνBµν)

+χ0

2π2

d4x√

det g|φ|4

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 71: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

with

Gµν = ∂µGν − ∂νGµ − i(GµGν − GνGµ) ∈ M3(C∞(M)) ,

Wµν = ∂µWν − ∂νWµ − i(WµWν − WνWµ) ∈ M2(C∞(M)) ,

Bµν = ∂µBν − ∂νBµ ∈ C∞(M)

|φ|2 := |φ1|2 + |φ2|

2 ,(

Dµφ1

Dµφ2

)

=

(∂µφ1

∂µφ2

)

+ i

(W 3

µ − Bµ W 1µ − iW 2

µ

W 1µ − iW 2

µ − W 3µ − Bµ

)(φ1

φ2

)

and

a = tr(Y ∗ν Yν + Y ∗

e Ye + 3Y ∗u Yu + Y ∗

d Yd) ,

b = tr((Y ∗ν Yν)

2 + (Y ∗e Ye)

2 + 3(Y ∗u Yu)

2 + (Y ∗d Yd )

2) ,

c = tr(Y ∗RYR) , d = 4tr((Y ∗

RYR)2) , e = tr((Y ∗

RYR)(Y∗ν Yν)) .

Raimar Wulkenhaar (Munster) Noncommutative Geometry

Page 72: Noncommutative Geometry€¦ · TOC Fundamental interactions Noncommutative geometry Spectral geometry Dirac operators QFT on NCG Fundamental interactions Two distinct frameworks

TOC Real structure Order-one Fluctuations Spectral action

Summary

The resulting action is gravity (including second ordercorrections) coupled to the full bosonic standard model(including Higgs sector with spontaneous symmetry breaking).

The spectral action predicts:

1 Equal coupling constants for U(1), SU(2) and SU(3). Thespectral action can only hold at GUT scale (smalldisagreement with experiment).

2 Extrapolating renormalisation group flow of a, . . . ,e to GUTscale and the resulting Higgs mass back to electroweakscale predicts mH ≈ 174GeV. Today this is known to large.

There are modified versions which yield a smaller Higgs mass.

I personally think that the discrepancy signals new physicsbetween standard model and GUT scales.

Raimar Wulkenhaar (Munster) Noncommutative Geometry