Nanoscale hybrid objects: from 3D SANS study to tunable 2D...

18
Nanoscale hybrid objects: from 3D SANS study to tunable 2D arrays formation Géraldine Carrot Laboratoire Léon Brillouin, CEA-Saclay.

Transcript of Nanoscale hybrid objects: from 3D SANS study to tunable 2D...

Page 1: Nanoscale hybrid objects: from 3D SANS study to tunable 2D ...iramis.cea.fr/meetings/2008IndoFrenchWorkshop/Talks/G_Carrot.pdfATRP from platinum nanoparticles PtMAB8-2 100000 40 10.5

Nanoscale hybrid objects: from 3D SANS study to tunable 2D arrays

formationGéraldine Carrot

Laboratoire Léon Brillouin, CEA-Saclay.

Page 2: Nanoscale hybrid objects: from 3D SANS study to tunable 2D ...iramis.cea.fr/meetings/2008IndoFrenchWorkshop/Talks/G_Carrot.pdfATRP from platinum nanoparticles PtMAB8-2 100000 40 10.5

10 nm Polymerization in organic or aqueous medium Study of the structure via SANS (3-D) Use of Contrast MatchingOrganization in 2D and neutron reflectivity

SiO2

Platinum nanoparticles

Pt

Nano-objects based on polymer-graftedinorganic nanoparticles

Bio-application as bio-sensor (glucose probe)

3 nm

Short chains Long chains

dd

Silica nanoparticles

Page 3: Nanoscale hybrid objects: from 3D SANS study to tunable 2D ...iramis.cea.fr/meetings/2008IndoFrenchWorkshop/Talks/G_Carrot.pdfATRP from platinum nanoparticles PtMAB8-2 100000 40 10.5

Density of chainsChain lengths

Colloidal suspension in water or in organic solvent

Necessary to avoid aggregation

Control of the surface state

By grafting polymer chains:

Dormant specie

Active specie K = ka / kd

ka

kdCH2 C X

R1

R2

CH2 C

R1

R2

+ Cu(I)X / Ligand + Cu(II)X2 / Ligand

Controlled polymerization principle:

Page 4: Nanoscale hybrid objects: from 3D SANS study to tunable 2D ...iramis.cea.fr/meetings/2008IndoFrenchWorkshop/Talks/G_Carrot.pdfATRP from platinum nanoparticles PtMAB8-2 100000 40 10.5

SiO2SiO2SiO2SiO2 SiO2SiO2

O

OO O

O

Br

OO

(CH2)3

CH3

OO(CH2)3

CH3

OO(CH2)3

CH3

Br

OO

(CH2)3

H3C

OO

(CH2)3

H3C

OO

(CH2)3

H3C

Br

O

O

(CH2)3

H3C

O

O

(CH2)3H3C

O

O

(CH2)3H3C

OOO

O

O

Br

O

(CH2)3

CH3

O

O

(CH2)3

CH3

O

O

(CH2)3

CH3

Br

OO(H2C)3

OO(H2C)3

OO(H2C)3

Br

O

O

(H2C)3

CH3

O

O

(H2C)3

CH3

O

O

(H2C)3

CH3

Br

O O

(CH2)3

O O

(CH2)3

CH3

O O

(CH2)3

CH3CH3

Br

O

O

(CH2)3

CH3

O

O

CH2)3(

CH3

O

OCH3

(CH2)3

H3C

CH3

H3CO

OHOH

OH

OH

OH

OH

HOHO

HO

HO

HOHO

HOHO

OHOH

S

O Br

OSi

SO

Br

OSi

S O

Br

OSi

S O

Br

OSi

S

OBr

OSi

SO

Br

O

O

OO

O

OSi

SO

Br

OH

OH

OH

OH

HO

HO

HO

O

OO O

O

OOO

O

O

HS

OSi

SH

OSi

SH

O Si

SH

OSi

SH

OSi

HS

O

O

OO

O

OSi

HSOH

OH

OH

OH

HO

HO

HO

Br

O

Br MABu

n

n

n

n

n

n

n

n

Cu/PMDETADMAP

Controlled radical polymerization from silica nanoparticles

0

0.05

0.1

0.15

0.2

0 100 200 300 400 500

Conversion

Conversion

temps (min)0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60

Cinétique

ln([M]0/[M])

t 2/3

0

2000

4000

6000

8000

1 104

1.2 104

1

1.1

1.2

1.3

1.4

1.5

0 0.05 0.1 0.15 0.2

Mn

Mw/M

n

Conv. (%)

Page 5: Nanoscale hybrid objects: from 3D SANS study to tunable 2D ...iramis.cea.fr/meetings/2008IndoFrenchWorkshop/Talks/G_Carrot.pdfATRP from platinum nanoparticles PtMAB8-2 100000 40 10.5

Kinetic study of the polymerization via SANS :dispersion state of particles

Desaggregation of the particles as the polymerization proceed

D solvent

Polymer

SiO2

“Polymer matching”

q (Å-1)

0

50

100

150

200

0.01 0.1

I (cm-1)

1st kinetic point

Finalpoint

H solvent

0.0001

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1

I (cm-1)

q (Å-1)

After purification: back tothe same state of aggregationthan the initial particles

El Harrak A., Carrot G.,Oberdisse J., Boué F. Macromolecules 2004, 37, 6376-6384.

Page 6: Nanoscale hybrid objects: from 3D SANS study to tunable 2D ...iramis.cea.fr/meetings/2008IndoFrenchWorkshop/Talks/G_Carrot.pdfATRP from platinum nanoparticles PtMAB8-2 100000 40 10.5

of the signal at low q

Kinetic study of the polymerization via SANS :Corona growth

0.001

0.01

0.1

1

10

100

0.01 0.1

q (Å -1)

I (cm-1)

Initial point

Final point“Silica matching”

30 min

60 min

230 min

420 min

Polymerization time

Oscillation at the intermediate q with a shift toward low qIncrease of the corona size

of the quantity of polymer

Page 7: Nanoscale hybrid objects: from 3D SANS study to tunable 2D ...iramis.cea.fr/meetings/2008IndoFrenchWorkshop/Talks/G_Carrot.pdfATRP from platinum nanoparticles PtMAB8-2 100000 40 10.5

Corona model

R2

R1

0

1 1 0 - 6

2 1 0 - 6

3 1 0 - 6

4 1 0 - 6

5 1 0 - 6

0 0 .0 2 0 .0 4 0 .0 6 0 .0 8 0 .1

I.q4

q (Å-1)

Polymer-grafted silica nanoparticles after purification: corona characterization

q-2Nagg = 5e ≈ 70 Å with 30% of polymerρcore = ρ solvant

Vcorona = 1.28 .10-17 cm-3

Mcorona = 4.0.10-18 gWith Mw=12000 g/mol

198 chains per particle

G. Carrot, A. El Harrak, J. Oberdisse, J. Jestin, F. Boué SoftMatter, 2006, 2, 1043.

“Silica matching”

0.001

0.01

0.1

1

10

100

1000

0.001 0.01 0.1 1q(Å-1)

Page 8: Nanoscale hybrid objects: from 3D SANS study to tunable 2D ...iramis.cea.fr/meetings/2008IndoFrenchWorkshop/Talks/G_Carrot.pdfATRP from platinum nanoparticles PtMAB8-2 100000 40 10.5

0.01 0.11E-4

1E-3

0.01

0.1

1

I(q) (

cm-1)

q (Å-1)

Grafted silica nanoparticles in aqueous phase*

0.01 0.10.01

0.1

1

10

q-2

I(q) (

cm-1)

q(Å-1)

R = 20,3 Åσ= 0.28

*Thesis of Jérôme Vinas, CROPS, Marseille, D. Bertin, D.Gigmes

Am Si(OR)3 HO OSiAmO

OSilice+

hydrolyse

condensation

HO

HO

Silice

Same signal asthe bare particles

Polymer signal inSilica matching Si

Polymer matching

Page 9: Nanoscale hybrid objects: from 3D SANS study to tunable 2D ...iramis.cea.fr/meetings/2008IndoFrenchWorkshop/Talks/G_Carrot.pdfATRP from platinum nanoparticles PtMAB8-2 100000 40 10.5

ATRP from platinum nanoparticles

-80.7PtPMAB810.540100000PtMAB8-2

36.283.6PtPMAB815.4334100000PtMAB8-1

29.583.1PtPMAB715.3113100000PtMAB7-2

34.288.0PtPMAB719.2455100000PtMAB7-1

Tg (°C)%Polymer

Polymerization batch

Conv.%

Reaction time

Theoretical Mn

Sample

(1) H. Perez et al. Chem. Mater. 1999, 11, 3460-3463. (3) G. Carrot, H. Perez Polym. Prep. 2006, 827(2) H. Perez et al. Chem. Mater. 2001, 13, 1512. (4) G. Carrot, F. Gal, H. Perez, Langmuir, in Press.

S

N H 2

S

N H 2

2 )

1) NaBH 4

S

N H 2

S N H 2

S

H 2 N

S

H 2 N

S

N H 2

SH 2 N PtS N H 2

2

PtCl

C lCl

ClS

N H

S

N H

S

N H

S N H

S

H N

S

H N

S

N H

SHN Pt

O

B r

O B r

O

B r

O

B rO

B r

O

B r

B r

Br

(CH3)2BrCCOB r

DMAP

Page 10: Nanoscale hybrid objects: from 3D SANS study to tunable 2D ...iramis.cea.fr/meetings/2008IndoFrenchWorkshop/Talks/G_Carrot.pdfATRP from platinum nanoparticles PtMAB8-2 100000 40 10.5

0 200 400 600 800 1000 12000.0

0.1

0.2

0.3

Con

v%

time (min)0 20 40

0.0

0.1

0.2

0.3

Ln(M

o/M)

t2/3

Surface polymerizations from platinum nanoparticles *

PtPt PtPt

PtLangmuir FilmsPt

Pt Pt Pt

PtPt Pt

compressioncompression

G. Carrot, F. Gal, C. Cremona, H. Perez, Langmuir, in Press.

Page 11: Nanoscale hybrid objects: from 3D SANS study to tunable 2D ...iramis.cea.fr/meetings/2008IndoFrenchWorkshop/Talks/G_Carrot.pdfATRP from platinum nanoparticles PtMAB8-2 100000 40 10.5

30 40 50 60 70 80 900

20

40

60

80

100

(b)

(311),(222)(220)

(200)

(111)

Inte

nsity

(arb

. uni

ts)

Two Theta in degree

0.01 0.1

1E-3

0.01

0.1

1

I(q)

q (Å-1)

“Polymer matching”

“Platinum matching”

Study of the nano-objects in solution via SANS

57PtPMA8-(2) p =10.5 %

68PtPMA8-(1) p = 15.4 %

75PtPMA7-(2) p = 15.4 %

95PtPMA7-(1) p=20 %

Rg (Å) Samples

Radius of giration obtained by the fit of the signal in the Guinier regime

0.01 0.11E-5

1E-4

PtPMABu8-1 PtPMABu8-2

I(q)(q

2 )

q (Å-1)

Pt Pt

Page 12: Nanoscale hybrid objects: from 3D SANS study to tunable 2D ...iramis.cea.fr/meetings/2008IndoFrenchWorkshop/Talks/G_Carrot.pdfATRP from platinum nanoparticles PtMAB8-2 100000 40 10.5

0.01 0.1

0.01

0.1

1

I(q) (

cm-1)

Wavevector q (Å-1)0.01 0.1

0.01

0.1

1

I(q)(c

m-1)

Wavevector q (Å-1)

Fit of the spectra with a Star model

Zimm-Stockmayer-Benoît model:

)13()()()(

2222

−==

ffqRfqRqR E

gBg

Lg=x

“Platinum matching”

Pt Pt

⎥⎦

⎤⎢⎣

⎡−++−−−−−= ))3(

2)exp()2()2exp()1(

2(2)(

2ffx

fxff

fxff

xxF

Page 13: Nanoscale hybrid objects: from 3D SANS study to tunable 2D ...iramis.cea.fr/meetings/2008IndoFrenchWorkshop/Talks/G_Carrot.pdfATRP from platinum nanoparticles PtMAB8-2 100000 40 10.5

Sample Number of

branche, f

Rg gaussienne

RgL

(Å)

Rg branche

RgB

(Å)

Rg Star,Rg

E

(Å)

Number of chains per nm2

Mn of 1 branche,

MB (g.mol-1)

Mn from TGA

(g.mol-1)

PtPMA7-1

5.3 122 53 85.8 0.42 12055 13222

PtPMA7-2

5.2 102 44.3 72.33 0.42 8600 11000

PtPMA8-1

8 119 42.4 70.35 0.63 7723 8558

PtPMA8-2

7 97 36.9 60.8 0.55 5844 7940

Determination of the number of chains and molecular weight

0.01 0.1

1E-3

0.01

0.1

1

I(q) (

cm-1)

q (Å-1)

Pt

Star model

Page 14: Nanoscale hybrid objects: from 3D SANS study to tunable 2D ...iramis.cea.fr/meetings/2008IndoFrenchWorkshop/Talks/G_Carrot.pdfATRP from platinum nanoparticles PtMAB8-2 100000 40 10.5

0 50000 1000000

10

20

30

40

P(m

N/m

)

S/Object (Ų)

Langmuir Films-Compression Isotherms

PtPMAB 7-2 (◊) Conv. 15%PtPMAB 7-1 (▲) Conv. 20%Compression

Reversibility

Compression at 2 mN/m 26 mN/m Decompression at 2mN/m

Page 15: Nanoscale hybrid objects: from 3D SANS study to tunable 2D ...iramis.cea.fr/meetings/2008IndoFrenchWorkshop/Talks/G_Carrot.pdfATRP from platinum nanoparticles PtMAB8-2 100000 40 10.5

3D-Organization of particles in 2D films

cross-linked

multilayers(with or without Pt)

Alternating H and D

Dispersion of PS-g-Pt NP in cross-linkedfilms via spin-coating and N3 reactions

ANR 2007: Multiclick

Neutron reflectivity

Page 16: Nanoscale hybrid objects: from 3D SANS study to tunable 2D ...iramis.cea.fr/meetings/2008IndoFrenchWorkshop/Talks/G_Carrot.pdfATRP from platinum nanoparticles PtMAB8-2 100000 40 10.5

« 3D » cross-linked hybrid multilayer filmsANR 2007 Multiclick Neutron reflectivity

No interdiffusionbetween layers

Alternated polymerlayers using H and D

S. Al-Akhrass, F. Gal, D. Damiron, P. Alcouffe, C. Hawker, F. Cousin, G. Carrot,E. Drockenmuller, Soft Matter (in press).

Page 17: Nanoscale hybrid objects: from 3D SANS study to tunable 2D ...iramis.cea.fr/meetings/2008IndoFrenchWorkshop/Talks/G_Carrot.pdfATRP from platinum nanoparticles PtMAB8-2 100000 40 10.5

« 3D » multilayers filmsANR 2007 Multiclick

0.00 0.02 0.04 0.06 0.08 0.10

10-9

10-8

10-7

Particles/PS : 1/5 Particles/PS : 4/5

RQ

4 [Å-4]

Q [Å-1]

S. Al-Akhrass, F. Gal, D. Damiron, P. Alcouffe, C. Hawker, F. Cousin, G. Carrot,E. Drockenmuller, Soft Matter (in press)

Dispersed Pt NP

Neutron reflectivity

Page 18: Nanoscale hybrid objects: from 3D SANS study to tunable 2D ...iramis.cea.fr/meetings/2008IndoFrenchWorkshop/Talks/G_Carrot.pdfATRP from platinum nanoparticles PtMAB8-2 100000 40 10.5

Thanks

J. Oberdisse, Université de MontpellierA. El Harrak, PhD student LLB, J. Jestin, CNRS LLB, F. Boué, CNRS LLB

H. Perez, CEA, SPAM-DRECAMFrançois Gal, PhD student LLB

F. Cousin, CEA LLBE. Drockenmuller, Université de LyonS. Al-Akhrass, Université de Lyon