NM Lecture 6 on 15th Sept 2015.pdf

76
NUMERICAL METHODS Lecture 6 Dr. P V Ramana 1 NM Dr P V RAMANA

Transcript of NM Lecture 6 on 15th Sept 2015.pdf

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 1/76

NUMERICAL METHODS

Lecture 6

Dr. P V Ramana 1NM Dr P V RAMANA

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 2/76

Function (u) a+bx a+bx+cx2 a+bx+cx2+dx3

Function (u) a+bx+cy a+bx+cy+dx2+exy+fy2

Function u a+bx+c +dx a+bx+c +dx2+ex +f   2+ x2 2+ x2

Function (u) a+bx+cy+dz+exy+fzy+gxz+hxyz; a+bx+cy+dx2+exy+fy2+…

NM Dr P V RAMANA 2

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 3/76

Forces are acting in transverse

direction

3NM Dr P V

RAMANA

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 4/76

Characteristics (Properties) of global stiffness matrix K  IJ

Symmetric Matrix (KIJ = KJI Linear relationship between load and displacement)

Diagonal terms are positive KII (KII= 0 or –ve unless structure is unstable) = . .

order less than the rank of K).

Becomes non-singular by imposing boundary conditions.

NM Dr P V RAMANA 4

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 5/76

1 DOF

 

define the displacement of every material point.

• Usually use low order polynomials• Here

u = a + b x

 – u is axial displacement – a   b are constants to be determined

 – x is local coordinate along member 

NM Dr P V RAMANA 5

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 6/76

uJ

F F

uI

I J

known nodal displacements ui, u j at nodes

i and j= +

u j = a + b x j

• ui, u j are nodal displacements

• i,  j   6NM Dr P V RAMANA

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 7/76

=I

• e ng xi = , x j = , ne can ge

 – a = ui

 – b = (u j-ui)/L

}]{ N[1   d u x x

u  i

 – N = matrix of element sha e functions or 

u j

 interpolation functions

 – d  = nodal dis lacements

7NM Dr P V RAMANA

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 8/76

1 2 N N N

xN 1 L

N1=1

2N 

Pro ertiesVariation of N1

N 1 at node i and zero at all other nodes

2=

i N 1   Variation of N

1 2i.e. at any point in the element N N 1 8NM Dr P V RAMANA

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 9/76

}]{ N[1   d u x x

u  i

du d[N]dx dx

1

• where [B] is a matrix relating strain to nodalL

displacement (matrix of derivatives of shape

functiondV  E 

V ]B[]B[]k [  

NM Dr P V RAMANA9 Adx E T  ]B[]B[

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 10/76

dx AE dx AE   T  LT 

]1,1-[1

]1,1-[1

]B[]B[]k [  

• for 1D one can get

11]k[

 L

EA

• -

and 3-D elements

10NM Dr P V RAMANA

P bl 1

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 11/76

For a system of springs

Problem 1

1k  Fx

2k 0d1x 

1xd2xd 3xd

  ,

as:

    2211   k k k k 

222

111 k k k k 

 

11 0k k 

  221121   k k k k K K K 

11

NM Dr P V RAMANA 22

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 12/76

32

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 13/76

3

3

2

210)(   xa xa xaa xv   2 DOF

321 32)(   xa xaa xv    

NM Dr P V RAMANA 13

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 14/76

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 15/76

Use the following equations into above equation.

3 (0)d v

M M

V V

22323

3231

11

2,32   xL L x L x L

 N  L L x x L

3

2

2

(0)i

i

dx

F    V  d v EI 

 M    M    dx

   

3433 ,

 L L 3

2

2

( )

 j

 j

v EI 

 M    dx M 

d v L

 EI  dx

d  N v

d dxdx

vd d dxdx

vd d dxdx

dv ,,33

3

22

2  

 EI  N d  22

2

 Ldx,,,

3

NM Dr P V RAMANA 15 L L Ldx

6,12,6,1233  

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 16/76

32 231

  x x N   

322   x x212

 L L x  

3

3

2

2

3

 x x N   

32

 x x    

224

 L L

operties :Pr 

 x L N  N  N    342

31NM Dr P V RAMANA 16

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 17/76

The beam element equation relating nodal forces and nodal displacements is given as

    ii   v L LF  612612

  ii

v L L

 L L L L

 L

 EI 

 M     22

3 612612

2646

    j j   L L L L M     22 4626

  d k  f or   

Where [k] is the element stiffness matrix for a beam element with neglected axial effects.

NM Dr P V RAMANA 17

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 18/76

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 19/76

NM Dr P V RAMANA 19

AE AE

3 DOF

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 20/76

3 2 3 2

AE AE0 0 0 0

L L

12EI 6EI 12EI 6EI0 0

L L L L

6EI 4EI 6EI 2EI

1 3

3 DOF

rame: combination of bar

nd beam

2 2

3 2 3 2

2 2

L L L L[k]

AE AE0 0 0 0

L L12EI 6EI 12EI 6EI

0 0L L L L

6EI 2EI 6EI 4EI0 0

2

E, A, I, LQ1 ,

v1

Q3 ,

v2P1 , P2 ,

Q2 ,

1

u1 Q4 ,

2

u2

0000

  AE  AE 

1

23231

6120

6120   u

 L

 EI 

 L

 EI 

 L

 EI 

 L

 EI  L L

P

2

122

2

100  

u AE  AE 

 L L L L

P

 M 

2

2

23232

2 6120

6120    

v

 L

 EI 

 L

 EI 

 L

 EI 

 L

 EI  L L

 M 

Q

  22460260 L EI 

 L EI 

 L EI 

 L EI 

20

NM Dr P V RAMANA

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 21/76

GJ GJ

L L

3 2 3 20 0

L L L L

3 30 0

L L L L

GJ GJ0 0 0 0

12EI 6EI 12EI 6EI0 0

6EI 2EI 6EI 4EI

2 2L L L L 21

NM Dr P V RAMANA

F d t l C t

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 22/76

Fundamental Concepts

1 2 3 4 5 6, a a a ; , a a a .u x y x y v x y x y

Required Properties of the Approximate Solution:

• Completeness: approximate solution must be able to representtwo special displacement states exactly –

1. Constant strain state: all normal strains and shearing strains have afixed value everywhere in the element.

.  

displacement.

NM Dr P V

RAMANA

22

F d t l C t

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 23/76

Fundamental Concepts

Required Properties of the Approximate Solution:• e -pose ness: e num er o s ape unc ons use

in the approximate solution must equal the number of degrees

.

Degrees of freedom are the unknowns in the local problem;

.

E.g., Galerkin and Rayleigh’s method

NM Dr P V RAMANA 23

El t F l ti

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 24/76

Element Formulation

The Constant Strain Triangle element:

• 2D element used in plane

stress and plane strain

roblems

• Nominal thickness = h

(small; can be variable)

• Three corner nodes withcoordinates (xi, yi)

 

node: (ui, vi)

1 0 

NM Dr P V

RAMANA

24 2

12

1 010 0 1

 D      

Element Formulation

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 25/76

Element Formulation

Three approaches for generating shape

“Interpolation approach”:-

• Works best for small numbers of d.o.f.

“Direct approach”:ore geome r c me o

Works best for higher-order elements

“Area based approach”:

NM Dr P V RAMANA 25

Large structures or nearly volumetric Works best for higher-order elements

Basics:

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 26/76

Basics:

6 d.o.f. total 6 sha e functions

Fundamental unknowns are horizontal dis lacement

u(x,y) and vertical displacement v(x,y)

 Each dis lacement ex ected to use 3 sha efunctions

Simple shape functions = better shape functionseasier to inte rate, more widel a licable, …

The derivatives of order n in variational rinci le, itis best to choose the shape functions so that they

can form a com lete ol nomial of order n

NM Dr P V RAMANA 26

(Gives control over errors, faster convergence, …)

Element Formulation

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 27/76

Element Formulation

“Interpolation approach”:st  ,   ,  

1 2 3 4 5 6, a a a ; , a a a .u x y x y v x y x y

 – At each node, require u(xi,yi) = ui and v(xi,yi) = vi :

1 1 2 1 3 1 1 4 5 1 6 1

2 1 2 2 3 2 2 4 5 2 6 2

  .

a a a ; a a a .u x y v x y

3 1 2 3 3 3 3 4 5 3 6 3.

6 e uations for the 6 unknowns!

NM Dr P V

RAMANA

27

1 1 2 1 3 1 1 4 5 1 6 1a a a ; a a a .u x y v x y

Element Formulation

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 28/76

2 1 2 2 3 2 2 4 5 2 6 2a a a ; a a a .u x y v x y Element Formulation3 1 2 3 3 3 3 4 5 3 6 3a a a ; a a a .u x y v x y

“Interpolation approach”:

 – Write this in matrix form:

1 1 1 1

1 1 1 2

a

0 0 0 1 a

u x y

v x y

  2 2 2 3

2 2 2 4

1 0 0 0 a .0 0 0 1 a

u x yv x y

d C a

3 3 3 5

3 3 3 6

1 0 0 0 a

0 0 0 1 a

u x y

v x y

 – Solution (in symbolic form) is     1

.

a C d

NM Dr P V RAMANA 28

Element Formulation

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 29/76

Element Formulation

“Interpolation approach”:1 2 3 4 5 6, a a a ; , a a a .u x y x y v x y x y

 – ow, rewr e n erpo a on unc ons n ma r x vec or orm:

1a

2

3

a

, a1 0 0 0u x y   x y

4

5

, a0 0 0 1a

v x y   x y  

 –

6a

.

N x

NM Dr P V RAMANA 29

 

Element Formulation

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 30/76

Element Formulation

“Interpolation approach”: – For CST, can show that

1

1

u

v

21 3 5

22 4 6

, , , ,,

, 0 , 0 , 0 ,

uu x y x y x y x y

vv x y N x y N x y N x y

u

   

3

1 2 2 3 3 2 2 3 3 2  , , 2 ;

v

 N x y N x y x y x y x y y y x x A

3 4 3 1 1 3 3 1 1 3  , , N x y N x y x y x y x y y y x x

5 6 1 2 2 1 1 2 2 1

2 ;

  , , 2 ;

 A

 N x y N x y x y x y x y y y x x A

1 1

12 22

1

  area of triangle = det 1 .

 x y

 A x y

3 3

 x y

NM Dr P V RAMANA 30

Element Formulation

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 31/76

Element Formulation

Notes on “Interpolation approach”:

 – s approac genera zes o eren s apes, eren no e

locations, and different numbers of d.o.f.

 – However, the matrix [C] is not always invertible for general

choices of nodal locations.

 – As number of d.o.f. increases, matrix inversion becomes more

difficult, and thus exact functions become harder to determine.

NM Dr P V

RAMANA

31

Element Formulation

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 32/76

Element Formulation

“Direct approach”: Need two “facts” about shape functions – – st,   ,  

1 2 3 1 1 2 2 3 3, a a a , , , ;u x y x y u N x y u N x y u N x y

4 5 6 1 4 2 5 3 6, , , , .v x y x y v x y v x y v x y Shape functions must be linear in both x and y.

 – uppose one new e s ape unc ons a rea y:

1 1 2 2 3 3, , , , .u x y u N x y u N x y u N x y

1 1 2 2 3 3, , , ,i i i i i i i i iu u x y u N x y u N x y u N x y

1 2 3  , , .

1 if=

i jKronecker delta ro ert

NM Dr P V RAMANA32

  , .0 if

 j i i

i j

Element Formulation

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 33/76

Element Formulation

• Visually, this looks like:

NM Dr P V RAMANA 33

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 34/76

Shape functions construction

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 35/76

Shape functions construction

1 1

2 2 2 3 3 2 2 3 1 3 2 1

11 1 1

1 [( ) ( ) ( ) ]

2 2 2e

 x y

 x y x y x y y y x x x y P

3 3 x y

 Area of triangle Moment matrix

Substitute a1, b1 and c1 back into N1 = a1 + b1x + c1y:

1 2 3 2 3 2 2

1[( )( ) ( )( )]

2 e

 N y y x x x x y y

 A

35NM Dr P V RAMANA

Shape functions construction

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 36/76

Shape functions construction

Similarly,

2 1 1

2 2 2

( , ) 0

( , ) 1

 N x y

 N x y

2 3 1 1 3 3 1 1 3

1[( ) ( ) ( ) ]

2 e

 N x y x y y y x x x y A

2 3 3( , ) 0 N x y   3 1 3 1 3 3

1[( )( ) ( )( )]

2 e

 y y x x x x y y A

3 1 1( , ) 0

0

 N x y

 N x

3 1 2 1 1 1 2 2 11 [( ) ( ) ( ) ]2 e

 N x y x y y y x x x y A

3 3 3( , ) 1 N x y   1 2 1 2 1 1

1[( )( ) ( )( )]

2 e

 y y x x x x y y A

1 2 3 2 3 2 2

1[( )( ) ( )( )]

2 N y y x x x x y y

NM Dr P V RAMANA 36

Shape functions construction

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 37/76

Shape functions construction

i i i i N a b x c y

1

where

2

1

i j k k j

e A

i= 1, 2, 3

21

i j k 

e A

J, k determined from cyclic permutation

2i k j

e A

ii = 1, 2

Large polynomials to model bending stress

 jk

 j = 2, 3k = 3 1

along the other direction of load are poor 

Spurious shear stress when bent, strains

NM Dr P V RAMANA 37

 

Using area coordinates

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 38/76

Using area coordinates

• Alternative method of constructing shape functions

1

1 1

 x y

2-3-P:

1 2 2 2 3 3 2 2 3 3 2

3 3

2 21   x y

 

k ,  3  y 11

e

 A L  

 A1  Similarly, 3-1-P  A2 22

 A L  

i, 1 

P

1-2-P  A3

e

33

 A L  

38

,  2

 xe

NM Dr P V RAMANA

Using area coordinates1

1 1 x y

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 39/76

Using area coordinates 1 11 A x x x x x x  

3 3

2 2

1   x y

1 2 3 1 L L L Partitions of unity:   11

e

 L A

elta function property: e.g. L1 = 0 at if P at nodes 2 or 3

Therefore,

1 1 2 2 3 3, , N L N L N L

h

NM Dr P V RAMANA 39

, ,e

Strain matrix   i i i i N a b x c y 1

( )2

i j k k ja x y x yA

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 40/76

Strain matrix 2e A

u   

( )

21

i j k 

e

b y y

 A

 

 xx x

v

  

 

 

 x

2i k j

e A

  yy

 y

u v

 

    

 

 y

  y x  

 y x BdLNdLU  

0

 

321 000  bbb

0 y

 

B LN N  

321 000

2bcbcbc

ccc A

 B

40 y x

(constant strain element)NM Dr P V RAMANA

Element matrices

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 41/76

Element matrices

Constant matrix

1 0 E 

 D

 

 

1

2

10 0 1

  

41NM Dr P V RAMANA

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 42/76

1 2 3 2 3 2 2

1[( )( ) ( )( )]

2 N y y x x x x y y

A

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 43/76

2e

 A

2 3 1 1 3 3 1 1 3

1[( ) ( ) ( ) ]

21

e

N x y x y y y x x x y

 A

3 1 3 1 3 32 e A

3 1 2 1 1 1 2 2 1

1[( ) ( ) ( ) ] N x y x y y y x x x y

1 2 1 2 1 1

1[( )( ) ( )( )]

2

e

e

 y y x x x x y y A

ˆ0u

1 3 5 1 3 5

2 4 6

ˆ ˆ, , 0 , 0 , 0 *( ).

, 0 , 0 , 0 , 0 0

ˆ

u x y N x y N x y N x y   u u N N N  

v x y N x y N x y N x y

   

0

u

NM Dr P V RAMANA 43

1 3 5 2 3 3 2 3 1 1 3 1 2 2 1  , , , .

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 44/76

Constant Strain Triangle (CST) : Simplest 2D finite element

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 45/76

v3v1

u3

u1

v2

v(x1,y1)

(x3,y3)

y

u22

(x,y)

x

2, 2

• 3 nodes per element

• 2 dofs per node (each node can move in x- and y- directions)• Hence 6 dofs per element

NM Dr P V

RAMANA

45

The displacement approximation in terms of shape functions is

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 46/76

1 1 2 2 3 3u (x,y) u u u N N N 

1

v

u1 1 2 2 3 3v x,y v v v

2321

v

u

000

0 N0 N0 N

xv

y)(x,uu

3

vu

166212 d Nu  

321

 N0 N0 N0

0 N0 N0 N N

NM Dr P V

RAMANA

46

Formula for the shape functions are

cxba

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 47/76

c xba  

 yc xba N 

 A2222

1

v

3

1

u11

(x3,y3)

 yc xba N 

 A2

3333

y

u3v23

(x,y)

vu

where u22 (x2,y2)

11x11

 y

x

33

22

x12

 y  

23132123321

 x xcb x xa

 x xc y yb y x y xa

12321312213   x xc y yb y x y xa   NM Dr P V

RAMANA

47

Properties of the shape functions:

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 48/76

. 1, 2   3  

and y   inodeat  ''1

 N

N

  nodesother at 0

1

N1

1 13

y 3

1

23

31

21

2

x

NM Dr P V

RAMANA

48

2. At every point in the domain

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 49/76

3

1i

i

3

i1i i

3

i

1i

i

NM Dr P V

RAMANA

49

3. Geometric interpretation of the shape functions

At an oint P x that the sha e functions are evaluated

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 50/76

At an oint P x that the sha e functions are evaluated

 A1  

1P (x,y)

y 3 A1 A3

 A2 22  

2

x3

NM Dr P V

RAMANA

50

 Approximation of the strains

u

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 51/76

u

v x

 y

 x

 B d    

   

x y u v

 y x

   

321 0y)(x, N

0y)(x, N

0y)(x, N

 x x x yc xba 111  

321 y)(x, N

0

y)(x, N

0

y)(x, N

0  y y y Bc xba 2

 

321 000   bbb

 x y x y x y  A22

332211

321 0002

bcbcbc

ccc A

 A N 

2

3333

NM Dr P V

RAMANA

51

Inside each element, all components of strain are constant: hence

the name Constant Strain Triangle

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 52/76

g

Element stresses (constant inside each element)

dBD 

IMPORTANT NOTE:

1. The displacement field is continuous across element

boundaries. e s ra ns an s resses are con nuous across

element boundaries

NM Dr P V

RAMANA

52

Element stiffness matrix

321

321

000

000

2

1ccc

bbb

 B

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 53/76

2

  eV k  dVBDBT

t   332211   ccc

1 0 

Since B is constant

2

1

1 01

0 0 1

 D     

 

 At k  eV  BDBdVBDBTT

t=thickness of the element A=surface area of the element

T T 

   

eT 

b

e

 f 

S   S 

 f 

V  

NM Dr P V

RAMANA

53

Element nodal load vector due to body forces

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 54/76

  ee

T T 

bdA X t dV  X  f   N N

dA X  N t 

  e

e

 A  b

 A

 yb

 xb

dA X  N t  f 

 f 

11

1

f b3

f b1

y1

  e A   a

 yb

 xbb

dA X  N t 

dA X  N t 

 f 

 f  f  2

2

2f b3xxf b2y 3

XbXa

  e

e

 A  a

 A

b

 xbdA X  N t 

 f 

 f 3

3

3f b2x

2

,

  e A  b dA X  N t  3x

NM Dr P V

RAMANA

54

LINEAR RECTANGULAR ELEMENTS

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 55/76

• Non-constant strain matrix

  1   2   3   4

• More accurate representation of stress and strain

• Regular shape makes formulation easy

55NM Dr P V RAMANA

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 56/76

  –

 f  y y  z

 x  y   x

 x

 x

Plane stress Plane strain

56NM Dr P V RAMANA

Rectangular Element:

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 57/76

 

each other through special points (“nodes”)

py

3v

3x4 3u3

v4  1u

Su

v emen e

1 4u

v2

2

1

u

v

yx

y

2 2v1

3

2

u

vd

x

u

xv

1u1

3

u

v

u   4vNM Dr P V

RAMANA

57

Element Formulation

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 58/76

Three approaches for generating shape

“Interpolation approach”:

-• Works best for small numbers of d.o.f.

“Direct approach”:ore geome r c me o

Works best for higher-order elements

“Area based approach”:

NM Dr P V RAMANA 58Large structures or nearly volumetric Works best for higher-order elements

Basics:

8 d.o.f. total 8 sha e functions3

u3

v3

v

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 59/76

Fundamental unknowns are 4u

v4

v2

horizontal displacement u(x,y) and

vertical dis lacement v x,

y

2u2v1

Each displacement expected to

use 4 sha e functionsx

v

u

1u1

Sim le sha e functions = better sha e functions

(easier to integrate, more widely applicable, …)

The derivatives of order n in variational principle, it

is best to choose the sha e functions so that the

NM Dr P V RAMANA 59can form a complete polynomial of order n(Gives control over errors, faster convergence, …)

Element Formulation

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 60/76

“Interpolation approach”:st  ,   ,  

 xya ya xaa y xv xya ya xaa y xu 87654321 ),(;),(  

 – At each node, require u(xi,yi) = ui and v(xi,yi) = vi :

 xaa xaav xaa xaau  

228272652224232212 ;   y xa ya xaav y xa ya xaau  

448474654444434214

338373653334333213

;

;

 y xa ya xaav y xa ya xaau

 y xa ya xaav y xa ya xaau

 

NM Dr P V

RAMANA

60

Element Formulation; yxayaxaavyxayaxaau

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 61/76

228272652224232212

118171651114131211

;

;

 y xa ya xaav y xa ya xaau

 y xa ya xaav y xa ya xaau

“Interpolation approach”:

 – Write this in matrix form:448474654444434214

338373653334333213

;   y xa ya xaav y xa ya xaau  

 – Solution (in symbolic form) is     1

.a C d

• Non-constant strain matrix

• More accurate representation of stress and strain

NM Dr P V RAMANA 61

Element Formulation

)()(

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 62/76

“Interpolation approach”: xya ya xaa y xv xya ya xaa y xu87654321

),(;),(  

 – ow, rewr e n erpo a on unc ons n ma r x vec or orm:

1

.

 xya ya xaa y xv xya ya xaa y xu   ),(;),( 87654321

aP y xu xu   ),()(

 –1

,

 

.

N x

NM Dr P V RAMANA 62

 

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 63/76

Consider a rectangular element

 , v

3 ( x3, y3)4 ( x4, y4)  

1  displacements at node 1u

v

  u3, v3 

sy

sx 

4, 4

2b 2

2 displacements at node 2

 e

u

u

 

  d

1 ( x1, y1) 2 ( x2, y2)

2a3

3

4

 displacements at node 3

 dis lacements at node 4

u

u

 

 , u

, ,4u

63NM Dr P V RAMANA

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 64/76

   , v

3 ( x3, y3)4 ( x4, y4)  

,

(u3, v3)

  , +

  (u4, v4) 

3, 3

sy

sx

  4, 4 

2b

2b

1 ( x1, y1)(u1, v1) 

2 ( x2, y2)  (u2, v2)

1 (1, 1)

  u  v

2 (1, 1)

  u2, v2

2a

 , u

 ,   b ya x       

( , ) ( , )h

e x y x yU N d

31 2 4

31 2 4

00 0 0 

00 0 0

 N  N N N 

 N  N N N 

 

N

 

where

NM Dr P V RAMANA 64

 

(Interpolation)

Summary: For each element

Rectangular Element:

Displacement approximation in terms of shape functions

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 65/76

Displacement approximation in terms of shape functions

d Nu 

Strain approximation in terms of strain-displacement matrix

Stress approximation

dBε 

dBD 

 

  e

k  dVBDBT

Element nodal load vector 

T T 

   

eT 

b

e

 f 

 f 

NM Dr P V

RAMANA

65

Lagrange family

Serendipity family

Second Approach

 

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 66/76

4-noded rectangular element with edges parallel to the coordinate axes:,

4, 4

4

uxxu   N 

(x,y)

vu 2b

  1i

4

y

(x2,y2)1 22a

1

i,,

i

i

x

,

• 4 nodes per element

• 2 dofs per node (each node can move in x- and y- directions)

•8 dofs per element NM Dr P V RAMANA 66

Generation of N1:2 x x 

1xx

 

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 67/76

y 21  x x  

has the property

34l1(y)

0)(

1)(

21

11

 xl

 xl

2b Similarly

41

41 )(

 y y

 y y yl

x

1 2

2a

N1

has the property1)( 11    yl

l1(x)

10)( 41    yl

Hence choose the shape function at node 1 a

4242

111

1)()(   y y x x

 y y x x yl xl N   

    

 

   

4121   a y y x x  

NM Dr P V RAMANA 67

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 68/76

Second Approach

b ya xab

 y y x xab

 N    4

1

4

1421

  by

a xyyxxN

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 69/76

Lagrange familySerendi it famil 11     b ya x

b y

ab

 y y x x

ab

 N   

144

312

Lagrange family

1144243

ab y y

ab

  b ya x

 y y x x N   

11

134

4-noded rectangle

y

In local coordinate system

a a

12

b b xaab

 N 

41

y

l1(

x

b

 yb xa

ab

))((

42

2b

y

3 4

 yb xa N 

ab

))((

43

1 22a

N1 1

ab4NM Dr P V RAMANA 69l1(x)1

1 Polynomial completeness

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 70/76

1. Polynomial completeness

Convergencerate dis lacement

 y x4 node; p=2

 

3223 y xy y x x

 y xy x9 node; p=3

54322345

432234

 x x x x x y xy y x y x x

La ran e sha e functions contain hi her order terms but miss out lowerorder terms

NM Dr P V RAMANA 70

Properties of the shape functions:

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 71/76

1. The shape functions N1, N2 , N3 and N4 are bilinearfunctions of x and

2. Kronecker delta property

nodesother at 

inodeat  y x

0

''1),( N i

3. Completeness

y

a a 12

4

1i

i 1 N x

 x x i  

4

1i

i N 3 4

 y y i  1i

i N NM Dr P V RAMANA 71

3. Along lines parallel to the x- or y-axes, the shape functions

are linear. But along any other line they are nonlinear.

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 72/76

4. An element shape function related to a specific nodal point

point.

5. The displacement field is continuous across elements

. e s ra ns an s resses are no cons an w n an

element nor are they continuous across element boundaries.

y

a a12

x

b

NM Dr P V RAMANA 723 4

The strain-displacement relationship

4214

1 y y x x

ab N   

34

2

l1(y)

 x

 

3124

1 y y x x

ab N  b

N

1

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 73/76

xy

 y

 

 

  2434

1

4

 y y x xab

 N 

ab

x1 22

N1

1

  1

1

4321

v

u

y)(x,y)(x, Ny)(x,y)(x, N

1344

1 y y x x

ab N    a

1

1

3

2

2

4321

u

v

u

y)(x, N0

y)(x, N0

y)(x, N0

y)(x, N0

 y y y y

 x x x x

 

4

3

B

44332211

u

vy)(x, Ny)(x, Ny)(x, Ny)(x, Ny)(x, Ny)(x, Ny)(x, Ny)(x, N

                                       x y x y x y x y

4

    y y y y y y y y 1234 0000

 

 y y x x y y x x y y x x y y x x

 x x x x x x x xab

 B

13243142

3412 00004

o ce a e s ra ns an ence s resses are cons an w n an

element NM Dr P V RAMANA 73

Computation of the terms in the stiffness matrix of 2D elements (recap)

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 74/76

The B-matrix (strain-displacement) corresponding to this element is34v4 v3

uu4

y

v

1 2 3 4 N (x,y) N (x,y) N (x,y) N (x,y)0 0 0 0

u1 v1u2 v2

u3 u4v3 v4

(x,y) u

1 2

2v1

u1u2

1 2 3 4

1 1 2 2 3 3 4 4

 N (x,y) N (x,y) N (x,y) N (x,y)0 0 0 0

 N (x,y) N (x,y) N (x,y) N (x,y) N (x,y) N (x,y) N (x,y) N (x,y)

 y y y y

 y x y x y x y x

Denote the columns of the B-matrix as

x

1 N (x,y)0

 N x x

  1 1

1

1

; ; an so on...

 N (x,y) N (x,y)

u v y

 y

 

 x

NM Dr P V RAMANA 74

The stiffness matrix corresponding to this element is

  eV

k  dVBDB which has the following form

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 75/76

u1 v1u2 v2 u3

u4v3v4

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8

2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8

k k k k k k k k  

k k k k k k k k  

u1

v1

3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8

4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8

k k k k k k k k  

k k k k k k k k  k 

u2

v2

5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8

6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8k k k k k k k k  k k k k k k k k  

u3

u4

v3

8 1 8 2 8 3 8 4 8 5 8 6 8 7 8 8k k k k k k k k   v4

1 1 1 1 1 2

T T T

11 12 13B D B dV; B D B dV; B D B dV,...e e eu u u v u u

V V V k k k 

 

1 1 1 1

T T

21 21B D B dV; B D B dV;.....e ev u v v

V V 

k k 

NM Dr P V RAMANA 75

7/25/2019 NM Lecture 6 on 15th Sept 2015.pdf

http://slidepdf.com/reader/full/nm-lecture-6-on-15th-sept-2015pdf 76/76

76NM Dr P V RAMANA