Naturalized distributions show that climatic disequilibrium is ......Daniel L. Perret | Andrew B....

13
Global Ecol Biogeogr. 2018;1–13. wileyonlinelibrary.com/journal/geb | 1 © 2018 John Wiley & Sons Ltd Received: 11 May 2018 | Revised: 25 September 2018 | Accepted: 2 October 2018 DOI: 10.1111/geb.12862 RESEARCH PAPER Naturalized distributions show that climatic disequilibrium is structured by niche size in pines (Pinus L.) Daniel L. Perret | Andrew B. Leslie | Dov F. Sax Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island Correspondence Daniel L. Perret, Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912. Email: [email protected] Editor: Adriana Ruggiero Abstract Aim: The assumption that the native distributions of species are in equilibrium with climate has been shown to be frequently violated, despite its centrality to many niche model applications. We currently lack a framework that predicts these violations. Here, we examine whether variation in climatic disequilibrium is structured by prop- erties of species’ native distributions and climatic niches. Location: Global. Methods: We built climatic niche models for 106 pine (Pinus L.) species, including 25 that have naturalized outside their native range. We measured the extent of climate space occupied exclusively by naturalized populations and considered what fraction of this space was available within the native continent and near the native range. We examined the consequences of disequilibrium for estimates of potential range filling and sister species niche conservatism. Results: Most species (23 of 25) have naturalized in climate conditions outside the native niche, leading to increases in the total known suitable climate space. Increases in niche size were negatively related to native niche size. Increases were often large; one species expanded its niche by almost 10% of the global climate space. These in- creases were associated primarily with cooler, wetter and less seasonal climates. Increases in known niche size lowered potential range filling estimates within species’ native continent and ecoregion. Naturalized data did not strengthen support for niche conservatism among sister species. Main conclusions: Among pines, climatic disequilibrium is the norm and not the ex- ception. The magnitude of this disequilibrium can be vast, such that the native range greatly under‐represents the true climatic tolerances of some species. Fortunately, this disequilibrium can be predicted largely by the size of a species’ native niche. Accounting for this disequilibrium can improve our ability to characterize ecological phenomena, including potential range filling. This is an essential step towards im- proving the conservation value of ecological niche models. KEYWORDS climate change, conservation planning, ecological niche model, niche size, phylogenetic niche conservatism, range filling, tree invasions

Transcript of Naturalized distributions show that climatic disequilibrium is ......Daniel L. Perret | Andrew B....

Page 1: Naturalized distributions show that climatic disequilibrium is ......Daniel L. Perret | Andrew B. Leslie | Dov F. Sax Department of Ecology and Evolutionary Biology, Brown University,

Global Ecol Biogeogr. 2018;1–13. wileyonlinelibrary.com/journal/geb  | 1© 2018 John Wiley & Sons Ltd

Received:11May2018  |  Revised:25September2018  |  Accepted:2October2018DOI:10.1111/geb.12862

R E S E A R C H P A P E R

Naturalized distributions show that climatic disequilibrium is structured by niche size in pines (Pinus L.)

Daniel L. Perret  | Andrew B. Leslie | Dov F. Sax

DepartmentofEcologyandEvolutionaryBiology,BrownUniversity,Providence,RhodeIsland

CorrespondenceDanielL.Perret,DepartmentofEcologyandEvolutionaryBiology,BrownUniversity,Providence,RI02912.Email:[email protected]

Editor:AdrianaRuggiero

AbstractAim:Theassumptionthatthenativedistributionsofspeciesareinequilibriumwithclimatehasbeenshowntobefrequentlyviolated,despiteitscentralitytomanynichemodel applications.Wecurrently lack a framework that predicts these violations.Here,weexaminewhethervariationinclimaticdisequilibriumisstructuredbyprop-ertiesofspecies’nativedistributionsandclimaticniches.Location: Global.Methods:Webuiltclimaticnichemodelsfor106pine(PinusL.)species,including25thathavenaturalizedoutsidetheirnativerange.Wemeasuredtheextentofclimatespaceoccupiedexclusivelybynaturalizedpopulationsandconsideredwhatfractionofthisspacewasavailablewithinthenativecontinentandnearthenativerange.Weexaminedtheconsequencesofdisequilibriumforestimatesofpotentialrangefillingandsisterspeciesnicheconservatism.Results:Mostspecies(23of25)havenaturalizedinclimateconditionsoutsidethenativeniche,leadingtoincreasesinthetotalknownsuitableclimatespace.Increasesinnichesizewerenegativelyrelatedtonativenichesize.Increaseswereoftenlarge;onespeciesexpandeditsnichebyalmost10%oftheglobalclimatespace.Thesein-creases were associated primarily with cooler, wetter and less seasonal climates.Increasesinknownnichesizeloweredpotentialrangefillingestimateswithinspecies’native continent and ecoregion. Naturalized data did not strengthen support fornicheconservatismamongsisterspecies.Main conclusions:Amongpines,climaticdisequilibriumisthenormandnottheex-ception.Themagnitudeofthisdisequilibriumcanbevast,suchthatthenativerangegreatlyunder‐representsthetrueclimatictolerancesofsomespecies.Fortunately,this disequilibrium canbe predicted largely by the size of a species’ native niche.Accountingforthisdisequilibriumcanimproveourabilitytocharacterizeecologicalphenomena, includingpotential range filling.This is anessential step towards im-provingtheconservationvalueofecologicalnichemodels.

K E Y W O R D S

climatechange,conservationplanning,ecologicalnichemodel,nichesize,phylogeneticnicheconservatism,rangefilling,treeinvasions

Page 2: Naturalized distributions show that climatic disequilibrium is ......Daniel L. Perret | Andrew B. Leslie | Dov F. Sax Department of Ecology and Evolutionary Biology, Brown University,

2  |     PERRET ET al.

1  | INTRODUC TION

Speciesdistributionmodels (SDMs)andtheecologicalnichemod-els (ENMs) thatunderlie themare important toolsused topredictspeciesinvasions(e.g.,Broennimannetal.,2007;Guisan,Petitpierre,Broennimann,Daehler, & Kueffer, 2014; Peterson, 2003; Thuiller,Richardson, et al., 2005), estimate extinction risk under climatechange (e.g., Thuiller, Lavorel, Lavorel, Araújo, Sykes, & Prentice,2005) and inform conservation planning (e.g., Early & Sax, 2011;Williamsetal.,2005).Aprimaryassumptionofthesemodels,thatspeciescansurviveonlyinareaswithclimaticconditionsmatchingthosewheretheycurrentlyoccur(Busby,1988),hasbeenrecognizedsincethereleaseofthefirstwidelyusedSDMpackage(BioClim;Nix,1986;Booth,Nix,Busby,&Hutchinson,2014).Thecurrentformu-lationofthisassumption,thatspeciesdistributionsexistinequilib-riumwiththeirnativeclimate(i.e.,speciesoccurinalltheclimatesthatcouldsustainthem),hasbeenshowntobefrequentlyviolated(Booth et al., 2015; Booth, Nix, Hutchinson, & Jovanovic, 1988;Boscietal.,2016;Early&Sax,2014;Gallagher,Beaumont,Hughes,&Leishman,2010).Climaticdisequilibriumcanresultfromdispersallimitations, biotic interactions or contingencies of biogeographicalhistory(Svenning&Skov,2004;Wiszetal.,2013),allofwhichcanconstraintherealizednichetoanestedsubsetofthefundamentalniche.Here,wedefinetherealizednicheastheclimatespaceoccu-piedbythespecies’historicalnativerange.Wedefinethefundamen-talnicheastheclimatespaceinwhichaself‐sustainingpopulationcanbemaintained,butwhichmaynotbe fullyoccupiedowing toantagonisticbiotic interactions,missingpositivebiotic interactionsorbarrierstodispersal(Sax,Early,&Bellemare,2013).

Models that incorporateonly realizedconditionswill generallyunderestimate invasion risk (Broennimann & Guisan, 2008) andoverestimatethesensitivityofspeciestochangesinclimate(Araújoetal.,2013).Thismismatchbetweenrealizedandfundamentalnichespacecouldbeamelioratedbybuildingmodelsthat includeempir-ical informationonthefundamentalniche.However, this informa-tionisgenerallyunavailableformostspecies.Likewise,nopredictiveframeworkexiststoestimateormodelfundamentalnicheconditionsreliablyrelativetorealizedconditions(Saxetal.,2013),althoughre-centworkpairingcriticalphysiologicallimitswithrealizednichees-timateshasmadeprogress inthisregard(Soberón&Arroyo‐Peña,2017).Withoutsuchaframework,itisdifficulttoknowhowmuchconfidenceweshouldplaceinexistingmodellingapproachesbasedsolelyonrealizednicheconditions.

Several lines of evidence that relate to conditions beyondthe realized niche provide a partial basis for examining potentialmismatches between species’ realized and fundamental niches.Mechanistic models characterize the bounds of the fundamentalnichebyexaminingspecies’physiological limits.Suchstudies,onawide variety of taxa, suggest that the fundamental niche is oftenmuch larger than the realizedniche andextends intowarmer andwetter climates (e.g., Araújo et al., 2013; Sunday, Bates, &Dulvy,2012).Hindcastingapproachesthatcomparecurrentandpastdis-tributionscanalsobeinformative.Forinstance,Ivory,Early,Sax,and

Russell(2016)foundthatfossildistributionaldataexposedsuitableclimatespacethatismaskedfromspecies’currentrangesbyhumanland use. Finally, considerations of the climatic conditions experi-encedinspecies’nativeandnon‐nativerangeshavea longhistoryintheliterature(e.g.,Boothetal.,1988;Booth&McMurtrie,1988;Grinnell,1922).However,multiple‐speciescomparisonsinthisveinhave only recently emerged (e.g., Gallagher et al., 2010). This ap-proachtypically involvesexaminingpopulationsoutsidethenativerangethatarenaturalized(i.e.,self‐sustaining,indicatingportionsofthefundamentalniche)orthosethatareadventive(i.e.,growingbutnotself‐sustaining,indicatingportionsofthetoleranceniche;sensu Saxetal.,2013).Anothersimilarandpromisingapproach involvesusingdatafromprovenancetrialswhereinindividualsfromvariouslocalitiesaregrownoutside thespecies’ range; inparticular,manytreespecieshavebeentestedinthiswaytoassesstheirsuitabilityforcommercialforestry(Booth,2017;Boothetal.,2015).

Despitethenascenceofthisliterature,twobroadpatternshavebeguntoemerge.First,thereisevidencethatspecieswithsmallna-tiverangesornarrowrealizednichesaremore likely toshowmis-matchesbetweentheirrealizednicheandeithertheirfundamentalortheirtoleranceniche.EarlyandSax(2014)foundstrongsupportforthispatternamongagroupof51Europeanplantsthathavenat-uralized in theUSA.Boscietal. (2016) foundasimilarpattern forplantsinNorthAmerica,suchthatspecieswithsmallnativerangesweremostlikelytohavelargemismatchesbetweennativeclimaticconditions and those inwhich species have become adventive. Incontrast,Petitpierreetal.(2012)foundthatmostspecieswithlargenative ranges showed only minor differences between native cli-maticconditionsandthoseinwhichthespecieshadbecomeestab-lished.Second,theliteratureexaminingclimateconditionsoccupiedbynativeandnon‐nativepopulationsindicatesthatunoccupiedpor-tionsofthefundamentalnichearelikelytobeinwarmerandwetterclimatesthanthenativerange,asexemplifiedbyastudyofamphib-ianandreptiledistributions(Li,Liu,Li,Petitpierre,&Guisan,2014).Theseresultsareconsistentwithmechanisticstudiesthatexaminephysiologicalandmetaboliclimits(e.g.,Araújoetal.,2013;Sundayetal.,2012).Moreworkisneeded,butifthesepatternswerewide-spread, a case could bemade that speciesmight fare better thanpreviouslyforecastintheirwarmingnativeranges.

Oneof the implicationsof climatic disequilibrium is that areaswithinaspecies’nativeregionorcontinentcanbeunoccupiedeventhoughtheyareclimaticallysuitable.Thiswasdemonstratedinclas-sicworkbySvenningandSkov(2004),whoshowedthatEuropeantreespeciesoccupyonlyaportionoftheclimaticallysuitableareaonthecontinent.Thisworkandthelargebodyofcontinuingworkon ‘range filling’has shownthatmost speciesdonot fill allof thesuitableareawithintheirnativeregionorcontinent(Bradley,Early,& Sorte, 2015; Dullinger et al., 2012; Nogués‐Bravo et al., 2014;Svenning & Skov, 2004). However, it is important to emphasizethatthisworkconsidersonlytherealizednichewhenmakingthesecomparisons (but seeBradleyet al., 2015). Thegrowing literatureonnativeandnon‐nativeclimatecomparisonssuggests thatexist-ingestimatesofrangefillingunderestimatethedifferencebetween

Page 3: Naturalized distributions show that climatic disequilibrium is ......Daniel L. Perret | Andrew B. Leslie | Dov F. Sax Department of Ecology and Evolutionary Biology, Brown University,

     |  3PERRET ET al.

realized conditions and the true climatically suitable area (Early&Sax,2014).Thismeansthatevenlessofthepotentiallysuitableareamight be occupied than previously thought. However, additionalwork isneededtoconstrainbetter thedegreetowhichrangefill-ingestimatesbasedsolelyonnativedistributionsmightcharacterizerangefillinginaccurately.

Variationinthemagnitudeofclimaticdisequilibriumamongspe-ciesalsohasimplicationsfortheevolutionofclimaticniches.Theideathatsimilaritybetweenspeciesshouldincreasewithrelatednesshasbeenlongestablished,andmorerecentworkhasidentified‘nichecon-servatism’asageneral tendency forclosely relatedspecies tohavemoresimilarfundamentalnichesorclimatictolerancesthanexpectedby chance (Holt &Gaines, 1992; Losos, 2008;Wiens et al., 2010).However,becausemostempiricalstudiesonnicheconservatismesti-mateonlytherealizedniche(e.g.,Anacker&Strauss,2014;Peterson,Soberón,&Sánchez‐Cordero,1999),thedegreetowhichpatternsofnicheconservatismextendto fundamentalnichespace remainsun-clear.Forexample,recentsimulationstudiesusingvirtualspecieshavedemonstrated that incompletely characterized fundamental nichestendtoinflateestimatedratesofnicheevolution(Saupeetal.,2017).Empiricalinvestigationoftheeffectofclimaticdisequilibriumonnicheconservatismrequiresagroupofspecieswithafinelyresolvedphy-logenyandabundantinformationaboutthefundamentalniche.

Although therearemany taxonomicgroups that couldbeusedtocomparenativeandnaturalizednicheconditions,thegenusPinus offersseveraladvantagesforsuchwork.First,therearedetailedandabundantdataaboutwherepinespeciesarenativeandintroduced.At least 25 species have become naturalized outside their nativeranges,oftenintheSouthernHemisphere,wheretheyhavebecomeinvasivepests(notably inSouthAfrica,AustraliaandNewZealand;Richardson&Higgins, 1998).Commercial forestry in the19th and20th centuries is largely responsible for these introductions, al-thoughtheearliestestimatesofhuman‐mediatedpineintroductionsrangeasfarbackas6,000BP(Barbéro,Loisel,Quézel,Richardson,&Romane,1998).Thereisconsequentlyalargeandvariedliteratureon thedriversofPinus introductionandnaturalization (Franzese&Raffaele, 2017; Nuñez & Medley, 2011; Richardson & Rejmánek,2004),andthegenushasevenbeenproposedasamodelsystemforstudyinginvasionecology(Richardson,2006).Second,thevariationinrangesizeamongpinespeciesspansseveralordersofmagnitude,fromPinus squamata,knownfromonlyasinglelocality,toPinus syl-vestris,withanativerangethatcoversmostofthePalaearctic(Farjon&Filer,2013).Moststudiesthusfarthatcomparenativeandnatu-ralizednicheshavefocusedonaparticularregionorregions,oftenusinganassemblagethatiswidelydispersedtaxonomically(Early&Sax,2014;Petitpierreetal.,2012).Incontrast,pinesallowstudyofasinglegenusataglobalscalewhilestillencompassingawiderangeofdistributionaltraits,nichetraitsandecologies.Third,asthemosteco-nomically important treegenus in theworld (Richardson&Rundel,1998), thehistorical native rangesofmostpine specieshavebeenexceptionally well characterized (Farjon & Filer, 2013). This allowsforthenativeclimaticconditionsofpinestobeestimatedwithmoreconfidencethanformanyothergroups.Finally,arecentlypublished

time‐calibratedphylogenyfortheentiregenus(Saladinetal.,2017)allowsforinvestigationofnicherelationshipsandconservatism.

Here,weusePinusasamodelsystemtoinvestigateclimaticdis-equilibriumandhowitchangesniche‐basedinferenceacrossacom-pletetaxon.Wedosobycomparingtheclimateoccupiedbynaturalizedpopulations of 25 pine specieswith that occupied by native popu-lationsof the same species.Weusenaturalized (i.e., self‐sustaining)populations,asopposedtothosethataremerelyadventive,inordertofocusonthoseconditionswhereitisclearthatanintroducedpop-ulationcanthrive.Weaskwhetherclimaticdisequilibriumisrandomacrossspeciesorstructuredbydistributionalornichecharacteristics.Wealsoexaminetheconsequencesofdisequilibriumforregionalandcontinentalrangefillingestimates,andtheimplicationsfornichecon-servatismofsisterspeciespairs.Finally,weexplorethe implicationsofthisworkforconservationofspeciesinthefaceofclimatechange.

2  | METHODS

2.1 | Occurrence data

Weacquireddataonthenativedistributionof109pinespeciesfromthe Conifer Database (Farjon, 2017). This carefully curated dataset isbuilt fromtaxonomicallyverifiedherbariumspecimens,withspecialcaretakentosampletheentiredistributionofeachspeciesandcontrolforspatialsamplingbias;fullcriteriaforinclusioninthedatabase are described by Farjon and Filer (2013).We processedthese data by removing occurrenceswith erroneous geographicalcoordinatesandremovedthreespeciesthathadeithertoofewoc-currencesor toorestrictedadistributiontobetractable fornichemodelling (P. squamata, Pinus amamiana and Pinus maximartinezii). To reduce the likelihood of erroneously including non‐native oc-currenceswithinthenativerangeofourfocalspecies,weremovedoccurrencesthatfelloutsidea100‐kmbufferaroundeachspecies’native range, as defined by expert rangemaps. Thesemapsweredownloaded from the United States Geological Survey digitizeddatabase of North American tree species (Fryer, 2018), digitizedfromCritchfieldandLittle(1966)orsuppliedbyNobis,Traiser,andRoth‐Nebelsick(2012).Althoughtheserangemapsarederivedfromsourcesofuncertainprecision,theyrepresentdecadesofworkbyresearchersattheU.S.ForestServicetofinelycharacterizethena-tiverangesofthesespecies,andthusarethemostcompletearea‐basedrangeestimatesforthisgroup.Intotal,ouranalysesinclude106species(SupportingInformationAppendixS1).

Dataonthenaturalizedoccurrencesofpineswerecollectedfromherbariumspecimensandaccountsintheliterature.Webeganher-bariumsearcheswiththespeciesandregionsidentifiedintheglobaldatabaseofinvasivetreesandshrubs(Rejmánek&Richardson,2013).Wesearched18herbariaandherbariumconsortiawithextensivedig-itizedpinecollectionsandrequestedphotographedspecimensfroman additional 35herbaria (Supporting InformationAppendix S2).Arecordwasincludedinourdatabaseonlyiftherewasclearevidencethatthespecimencamefromanaturalized(i.e.,self‐sustaining)popu-lationandifithadassociatedgeographicalcoordinates(seeexpanded

Page 4: Naturalized distributions show that climatic disequilibrium is ......Daniel L. Perret | Andrew B. Leslie | Dov F. Sax Department of Ecology and Evolutionary Biology, Brown University,

4  |     PERRET ET al.

descriptionsofourcriteriaandexamplesinSupportingInformationAppendix S2). Finally, we performed literature searches for publi-cations that contained references to naturalized pine populations(Supporting Information Appendix S3; Web of Science keywords:pinussp;naturaliz*;invas*;exotic;alien;adventive).AllrecordsweregeoreferencedandlocalitiesverifiedinGoogleEarth.Thecompletedatabasecontains597naturalizedoccurrencerecordsfor25speciesdistributedacross23countriesandfivecontinents.

2.2 | Niche modelling

Theselectionofappropriateclimaticvariables fornichemodellingorspeciesdistributionmodellingisofcrucialimportance(Petersonet al., 2011). Recent work by Petitpierre, Broennimann, Kueffer,Daehler, and Guisan (2017) suggests that climatic variables withknown ecological effects can predict plant distributionsmore ac-curately than variables selected using a model‐based approach.For this reason, we selected seven climate variables indicated tobe important or deterministic for pine growth and success of es-tablishment.OwingtothelonghistoryofPinuscultivation,thereisa large body of literature specific to pine silviculture onwhich todraw(e.g.,Boothetal.,1984;Poyntonetal.,1977).Ourfinalmodelsincludemeanannualtemperature(MAT),maximumtemperatureofthewarmestweek (MaxTemp),minimum temperatureof the cold-estweek(MinTemp),annualprecipitation(AnnPrecip),precipitationseasonality(PrecipSeas),non‐summerprecipitation(WinPrecip)andestimatedactualevapotranspiration(AET).Thefirstsixvariablesare30‐year averages (1961–1990) derived fromBioClim 1.2 variablesdownloaded from theCliMonddatabase in June2017 (Kriticosetal., 2012). Estimated actual evapotranspiration is supplied by theMODIS Global Evapotranspiration Project (MOD16; Mu, Zhao, &Running,2011).Allclimatedatawereresampledto10arc‐minreso-lution tomatchtheBioClimdata resolutionwith the lowestglobalerrorrates.Wealsorepeatedallanalyseswithasetofeightclimatevariables selectedby a principal components (PCs)‐based variableselectionmodel(sensuPetitpierreetal.,2017),althoughresultswerenotqualitativelydifferentandarenotpresentedhere.

Choosinganordinationtechniqueandmethodforcharacterizingnichespacethatsuitsthequestionisalsoofcrucialimportance.Giventhatwewereinterestedindirectinterspeciescomparisons,allnichemodelsneededtobebuiltinanequivalentspace(Broennimannetal.,2012).Giventheglobaldistributionofnativeandnaturalizedpines,webuiltallnichemodels in theglobalclimatespace.Following therecommendationsofBroennimannetal.(2012)andPetitpierreetal.(2017),wecalibratedaprincipalcomponentsanalysis (PCA)onthisglobalbackgroundandusedthefirsttwoPCaxes(containing84.39%ofthevariation)asacommonclimatespace.GiventhatmanypinesarenativetotheNorthernHemispherebutnaturalizedintheSouthernHemisphere,wealsoplottedtheclimateofeachhemispheretoassessthepotentialforsystematicdifferencesthatcouldinfluenceinterpre-tationofournichemodels(Qiao,Escobar,&Peterson,2017).

We initially built these niche models following the kernelsmoothing (“KS”) approachofBroennimannet al. (2012) but had

concernsaboutpotentialerrorresultingfromsamplingbiasesandunevensamplingintensitiesinthenativeandnaturalizeddistribu-tions.Inaddition,nichemodelsbuiltusingtheKSapproacharein-fluencedbyasmoothingparameter,h,estimatedasafunctionofthenumberandmeandispersionofoccurrencesinclimatespace.InspectionofKSnichemodelsshowednicheextensionintounoc-cupiedclimatespacecausedbysystematicdifferencesinthenum-beranddispersionofnativeandnaturalizedoccurrences.Forthesereasons,weusedminimumconvexpolygons(MCPs)tocharacter-izenichespace inall theanalysespresentedhere, for106nativedistributions and 25 combined native–naturalized distributions.Combiningnativeandnaturalizeddataallowedustobuildamin-imumestimateofthefundamentalnichespaceoutsidethenativerealizedniche(Broennimann&Guisan,2008;Early&Sax,2014).

2.3 | Analyses

Tocharacterizeclimaticdisequilibrium,wecalculatedtheamountofclimatespaceoccupiedbybothnativeandnaturalizedoccurrences(i.e., the extended niche, hereafterNE), in addition to the climatespaceoccupiedbyonlynativeoccurrences(i.e.,thenativerealizedniche,hereafterNR).Thedifferencebetweentheextendedandreal-izedniche,ΔN,canbeinterpretedastheamountofsuitableclimatespaceexposedbynaturalizedoccurrences:

WhereNR isasubsetofNE,whichisinturnasubsetofthefunda-mentalniche,NF:

Inordertocontrolfortheanisotropyandscaledependenceofclimatespace (Soberón&Peterson,2011),wecalculated the frac-tionofΔNthatisavailableonthenativecontinentofeachspecies,andthefractionofΔNthatoccurswithin300kmofeachspecies’nativerange(seeSupportingInformationFigureS4.1forconceptualdiagram).Allnichespaces(NE, NR and ΔN)areexpressedrelativetothesizeoftheglobalclimatespace(i.e.,NRof.10indicatesthatthespecies’nativerealizednicheencompasses10%oftheglobalclimatespace).Wealsocalculatedthevectorbetweenthegeometriccen-troidsofNR and NE.WeemphasizethatwedonotconsiderΔN or a largevectordifferenceevidenceofnicheevolutionorchangeperse(Petitpierreetal.,2012),butratherasevidenceoffundamentalnichespaceunoccupiedbythenativerealizedniche(Early&Sax,2014).

Capturingall possiblepredictorsof climaticdisequilibrium in asingleanalysiswouldbedifficultorimpossible.Giventhatwewereinterestedspecificallyinniche‐basedordistributionaltraits,wefo-cusedonthefollowingvariables:(a)NR,thesizeofthenativenicheMCPinPCAclimatespace;(b)nativerangesize,forwhichrangemapswereresampledtomatchclimatedataresolution,andrangesizewascalculatedas thenumberofoccupiedgridcells, log10‐transformedforanalyses;(c)nativenicheposition,thepositionofthenichecen-troidonbothPCaxes;(d)nativerangecentrelatitude,thelatitude

ΔN=NE−NR

NF⊇NE⊇NR

Page 5: Naturalized distributions show that climatic disequilibrium is ......Daniel L. Perret | Andrew B. Leslie | Dov F. Sax Department of Ecology and Evolutionary Biology, Brown University,

     |  5PERRET ET al.

ofthegeometriccentroidofthenativerange;and(e)nichemargin-ality,theclimatedistancefromthecentreofalloccurrencesacrossthe genus to the centre of each species’ native niche.We used arandomforestregressionapproachtorankpredictorvariableimpor-tancebasedonthemeandecreaseinmodelaccuracyacross10,000regression trees (Genuer, Poggi, & Tuleau‐malot, 2010). Randomforestsiterativelygrowbinaryregressiontreesusingbootstrappedobservationsamplesandarandomsubsetofpredictorvariablesateachnode(Breiman,2001).

To assess the consequenceof climatic disequilibriumon rangefillingestimates,wefollowedtheproceduresofSvenningandSkov(2004)andcalculatedrangefillingasthenumberofoccupiedgeo-graphical10′gridcellsdividedby thenumberofmodelledclimat-ically suitablegridcells.Theclimatically suitableareawasdefinedasall cells that fall inclimatespacewithin theMCPnicheofeachspecies.Werasterizeddetailednativerangemapstomatchthe10′resolutionofourclimatedataandusedthemtocharacterizetheoc-cupiedarea.Wecalculatedrangefillingforeachspeciesusingnativedataandcombinednative–naturalizeddata,bothonthecontinen-tal scale and restricted to theUnitedNations Food&AgricultureOrganization(FAO)ecofloristicregionsoccupiedbythespecies’na-tivedistribution(FAO,2000).Giventhatincorporationofnaturalizeddatacanonlyincreasethenumberofclimaticallysuitablegridcells,rangefillingestimatesmadeusingnaturalizeddatainadditiontona-tivedata are always equal toor lower than estimatesmadeusingonlynativedata.Wecalculatedthisdifferenceastheproportionalchangeinrangefillingwhennaturalizeddatawereincorporatedintothenichemodel.

Mostmethodsforcomparingtraitsacrossaphylogenydependon estimation of ancestral trait values at past nodes, as in phylo-genetic independent contrasts (Felsenstein, 1985). However, be-causeaspecies’climaticnicheisamanifestationoftheinteractionsbetween traits and the environment, reconstruction of ancestralnichesisdifficultandbeyondthescopeofthepresentstudy.Inaddi-tion,recentworkhasshownthatratesofnicheevolutiontendtobeoverestimatedwhenmodelsdependonincompletelycharacterizedfundamentalniches(Saupeetal.,2017).Forthisreason,wefocusedphylogenetic analyses on sister species pairs (Anacker & Strauss,2014; Peterson et al., 1999). Exploratory analyses were sensitivetodifferences intreetiptopology;becauseofthis,we limitedouranalysistoconsensussisterpairsacrossfourphylogeniespublishedbySaladinetal.(2017).Wefound21consensussisterspeciespairsinthegenus,eightofwhichhaveexoticdataforatleastoneofthespecies(SupportingInformationTableS4.1).Forthosepairs,wecal-culatednichesimilaritymetricsbothwithandwithoutincorporationofnaturalizedoccurrencedata.Therearenumeroustechniquesforassessingnichesimilarity (Broennimannetal.,2012;Warren,Glor,&Turelli,2008).Giventhatitremainsunclearwhichnichesimilaritymetricisbest,wecalculatedthefollowing:(a)nichecentredistance,thedistanceinPCclimatespacebetweenthegeometriccentroidsofeachniche;(b)nicheoverlap,theratioofsharedtototaloccupiedcli-matespace;and(c)nichenestedness,theproportionofthesmallerspecies’nichethatiscontainedwithinthelargerniche.Wecompared

similarityvaluesamongnon‐sisterpairs,sisterpairswithnativedataandsisterpairswithnaturalizeddatausingMann–WhitneyU‐teststoassessthehypothesisthattherealizednicheofonesisterpredictsthefundamentalnicheoftheother.Giventhatthespecifictiptopol-ogywithin several importantPinus subsections is poorly resolved(e.g.,Ponderosae,AustralesandStrobussub.Strobus;Parks,Cronn,& Liston, 2012; Saladin et al., 2017), we tested for phylogeneticstructureindisequilibriumamongthewell‐supportedgenussubsec-tionsthemselves(Parksetal.,2012;SupportingInformationFigureS4.2).WeusedanANOVAapproachtotestwhethervariationinΔN wasgreaterbetweensubsectionsthanwithinsubsections.Allanaly-seswereperformedinRv.3.2.4(RCoreTeam,2016).

3  | RESULTS

Amongthe25speciesthathavenaturalizedoutsidethenativerange,23 did so in climates outside the native realized niche (Figure 1;SupportingInformationAppendixS1).Amongthose23species,themedian ΔN was .018. Themaximum increase observed, for Pinus radiata,was.095(i.e.,theclimatespaceexposedbynaturalizedoc-currences encompasses almost 10% of the global climate space;Figure1;SupportingInformationTableS4.2).Thetwospeciesthatshowednonichedifference,Pinus resinosa and Pinus thunbergii, had onlytwonaturalizedoccurrenceseach.

Variation indisequilibriumwasnon‐randomacrossour25spe-cies, such that ΔN was strongly related to native realized nichesize,NR(Figure2).Generallyspeaking,ΔNtendedtobehigherandmore variable among species with small native niches, and loweramong thosewith large native niches. The proportion ofΔN thatwas available on species’ native continent was also significantlyand negatively related toNR (p < .01, R2=.46; Figure 2b). This re-lationshipwasweaker(butstillnegative)andnon‐significantwhentheavailableareawaspruned towithin300kmof species’nativeranges(p=.125;Figure2c).Whencomparedwithanullgeometricexpectationgeneratedbyrandomizingnaturalizedoccurrences,theobserved relationship betweenΔN and NR is significantly steeperthanthenullmodel(p=.003;fordetails,seeSupportingInformationFigureS4.3).Therandomizationprocedurealsodemonstratedthatspeciestendtonaturalizeclosertothenativenichethanexpectedbychance(p<<.001;SupportingInformationFigureS4.4).Theran-dom forest model examining the potential explanatory power ofrangeandnichecharacteristicsdidnotproducesignificantresults.

Variation inthedirectionofnicheextensionwasalsonon‐ran-dom(Figure3).Thelargestshiftsalloccurredinadirectionassoci-atedinPCclimatespacewithlowerprecipitationseasonality,higherannual precipitation and cooler temperatures (Figure 3c). This cli-mate directionwas not representative of climatic differences be-tweentheNorthernandSouthernHemispheres;southernclimateswere largely containedwithin the range of northern climates anddisplacedsuchthatthemedianclimateoftheSouthernHemispherewaswarmer andwetter than themedian climateof theNorthernHemisphere(SupportingInformationFigureS4.5).

Page 6: Naturalized distributions show that climatic disequilibrium is ......Daniel L. Perret | Andrew B. Leslie | Dov F. Sax Department of Ecology and Evolutionary Biology, Brown University,

6  |     PERRET ET al.

Theamountofrangefillingwefoundforeachspecieswasde-pendenton thescaleof thecalculation;median fillingamongallspeciesinnativecontinentsandecoregionswas16.75and30.62%,respectively.Addingnaturalizeddatauniformlyreducedrangefill-ingestimates,with amedianpercentagedecreaseof13.71%onnative continents and 2.89% in native ecoregions. Small‐nichedspeciesshowedsubstantialvariation intheirobservedchange inrangefilling(Figure4a),suchthattherelationshipbetweenNR and rangefillingchangemirroredtherelationshipbetweenNR and ΔN. Indeed, thesizeoftheeffectthatnaturalizeddatahadonrangefilling estimates was dependent on ΔN (p << .001, R2=.464).However,therewasalsoasignificantrelationshipbetweenrange

fillingchangeandnativerangesize(p << .001, R2=.55;Figure4b),suchthatthespeciesthatshowedthelargestrangefillingchangehadbothsmallnativenichesandsmallgeographical ranges.Therelationship betweenNR and range filling change also yielded asteeper relationship than expected when compared with a nullgeometric distribution (p<<.001; for details, see SupportingInformationFigureS4.6).

Thethreenichesimilaritymetricsweusedtoevaluatephyloge-netic niche relationships (niche centre distance, overlap and nest-edness) were all significantly more similar among sister speciespairs thanamongnon‐sisterpairs (Figure5;nichecentredistance,p=.006;overlap,p=.002;nestedness,p=.013).Amongtheeight

F I G U R E 1  Nichemodelsandgeographicaldistributionsfortwoexemplarspecies:Pinus mugo(a–c)andPinus radiata(d–f).(a,d)Occurrencesinclimaticnichespace[pointsandpolygonscorrespondtonative(blue)andexotic(red)occurrences,whereasthegreypolygonshowsthe‘genusniche’,thefurthestextentofanyspecies’occurrences].Nichemodelsarecalibratedonacommonprincipalcomponent‐transformedglobalclimatebackground.(b,e)Thesameoccurrencesinthenativerange(bluecircles)andnaturalizedrange(redtriangles).(c,f)Thenativedistribution(black),andgeographicalprojectionsofclimatenichespacebasedsolelyonnativeoccurrences(blue)andbasedonbothnativeandexoticoccurrences(red).ThedarkgreylineboundsthenativeFAOecofloristicregion(mainmap,panelc;inset,panelf)

Page 7: Naturalized distributions show that climatic disequilibrium is ......Daniel L. Perret | Andrew B. Leslie | Dov F. Sax Department of Ecology and Evolutionary Biology, Brown University,

     |  7PERRET ET al.

sisterspeciespairsforwhichat leastonememberhadnaturalizedoccurrences,wefoundnosignificantdifferencesinthemeanscal-culatedwithorwithoutnaturalizeddatafornichecentredistance,overlap and nestedness (Figure 5). Furthermore, individual sisterspecies pairs showed no consistent directional shift in similarity(Figure5).Noneofthesimilaritymetricswascorrelatedwiththeageofthesisterpairs,foreithernativeornative–naturalizeddatasets(allp>.40).Additionally,ourANOVAfoundnosignificantevidencethatΔN differed between genus subsections (p=.55), and genussubsectionsdidnotseparatebyΔN or NR (SupportingInformationFigureS4.7).

4  | DISCUSSION

Wefoundthatclimaticdisequilibriumamongpinesisnearlyubiqui-tousandisstructuredinahighlynon‐randommanner,suchthatspe-cieswithsmallnativerealizednichesaremorelikelytohaverangesin pronounced disequilibrium with their climatic tolerances thanlarger‐nichedspecies.Ourresultsareconsistentwithseveralrecent

studies that have found evidence of climatic disequilibrium usingnaturalizedplantdistributions(Boscietal.,2016;Early&Sax,2014;Gallagheretal.,2010).Ourresultsdifferfromsomepreviousstud-ies,however, in thatwefoundclimaticdisequilibriumtobenearlyubiquitousamongthespecieswestudied.Onlytwoofour25natu-ralizedspeciesshowednoevidenceofdisequilibrium,andthesetwospecieseachhadonly twonaturalizedoccurrences.Consequently,everyspecieswith threeormorenaturalizedoccurrencesshowedsomedegreeofdisequilibrium.

We suspect that our analysis focusing on pines provides abetter testof thepotential frequencyandmagnitudeofclimaticdisequilibriumthanmostothergroupsorstudiesforseveralrea-sons.First,mostothertaxaarenotaswidelyintroducedoutsidetheirnativerangeaspines(Richardson,2006).Second,asthemosteconomicallyimportanttreegenusglobally(Richardson&Rundel,1998), the native and naturalized ranges of pines are unusuallywell documented. Finally, existing studies of this topic have notconsidered all naturalized occurrences globally, but instead fo-cusedonthosewithinalimitedandpredefinedregion(e.g.,Early&Sax,2014;Petitpierreetal.,2012).Thisleadsustoconcludethat

F I G U R E 2  RelationshipsbetweenΔN(changeinnichesizeafterincorporatingnaturalizedoccurrences)andNR(nativenichesize).Foreachspecies,ΔNisdefinedasthedifferencebetweentheextendedniche(NE)andthenativerealizedniche(NR).(a)Therelationshipisfittedasanexponentialdecayfunction,weightedbythenumberofnaturalizedoccurrencesforeachspecies(a=.073;b=−9.222;p<.05).Symbolsizeisproportionaltothenumberofnaturalizedoccurrencesforeachspecies,rangingfromtwoto77;symbolcolourshowsthenumberofnativeoccurrences(fromblue,fewoccurrences,tored,manyoccurrences).(b)RelationshipbetweenNRandthefractionofΔNthatoccursoneachspecies’nativecontinent(p = .0002, R2=.4613).(c)RelationshipbetweenNRandthefractionofΔNthatoccurswithin300kmofeachspecies’nativerange.Thefittedlineisanexponentialdecayfunctionweightedbythenumberofnaturalizedoccurrences(a=.500,p=.0006;b=−5.814,p=.125)

Page 8: Naturalized distributions show that climatic disequilibrium is ......Daniel L. Perret | Andrew B. Leslie | Dov F. Sax Department of Ecology and Evolutionary Biology, Brown University,

8  |     PERRET ET al.

climaticdisequilibriummightbemuchmorecommonthanrecog-nizedbyrecentwork.

Ourfindingsalsoindicatethatthemagnitudeofthisdisequilib-riumcanbeestimatedbynativenichesize.This isconsistentwiththeresultsofEarlyandSax(2014),whoshowedthatnative–natu-ralizednicheexpansionwasnegativelycorrelatedwithnativenichebreadth among 51 European plant species that had naturalized intheUSA.Early andSax (2014) alsoprovidedcontext for the find-ingsofPetitpierreetal.(2012),whoshowedthatlarge‐ranged(andpresumably large‐niched)speciesshowedrelatively littlenicheex-pansionduringintercontinentalinvasions.Collectively,thisbodyofworksuggeststhatpredictionsofbiologicalinvasionsorspecies’re-sponsestoclimatechangethathingeonnativeclimaticconditionsmightperformpoorlyforsmall‐nichedspeciesevenwhileperform-ingwellforlarge‐nichedspecies.Forsmall‐nichedspecies,thelevelofclimaticdisequilibriumthatweobservedcanbeprofound.IntheextremecaseofP. radiata,thesizedifferencebetweenNR and ΔNap-proachesanorderofmagnitude,suggestingthatmodelprojectionsbasedsolelyonthenativerangeare likelytobewildlymisleading.Indeed,P. radiata is themostsuccessfulandwidespreadsoftwood

forestryspeciesintheworld(Booth&McMurtrie,1988;Richardson,2006),whilecuriouslyalsobeingatriskwithinitssmallnativerange.Althoughthemagnitudeoferrorisgenerallymuchlowerforlarge‐nichedspecies,similarprojectionscouldstillbemisleading.Amongthefivespecieswiththelargestnativeclimateniches(Pinus contorta, Pinus oocarpa, P. sylvestris, Pinus ponderosa and Pinus patula)westillfindameanΔNequivalentto3.55%oftheglobalclimatespace.

Giventhatouranalysescomparenichesofvastlydifferentsizeswithin a finite domain, we should expect to find a negative rela-tionshipbetweenNR and ΔN.Weexpectthisrelationshipbecauserandompointsinthisdomainaremorelikelytofalloutsideasmallnichethana largeniche.Thisnegativerelationship is indeedwhatweobserve;however,ourresultsdepartfromthisnullexpectationinthattherelationshipwefindbetweenNR and ΔNissignificantlysteeperthantherandomcase(SupportingInformationFigureS4.3).Additionally,whenweconsiderwhetherspeciesoccurincloseprox-imity to theclimatesencompassedbyΔN,we find that the small‐niched species that are most likely to be in pronounced climaticdisequilibriumarealsothosethataremostlikelytohaveunoccupiedsuitable climate space close to their native ranges. This provides

F I G U R E 3   (a)Relationshipbetweenthedirectionandmagnitudeoftheshiftbetweennativeandnative–naturalizednichecentroidsshowsthemagnitudeoftheshift[inunitsofprincipalcomponent(PC)distance]relatedtotheangulardirectionoftheshift(c).SizeofpointsisproportionaltoΔN.ColourindicatesnumberofnativeoccurrencepointsandrelatesspeciestoFigure2.(b)Thesameshiftsinclimatespacerelativetothegenusniche.(c)Loadingsofclimatevariablesontheprincipalcomponentsanalysisbackground.Variablesincludedaremeanannualtemperature(MAT),maximumtemperatureofthewarmestweek(MaxTemp),minimumtemperatureofthecoldestweek(MinTemp),annualprecipitation(AnnPrecip),precipitationseasonality(PrecipSeas),non‐summerprecipitation(WinPrecip)andestimatedactualevapotranspiration(AET)

Page 9: Naturalized distributions show that climatic disequilibrium is ......Daniel L. Perret | Andrew B. Leslie | Dov F. Sax Department of Ecology and Evolutionary Biology, Brown University,

     |  9PERRET ET al.

strongevidencetosuggestthatsmall‐nichedspeciesarelimitedbynon‐climaticfactorsintheirnativeranges.Indeed,giventheubiquityofthedisequilibriumthatweobserved,itraisesthepossibilitythatfew,ifany,speciesarelimitedentirelybyclimate.

Ourresultsalsoprovideinsightintowhichedgesofapinespe-cies’realizednicheareleastlikelytobedeterminedbyclimatealone.Wefoundthedirectionofnicheextensionstobeconservedacrossspecies toward cooler, wetter and less seasonal climates. Giventhat 19 of the 25 naturalized pine specieswe focused on are na-tive in theNorthernHemisphere and naturalized in the SouthernHemisphere, it is worth consideringwhether general hemisphericdifferences in climate drove this result. This seems unlikely, how-ever, because the global climate space we constructed does notseparate by hemisphere, and the landmasses typically invaded bypinespecies (e.g.,NewZealand,Australia)containconditionsbothwarmer anddrier thanmany species’ native ranges.Niche expan-sionintocoolerandwetterconditionsindicatesthattheseportionsofthefundamentalnicheareoftenunoccupiedinthenativerange,especiallyforsmall‐nichedspecies.Thisisindirectcontrasttostud-iesthatusemechanisticphysiologicalmodelstoexplorespecies’cli-matictolerances,andwhichgenerallyfindunoccupiednichespacetobewarmerandwetterthanthenativerange(Araújoetal.,2013;

Sundayetal.,2012).ThisisalsoincontrasttothefindingsofBoothetal.(1988),whouseddatafromforestrytrialstoshowthateuca-lyptspeciesgenerallythriveoutsideofthenativerangeinwarmeranddrierclimates(althoughonespeciesintheiranalysis,Eucalyptus citriodora,was successfully grown in cooler climates, and another,Eucalyptus cladocalyx, was successfully grown in wetter climates).Also, although forestry trials are a valuable source of informationabout the climates inwhich tree species cangrow in theabsenceof certain biotic interactions, they generally do not provide infor-mationaboutthereproductivesuccessofspecies(Booth,2017).Incontrast, ourworkexplicitly examines conditionswhere a speciescannotonlygrowandsurvive,butalsoreproducesufficientlywellto sustainapopulation in thepresenceofbothbiotic interactionsandothernon‐climaticfactors.Althoughmanypinespeciesarelonglived, and individualsmay be able to survivewithout reproducingaftersignificantclimaticshifts,reproductioniscriticaltolong‐termpopulationpersistence (Booth,2017;Saxetal.,2013). Indeed,ex-aminingreproductivepopulationsisacrucialaspectofourworkthatallowsustocharacterizeportionsof thefundamentalnicheconfi-dently.Giventhe limitednumberofstudiesthathave investigatedthisissueandthedisparateapproachesandtaxaused,itisdifficulttoknowwhetherageneraltrendwillemergeregardingpatternsof

F I G U R E 4   Relationshipoftheproportionalchangeinrangefilling(RF)toNR,nativerangesizeandΔN.‘Proportionalchangeinrangefilling’iscalculatedastheproportionalchangebetweenrangefillingestimatesusingonlynativerangedataandthoseincorporatingnaturalizeddata.(a)RelationshipbetweenproportionalchangeinrangefillingandNR,fittedasanegativeexponentialfunctionweightedbythenumberofnaturalizedoccurrencesperspecies(a=−1.195;b=−35.559;p<<.001).Symbolsizeisproportionaltothenumberofnaturalizedoccurrencesforeachspecies,rangingfromtwoto77;symbolcolourshowsthenumberofnativeoccurrences(fromblue,fewoccurrences,tored,manyoccurrences).(b)Relationshipbetweenproportionalchangeinrangefillingandnativerangesize(p << .001, R2=.547).(c)RelationshipbetweenproportionalchangeinrangefillingandΔN(p << .001, R2=.464)

Page 10: Naturalized distributions show that climatic disequilibrium is ......Daniel L. Perret | Andrew B. Leslie | Dov F. Sax Department of Ecology and Evolutionary Biology, Brown University,

10  |     PERRET ET al.

unoccupiednichespace.Itispossiblethatnon‐climaticfactors(e.g.,bioticinteractionsordispersallimitations)constrainspecies’nichesinidiosyncraticways.It isalsopossiblethatdifferentdatasourcesandanalyticalapproacheswilluncoverdifferentportionsofthefun-damentalniche.

Rangefillingestimateshavehadastrongandsoberingimpactonthenichemodellingfieldoverthepast15years.Byshowinghowin-frequentlyspeciesfillalloftheclimaticallysuitablespacewithintheirnative regionor continent (Bradley et al., 2015; Svenning&Skov,2004),thesestudiesbringintoquestiontheappliedutilityofpurelycorrelativespeciesdistributionmodels.Here,weshowthatthede-greeofrangefilling isevenlessextensivethanpreviouslythoughtformanyspecies,particularlythosewithsmallnativeniches.Indeed,naturalizedclimateconditionsshowthatnativerangedatacanover-estimaterangefillingbyupto89.78%onthecontinentalscale(e.g.,P. radiata) and 56.11% on the ecoregional scale (e.g.,Pinus clausa;

Supporting Information Table S4.2). In contrast to these extremeexamples,insomecaseswefoundthatΔNwasnotassociatedwithasubstantialchangeinrangefillingestimates.Thisoccurredwhennovelclimatespaceoccupiedinthenaturalizedrangedidnotoccuronthenativecontinentorinthenativeecoregion(e.g.,Pinus taeda is naturalized in southern Brazil, Argentina and eastern Australiabut experiences conditions there that are not found on its nativecontinentofNorthAmerica;seeSupportingInformationAppendixS1andTableS4.2).Suchfindingsweremorelikelyforlarge‐nichedspecies,whichtendedtohaveasmallerfractionoftheclimatescon-tained inΔN availablewithin the native continent and ecoregion.Consequently,althoughNR and ΔNareimportantpredictorsoftheaccuracyofrangefillingestimates,theyarenotinthemselvessuffi-cienttodescribetheserelationshipsfully.Thesizeofaspecies’na-tiverangeprovidesadditionalinformationinthisrespect,suchthatsmall‐nichedspeciesthatalsohavesmallnativerangesarethoseforwhichrangefillingestimatesareleastaccurate.

Phylogenetic niche conservatism, the tendency for closely re-latedspeciestohavemoresimilarnichesthanexpectedgiventheirrelatedness,couldbeleveragedtoinvestigatethestructureoffun-damental niche space and climatic disequilibrium further (Losos,2008;Wiensetal.,2010).There issomeevidencetosuggestthatrealizednichesimilarityunderestimatesfundamentalnichesimilar-ity(Araújoetal.,2013;Sundayetal.,2012).Ourfindings,however,werenotconsistentwiththissupposition,becausewefoundnoevi-dencetosupporttheconjecturethatconsideringfundamentalnichespaceincreasesthesimilarityofsisterspecies.Ofcourse,becausewehadonlyeightsisterpairswithatleastonenaturalizedspecies,our statistical power here is low. It is possible that another taxo-nomicgroup,ifanalysedinthesameway,wouldshowdifferentre-sults.Pinusisanunusuallyoldgenus,withsplitsamongsisterspeciesthatrangeinagefrom1.4(Pinus hartwegii and Pinus pseudostrobus) to16.8Myr(Pinus halepensis and Pinus brutia),amongtheconsensuspairsweassessed(Saladinetal.,2017).Itispossiblethatayoungergenuswithmorerecentsplitswouldbemoresensitivetotheinclu-sionofnaturalizeddata.Ideally,futureworkcouldinvestigatetheserelationshipsusingdifferenttaxawithbothalargernumberofsisterpairsandyoungerdivergenceages.

Ourapproachofusingnaturalizedoccurrencestoidentifysuit-ableclimatespaceoutsidethenativerealizednichenecessarilypro-ducesaminimumestimateofthefundamentalniche.Thisisprimarilyaresultofselectiveandunequalattemptsatintroduction;nospe-cieshasbeenintroducedwithequalpressureinallpossibleclimates.This is compoundedby incomplete samplingand specimencollec-tion across species’ exotic ranges. Additionally, non‐climatic fac-torsthatconstrainspecies’realizednichesinthenativeregion(e.g.,competition,soil,facilitation)mayalsobelimitingintheintroducedregion,toanunknowndegree.Althoughtheseareunavoidablelim-itationsof our approach, they alsomean that ourmethodology isespeciallyconservativewithrespecttonichedifferences.Giventhatweareworkingwithminimumestimates,weareunlikelytooveresti-matethefrequency,magnitudeoreffectsofclimaticdisequilibrium.This is in contrast tootherapproaches thatestimate fundamental

F I G U R E 5  Nichesimilarityofsisterspeciescomparisons.Inorderfromtoptobottom,greybarsarepairwisecomparisonsofallnon‐sisterspecies(106species;5,493pairs),greenbarsaresisterspeciespairsusingnativedataonly(21pairs),bluebarsarealsocalculatedsolelywithnativedatabutrepresentthosepairsthathaveatleastonemembernaturalized(eightpairs),andredbarsaresisterspeciescomparisonsthatincorporatenaturalizeddata(eightpairs).Arrowsindicatewhereasisterpaircomparisonmovedwhennaturalizeddatawereincorporated.(a)Centredistance,thedistanceinclimatespacebetweentwonichecentroids.(b)Nicheoverlap,theratioofsharedtototaloccupiedclimatespace.(c)Nichenestedness,theproportionofthesmallernichethatiscontainedwithinthelargerniche

Page 11: Naturalized distributions show that climatic disequilibrium is ......Daniel L. Perret | Andrew B. Leslie | Dov F. Sax Department of Ecology and Evolutionary Biology, Brown University,

     |  11PERRET ET al.

nichespacefrommeasurementsofphysiologicallimitsalongasin-gle niche axis,whichmay overestimate the fundamental niche byfailingtoaccountforcombinationsofextremeconditions(Maguire,1973).Additionally,itispossiblethatthecoarseresolutionofourcli-matedatamasksfine‐scalevariationandmisrepresentssomeoftheclimatespaceoccupiedbypopulations in topoclimaticallycomplexareas.However, this effect is unlikely tobe systematic enough toproducethepatternsthatweobservedinthemagnitude,frequencyanddirectionalityofclimaticdisequilibrium.Afinalfactorthatcouldinfluencetheinterpretationofourresultsisthepotentialforrapidadaptiveevolutiontonovelclimateconditionsinintroducedpopu-lations,suchthatthenativenicheandthenaturalizednicherepre-senttwodifferentsetsofclimatictolerances.However,becausethePinaceaeareknownforpronouncedevolutionaryconservatismandslowmutationrates(Prageretal.,1976),suchconcernsseemlessrel-evantforthisgroup.Additionally,becausepineshavelonggenera-tiontimesandmostintercontinentalintroductionshavetakenplacewithinthepast200years(Richardson&Higgins,1998),itseemsun-likely thatsuchrapidevolutionhasoccurredatsufficient levels toimpactourresultsstrongly.Nevertheless,wecannotcompletelyruleoutthispossibility,andsomefractionoftheobservednichediffer-encecouldbeattributabletoevolutionarychanges(Saxetal.,2007).

Our results lead us to conclude that analyses focused solelyon conditions experienced in a species’ native range and regionmaybemisleading,especially forconservationapplications.Thisisparticularlytrueforspecieswithsmallnativeclimaticnichesandsmall native ranges,whichwealsoexpect tobeatelevated riskfromclimatechangeandhabitat loss.Forthesespecies, refiningourunderstandingofclimaticdisequilibriumanditsconsequencesfor range filling estimates and niche conservatism is especiallyimportant.Our findingssuggest thatstandardnicheandspeciesdistributionmodellingtechniquesthatdonotaccountforclimaticdisequilibrium are inadequate for studying small‐niched species.Ourfindingsalsosuggestthatmodellingapplicationsthatrequirefine‐levelclimatictoleranceswillmisrepresentevenlarge‐nichedspecieswhenconsideringnativeconditionsalone,becausethesespeciesalsoshowsomedegreeofclimatedisequilibrium.Withre-specttopines,ourresultssuggestacapacitytothrive incooler,wetter and less seasonal conditions than those known from therealized distribution alone. Unfortunately, this particular bit offundamentalnichespacewillnotprotect thesespecies from fu-ture climatic changes, which are generally expected to producewarmer andmore seasonal conditions. This implies that speciescurrentlyrestrictedtoenvironmentswheredispersalcannotoccur(e.g.,alpineorislandendemicspecies)areatriskofextinction.Thisconclusion isconsistentwithSaxetal. (2013),whosuggest thattherelativesizeandplacementofnichecomponentsiscriticalforinformingcurrentandfutureconservationaction.Ultimately,ourfindingsemphasizethattherearelargegapsinourunderstandingofwhere,whenandhowspeciesoccupytheirfundamentalnichespace.Tohelpfillthisgap,wehopethatfutureworkcapitalizesonthedatacontainedinglobalherbariumcollectionsandtheinsightsaffordedbyspeciesintroductionsandglobalforestrytrials;doing

soshouldleadtoabetterunderstandingofthesephenomenaandimproveourabilitytoassessconservationrisksaccurately.

ACKNOWLEDG MENTS

Many thanks are owed to the herbaria listed in SupportingInformationAppendixS2thatsuppliedspecimensanddistributiondata,andespeciallytoA.FarjonforcompilingandmaintainingtheConiferDatabase;toR.Early,E.HollenbeckandL.Nunesforhelp-fuldiscussionandguidance;andtoC.Peabodyfordatacollection.Themanuscript also benefitted from insightful comments from J.Soberónandtwoanonymousreferees.

DATA ACCE SSIBILIT Y

Thedatainthispaperwerecollectedfromfreelyavailablesources.OccurrenceandclimatedatausedintheanalysesareavailableinaDataDryadrepository:https://doi.org/10.5061/dryad.1hr1n52

ORCID

Daniel L. Perret http://orcid.org/0000‐0001‐6372‐9243

R E FE R E N C E S

Anacker,B.L.,&Strauss,S.Y.(2014).Thegeographyandecologyofplantspeciation: Range overlap and niche divergence in sister species.Proceedings of the Royal Society B: Biological Sciences, 281,20132980.

Araújo,M.B.,Ferri‐Yáñez,F.,Bozinovic,F.,Marquet,P.A.,Valladares,F.,&Chown,S.L.(2013).Heatfreezesnicheevolution.Ecology Letters, 16,1206–1219.https://doi.org/10.1111/ele.12155

Barbéro, M., Loisel, R., Quézel, R., Richardson, D. M., & Romane, F.(1998).PinesoftheMediterraneanBasin.InD.M.Richardson(Ed.),Ecology and biogeography of Pinus(pp.153–166).Cambridge,UnitedKingdom:CambridgeUniversityPress.

Booth,T.H.(2017).Assessingspeciesclimaticrequirementsbeyondtherealized niche: Some lessonsmainly from tree species distributionmodelling. Climatic Change, 145,259–271.https://doi.org/10.1007/s10584‐017‐2107‐9

Booth,T.H.,&McMurtrie,R.E.(1988).ClimaticchangeandPinus radiata plantations inAustralia. InG. I.Pearman(Ed),Greenhouse: Planning for climate change (pp. 534–545). Melbourne, Australia: CSIRO;Leiden,theNetherlands:E.J.Brill.

Booth,T.H.,Broadhurst,L.M.,Pinkard,E.,Prober,S.M.,Dillon,S.K.,Bush,D.,…Young,A.G.(2015).Nativeforestsandclimatechange:Lessonsfromeucalypts.Forest Ecology and Management, 347,18–29.https://doi.org/10.1016/j.foreco.2015.03.002

Booth,T.H.,Nix,H.A.,Busby,J.R.,&Hutchinson,M.F.(2014).BioClim: The first species distributionmodelling package, its early applica-tions and relevance tomost currentmaxEnt studies.Diversity and Distributions, 20,1–9.

Booth,T.H.,Nix,H.A.,Hutchinson,M.F.,&Jovanovic,T.(1988).Nicheanalysisandtreespeciesintroduction.Forest Ecology and Management, 23,47–60.https://doi.org/10.1016/0378‐1127(88)90013‐8

Booth,T.H.,Saunders,J.C.,&CommonwealthScientificandIndustrialResearch Organization (Australia). (1984). A catalogue of tree spe-cies evaluated in field trials in Australia. Canberra, Australia: CSIRODivisionofWaterandLandResources.

Bosci,T.,Allen,J.M.,Bellemare,J.,Kartesz,J.,Nishino,M.,&Bradley,B. A. (2016). Plants’ native distributions do not reflect climatic

Page 12: Naturalized distributions show that climatic disequilibrium is ......Daniel L. Perret | Andrew B. Leslie | Dov F. Sax Department of Ecology and Evolutionary Biology, Brown University,

12  |     PERRET ET al.

tolerance. Diversity and Distributions, 22, 615–624. https://doi.org/10.1111/ddi.12432

Bradley, B. A., Early, R., & Sorte, C. J. B. (2015). Space to invade?Comparativerange infillingandpotential rangeof invasiveandna-tiveplants.Global Ecology and Biogeography, 24,348–359.https://doi.org/10.1111/geb.12275

Breiman,L.(2001).Randomforests.Machine Learning, 45,5–32.Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B.,

Pellissier, L., Yoccoz, N. G., … Guisan, A. (2012). Measuring eco-logical niche overlap from occurrence and spatial environmentaldata. Global Ecology and Biogeography, 21, 481–497. https://doi.org/10.1111/j.1466‐8238.2011.00698.x

Broennimann,O.,&Guisan,A.(2008).Predictingcurrentandfuturebi-ological invasions: Both native and invaded rangesmatter.Biology Letters, 4,585–589.https://doi.org/10.1098/rsbl.2008.0254

Broennimann,O.,Treier,U.A.,Müller‐Schärer,H.,Thuiller,W.,Peterson,A. T., & Guisan, A. (2007). Evidence of climatic niche shift duringbiological invasion. Ecology Letters, 10, 701–709. https://doi.org/10.1111/j.1461‐0248.2007.01060.x

Busby,J.R.(1988).PotentialimplicationsofclimatechangeonAustralia’sfloraand fauna. InG. I.Pearman (Ed.),Greenhouse: Planning for cli-mate change(pp.387–398).Melbourne,Autralia:CSIROandLeiden,theNetherlands:E.J.Brill.

RCoreTeam. (2016).R: A language and environment for statistical com-puting. Vienna, Austria: R Foundation for Statistical Computing.Retrievedfromhttps://www.R‐project.org/

Critchfield,W.B.,&Little,E. L. (1966).Geographicdistributionof thepines of the world. InMiscellaneous Publication 991. Washington,D.C.:U.S.DepartmentofAgricultureForestService.

Dullinger, S.,Willner,W., Plutzar, C., Englisch, T., Schratt‐Ehrendorfer,L., Moser, D., … Niklfeld, H. (2012). Post‐glacial migra-tion lag restricts range filling of plants in the European Alps.Global Ecology and Biogeography, 21, 829–840. https://doi.org/10.1111/j.1466‐8238.2011.00732.x

Early,R.,&Sax,D.F.(2011).Analysisofclimatepathsrevealspotentiallimitationson species range shifts.Ecology Letters, 14, 1125–1133.https://doi.org/10.1111/j.1461‐0248.2011.01681.x

Early,R.,&Sax,D.F.(2014).Climaticnicheshiftsbetweenspecies’nativeandnaturalizedrangesraiseconcernforecologicalforecastsduringinvasions and climate change.Global Ecology and Biogeography, 23, 1356–1365.https://doi.org/10.1111/geb.12208

FAO. (2000). Global ecofloristic zones mapped by the United Nations Food and Agricultural Organization. Adapted by Ruesch, A. &Gibbs, H. K. Retrieved from https://databasin.org/datasets/dc4f6efd1fa84ea99df61ae9c5b3b763

Farjon,A.(2017).The conifer database.Retrievedfromhttps://herbaria.plants.ox.ac.uk/bol/conifers/Explore

Farjon,A.,&Filer,D. (2013).An atlas of the world's conifers: An analysis of their distribution, biogeography, diversity and conservation status. Leiden,theNetherlands:KoninklijkeBrill.

Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist, 125,1–15.https://doi.org/10.1086/284325

Franzese,J.,&Raffaele,E.(2017).FireasadriverofpineinvasionsintheSouthernHemisphere:Areview.Biological Invasions, 19,2237–2246.https://doi.org/10.1007/s10530‐017‐1435‐z

Fryer, J. L. (2018). Tree species distribution maps from Little’s "Atlasof United States trees" series. In Fire effects information system, [Online].Washington,D.C.:U.S.DepartmentofAgriculture,ForestService,RockyMountainResearchStation,FireSciencesLaboratory(Producer). Retrieved from https://www.fs.fed.us/database/feis/pdfs/Little/aa_SupportingFiles/LittleMaps.html

Gallagher,R.V.,Beaumont,L.J.,Hughes,L.,&Leishman,M.R.(2010).EvidenceforclimaticnicheandbiomeshiftsbetweennativeandnovelrangesinplantspeciesintroducedtoAustralia.Journal of Ecology, 98, 790–799.https://doi.org/10.1111/j.1365‐2745.2010.01677.x

Genuer,R.,Poggi,J.,&Tuleau‐malot,C.(2010).Variableselectionusingrandomforests.Pattern Recognition Letters, Elsevier, 31,2225–2236.https://doi.org/10.1016/j.patrec.2010.03.014

Grinnell, J. (1922). The role of the “accidental”.The Auk, 39, 373–380.https://doi.org/10.2307/4073434

Guisan,A.,Petitpierre,B.,Broennimann,O.,Daehler,C.,&Kueffer,C.(2014). Unifying niche shift studies: Insights from biological in-vasions. Trends in Ecology and Evolution, 29, 260–269. https://doi.org/10.1016/j.tree.2014.02.009

Holt,R.D.,&Gaines,M.S. (1992).Analysisofadaptation inheteroge-neous landscapes: Implications for the evolution of fundamentalniches. Evolutionary Ecology, 6, 433–447. https://doi.org/10.1007/BF02270702

Ivory,S.J.,Early,R.,Sax,D.F.,&Russell,J.(2016).Nicheexpansionandtemperaturesensitivityof tropicalAfricanmontane forests.Global Ecology and Biogeography, 25, 693–703. https://doi.org/10.1111/geb.12446

Kriticos,D.J.,Webber,B.L.,Leriche,A.,Ota,N.,Macadam,I.,Bathols,J., & Scott, J. K. (2012). CliMond: Global high resolution histor-ical and future scenario climate surfaces for bioclimatic mod-elling. Methods in Ecology and Evolution, 3, 53–64. https://doi.org/10.1111/j.2041‐210X.2011.00134.x

Li,Y.,Liu,X.,Li,X.,Petitpierre,B.,&Guisan,A.(2014).Residencetime,expansiontowardtheequatorintheinvadedrangeandnativerangesize matter to climatic niche shifts in non‐native species. Global Ecology and Biogeography, 23, 1094–1104. https://doi.org/10.1111/geb.12191

Losos,J.B.(2008).Phylogeneticnicheconservatism,phylogeneticsignalandtherelationshipbetweenphylogeneticrelatednessandecolog-icalsimilarityamongspecies.Ecology Letters, 11,995–1003.https://doi.org/10.1111/j.1461‐0248.2008.01229.x

Maguire,B. (1973).Nicheresponsestructureandtheanalyticalpoten-tials of its relationship to the habitat. The Amerian Naturalist, 107, 213–246.https://doi.org/10.1086/282827

Mu,Q.,Zhao,M.,&Running,S.W. (2011). ImprovementstoaMODISglobal terrestrial evapotranspiration algorithm. Remote Sensing of Environment, 115, 1781–1800. https://doi.org/10.1016/j.rse.2011.02.019

Nix,H.A.(1986).AbiogeographicanalysisofAustralianelapidsnakes.InR.Longmore(Ed.),Atlas of elapid snakes of Australia: Australian flora and fauna series 7(pp.4–15).Canberra,Australia:BureauofFloraandFauna.

Nobis,M.P.,Traiser,C.,&Roth‐Nebelsick,A. (2012).Latitudinalvari-ation inmorphological traitsofthegenusPinusand itsrelationtoenvironmentalandphylogeneticsignals.Plant Ecology & Diversity, 5, 1–11.

Nogués‐Bravo,D.,Pulido,F.,Araújo,M.B.,Diniz‐Filho,J.A.F.,García‐Valdés, R., Kollmann, J., … Zavala, M. A. (2014). Phenotypic cor-relates of potential range size and range filling in European trees.Perspectives in Plant Ecology, Evolution and Systematics, 16,219–227.https://doi.org/10.1016/j.ppees.2014.05.005

Nuñez,M.A.,&Medley,K.A.(2011).Pineinvasions:Climatepredictsinva-sionsuccess;somethingelsepredictsfailure.Diversity and Distributions, 17,703–713.https://doi.org/10.1111/j.1472‐4642.2011.00772.x

Parks,M.,Cronn,R.,&Liston,A.(2012).Separatingthewheatfromthechaff:Mitigating the effects of noise in a plastome phylogenomicdatasetfromPinusL.(Pinaceae).BMC Evolutionary Biology, 12, 100. https://doi.org/10.1186/1471‐2148‐12‐100

Peterson,A.T.(2003).Predictingthegeographyofspecies’invasionsviaecological niche modeling. The Quarterly Review of Biology, 78,419–433.https://doi.org/10.1086/378926

Peterson,A.T.,Soberón,J.,Pearson,R.,Anderson,R.,Martínez‐Meyer,E.,Nakamura,M.,&Araújo,M. (2011). Ecological niches and geo-graphicdistributions.InMonographs in population biology.Princeton,NewJersey:PrincetonUniversityPress.

Page 13: Naturalized distributions show that climatic disequilibrium is ......Daniel L. Perret | Andrew B. Leslie | Dov F. Sax Department of Ecology and Evolutionary Biology, Brown University,

     |  13PERRET ET al.

Peterson,A.T.,Soberón,J.,&Sánchez‐Cordero,V.(1999).Conservatismofecologicalnichesinevolutionarytime.Science, 285,1265–1267.

Petitpierre,B.,Broennimann,O.,Kueffer,C.,Daehler,C.,&Guisan,A.(2017).Selectingpredictors tomaximizethetransferabilityofspe-cies distribution models: Lessons from cross‐continental plant in-vasions.Global Ecology and Biogeography, 26, 275–287. https://doi.org/10.1111/geb.12530

Petitpierre,B.,Kueffer,C.,Broennimann,O.,Randin,C.,Daehler,C.,&Guisan, A. (2012). Climatic niche shifts are rare among terrestrialplant invaders. Science, 335, 1344–1348. https://doi.org/10.1126/science.1215933

Poynton, R. J. & Southern African Regional Commission for theConservationandUtilisationoftheSoil.(1977).Report to the Southern African Regional Commission for the Conservation and Utilization of the Soil (SARCCUS) on tree planting in southern Africa.RepublicofSouthAfrica:DepartmentofForestry.

Prager,E.,Fowler,D.,&Wilson,A.(1976).Ratesofevolutioninconifers(Pinaceae).Evolution, 60,2185–2206.

Qiao,H.,Escobar,L.E.,&Peterson,A.T.(2017).Accessibleareasineco-logical niche comparisons of invasive species: Recognized but stilloverlooked.Nature, 7, 1213.

Rejmánek,M.,&Richardson,D.M.(2013).Treesandshrubsasinvasivealien species—2013 update of the global database. Diversity and Distributions, 19,1093–1094.https://doi.org/10.1111/ddi.12075

Richardson,D.M.(2006).Pinus:Amodelgroupforunlockingthesecretsofalienplantinvasions?Preslia, 78,375–388.

Richardson,D.M.,&Higgins,S.I.(1998).Pinesasinvadersinthesouth-ernhemisphere.InD.M.Richardson(Ed.),Ecology and biogeography of Pinus (pp. 450–473). Cambridge, United Kingdom: CambridgeUniversityPress.

Richardson,D.M.,&Rejmánek,M.(2004).Conifersasinvasivealiens:Aglobalsurveyandpredictiveframework.Diversity and Distributions, 10,321–331.https://doi.org/10.1111/j.1366‐9516.2004.00096.x

Richardson,D.M.,&Rundel,P.W.(1998).EcologyandbiogeographyofPinus:Anintroduction.InD.M.Richardson(Ed.),Ecology and bioge-ography of Pinus(pp.3–40).Cambridge,UnitedKingdom:CambridgeUniversityPress.

Saladin,B., Leslie,A.B.,Wüest,R.O., Litsios,G.,Conti, E., Salamin,N., & Zimmermann, N. E. (2017). Fossils matter: Improved es-timates of divergence times in Pinus reveal older diversifica-tion. BMC Evolutionary Biology, 17, 95. https://doi.org/10.1186/s12862‐017‐0941‐z

Saupe, E. E., Barve, N., Owens, H. L., Cooper, J. C., Hosner, P. A., &Peterson, A. T. (2017). Reconstructing ecological niche evolutionwhennichesare incompletelycharacterized.Systematic Biology, 67, 428–438.

Sax, D. F., Early, R., & Bellemare, J. (2013). Niche syndromes, speciesextinction risks, and management under climate change. Trends in Ecology and Evolution, 28, 517–523. https://doi.org/10.1016/j.tree.2013.05.010

Sax,D. F., Stachowicz, J. J.,Brown, J.H.,Bruno, J. F.,Dawson,M.N.,Gaines,S.D.,…Rice,W.R. (2007).Ecologicalandevolutionary in-sights from species invasions. Trends in Ecology and Evolution, 22, 465–471.https://doi.org/10.1016/j.tree.2007.06.009

Soberón,J.,&Arroyo‐Peña,B.(2017).Arefundamentalnicheslargerthantherealized?Testinga50‐year‐oldpredictionbyHutchinson.PLoS ONE, 12,e0175138.https://doi.org/10.1371/journal.pone.0175138

Soberón, J.,&Peterson,A.T. (2011).Ecologicalniche shifts andenvi-ronmentalspaceanisotropy:Acautionarynote.Revista Mexicana de Biodiversidad, 82,1348–1355.

Sunday,J.M.,Bates,A.E.,&Dulvy,N.K.(2012).Thermaltoleranceandtheglobalredistributionofanimals.Nature Climate Change, 2,686–690.https://doi.org/10.1038/nclimate1539

Svenning, J.C.,&Skov,F. (2004).Limited fillingof thepotential rangein European tree species. Ecology Letters, 7, 565–573. https://doi.org/10.1111/j.1461‐0248.2004.00614.x

Thuiller,W.,Lavorel,S.,Araújo,M.B.,Sykes,M.T.,&Prentice,I.C.(2005).ClimatechangethreatstoplantdiversityinEurope.Proceedings of the National Academy of Sciences of the USA, 102,8245–8250.https://doi.org/10.1073/pnas.0409902102

Thuiller,W.,Richardson,D.M.,Pyšek,P.,Midgley,G.F.,Hughes,G.O.,&Rouget,M.(2005).Niche‐basedmodellingasatoolforpredictingtheriskofalienplantinvasionsataglobalscale.Global Change Biology, 11, 2234–2250.https://doi.org/10.1111/j.1365‐2486.2005.001018.x

Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental nicheequivalency versus conservatism: Quantitative approachesto niche evolution. Evolution, 62, 2868–2883. https://doi.org/10.1111/j.1558‐5646.2008.00482.x

Wiens,J.J.,Ackerly,D.D.,Allen,A.P.,Anacker,B.L.,Buckley,L.B.,Cornell,H.V.,…Stephens,P.R.(2010).Nicheconservatismasanemergingprinciple in ecology and conservation biology. Ecology Letters, 13, 1310–1324.https://doi.org/10.1111/j.1461‐0248.2010.01515.x

Williams, P., Hannah, L., Andelman, S., Midgley, G., Araújo,M., Hughes, G., … Pearson, R. (2005). Planning for climatechange: Identifying minimum‐dispersal corridors for the CapeProteaceae. Conservation Biology, 19(4), 1063–1074. https://doi.org/10.1111/j.1523‐1739.2005.00080.x

Wisz,M.S.,Pottier,J.,Kissling,W.D.,Pellissier,L.,Lenoir,J.,Damgaard,C.F.,…Svenning,J.C.(2013).Theroleofbioticinteractionsinshap-ing distributions and realised assemblages of species: Implicationsfor species distribution modelling. Biological Reviews, 88, 15–30.https://doi.org/10.1111/j.1469‐185X.2012.00235.x

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle.

How to cite this article:PerretDL,LeslieAB,SaxDF.Naturalizeddistributionsshowthatclimaticdisequilibriumisstructuredbynichesizeinpines(Pinus L.). Global Ecol Biogeogr. 2018;00:1–13. https://doi.org/10.1111/geb.12862

BIOSKETCHESDaniel Perret’swork ismotivated by the challenge of applyingbiogeographical insight toconservationproblems.His researchfocusesondetanglingpatternsamongclimaticnichesandgeo-graphicalrangesoftreespeciesglobally.anDrew leslieisbroadlyinterestedintheevolutionofplantrepro-ductivemorphology,usingconifersasaprimarystudygroup.Hiswork integrates phylogenetic analyses, functional morphologyanddatafromthefossilrecordinordertounderstandthedriversofmorphologicaldiversificationovermillion‐yeartime‐scales.Dov sax isabiogeographer interestedbroadly inconservation,withaspecialemphasisonunderstandingandpreventingspeciesextinctions.Mostofhisworkismotivatedbyspeciesinvasionsorclimatechange.