Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic...

37
Nanoplasmonics and plasmon- polariton metamaterials 4 th International Sakharov Conference on Physics 19 May 2009, Moscow S. G. Tikhodeev A.M.Prokhorov General Physics Institute RAS, Moscow, Russia

Transcript of Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic...

Page 1: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

Nanoplasmonics and plasmon-polariton metamaterials

4th International Sakharov Conference on Physics19 May 2009, Moscow

S. G. TikhodeevA.M.Prokhorov General Physics Institute RAS, Moscow, Russia

Page 2: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

Collaboration:

N.A. Gippius*, E. A. Muljarov, A. B. Akimov, G.A.Kichin, N.I.Komarevskiy, S.V. LobanovA.M.Prokhorov General Physics Institute RAS, Russia*LASMEA - CNRS- UBP, Aubière, France

T. IshiharaFrontier Research System, RIKEN, Wako, JapanDept of physics, Tohoku University, Sendai, Japan

A. Christ**, J. KuhlMax-Planck-Institut für Festkörperforschung, Stuttgart, Germany,**École Polytechnique Fédéral de Lausanne, Switzerland

T. Weiss*, H. GiessenUniversität Stuttgart, Institut für Physik IV, Germany

Page 3: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

OUTLINE

1. Introduction: localized and surface plasmons, nanoplasmonics;polaritonic photonic crystals

2. Polaritonic photonic crystals: controlling optical properties and nearfields

3. Metamaterials based on polaritonic photonic crystals: unit-cell-shape-controlled effective electromagnetic response

4. Conclusions

Page 4: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

spherecylinderStained-glass

Giant Raman scatteringPhotoluminescence control, nanoantennasSingle molecule spectrometry (including that of DNA)Scanning near-field microscopy and nanophotolythography with

subwavelength resolutionMetallic-dielectric plasmon-polariton photonic crystals and metamaterials,

nanoplasmonics

Plasmons:surface & localized (size << )

Lorenz 1890Hertz 1892Rayleigh 1897Maxwell Garnett 1904Mie 1908

Drude 1900Wood 1902Fano 1941Richie 1968

Page 5: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

Wood-Fano anomalies in the optical spectra of metallic gratingsNanophotolythograpy with subwavelength spatial resolutionMetallic-dielectric plasmon-polariton photonic crystals

Plasmons:surface & localized (size << )

Lorenz 1890Hertz 1892Rayleigh 1897Maxwell Garnett 1904Mie 1908

Drude 1900Wood 1902Fano 1941Richie 1968

Page 6: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

• Photonic crystal = media with periodicallymodulated dielectric susceptibilityV.P. Bykov 1972E. Yablonovitch 1987S. John 1987

Photonic Crystal Slabs: layers of 1D or 2D PhCs withcomplex (or simple) vertical structure

•Diffraction grating = 1D photonic crystal slab

Rittenhouse 1786Fraunhofer 1821Wood 1902Lord Rayleigh 1907Fano 1941Shestopalov 1970Neviere 1980

Page 7: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

Polaritonic photonic crystals:Interacting electronic and photonic resonances

Exciton polaritons in periodic arrays of semiconductor quantum wellsIvchenko et al, 1994; Kochereshko et al, 1994

Plasmon polaritons in photonic crystals with nanosructured metalsEbbesen et al, 1998; Linden et al, 2001; Christ et al, 2003Teperik et al, 2006

Metamaterials – short period photonic crystals with controlledelectromagnetic responsePendry 2000; Smith et al 2000; Podolskiy, Sarychev, Shalaev 2003; Zhang et al2005; Pendry et al 2006, Shalaev 2007, Liu & Giessen 2008,2009

Giant magneto-optical effects in plasmon-polaritonic crystals andmetamaterialsInoue et al (incl. Aktsipetrov, Fedyanin, Murzina), 2006; Belotelov et al, 2007;Zharov and Kurin, 2007

Page 8: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

Nanoplasmonics was known and used by mankindfor centuries.

However, the recent development of nanotechnologybrings new interesting possibilities

Page 9: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

OUTLINE

1. Introduction: localised and surface plasmons, nanoplasmonics;polaritonic photonic crystals

2. Polaritonic photonic crystals: controlling optical properties and nearfields

3. Metamaterials based on polaritonic photonic crystals: unit-cell-shape-controlled effective electromagnetic response

4. Conclusions

Page 10: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

(a), (b), (c) (d)ln t(- )

1D

yk0

x

z

kxky

ITO layer

Quartz substrate

Lz

dx

20 nm

100 nm

1.6 1.8 2.0 2.2

0

1

2

1.6 1.8 2.0 2.2

0

1

2

140 nm ITOdx = 450 nm

15 nm ITOdx = 450 nm

Extin

ctio

n

Photon energy (eV)

TE polarizationTM polarization

Extin

ctio

n

Energy (eV)

(b)

(a)(c) (d)

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H.Gissen, , 183901, (2003), , 125113 (2004); T. Zentgraf,

115103 (2006)

PRLPRB

PRB

9170

73A. Christ, J. Kuhl, S. G. Tikhodeev, N. A. Gippius,

and H.Gissen,

TE: s-pol, TM: p-pol

Interesting MO effects in case of ferromagnetic wires or waveguide, V. I. Belotelov et al,Phys. Rev. Lett. 98, 077401 (2007)

1D grating of gold nanowires on top of a dielectric waveguide

Schematics (a) and real structure (b), extinction (-ln T) spectra in a structure without(c) and with (d) guided modes

Normal incidence,

Page 11: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

gold

ITO

air

:)

-+

Localized plasmon in metallic nanowireElectric field normal to the wire axis, resonance frequency depends on

the metal nanoparticle shape and of metal and surrounding

Electric field inside ismodified

Page 12: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

-1 0 1 2 30

500

1000

1500

2000

2500

3000

Lz = 140 nm

substrate light coneslab light cone

vacuum light cone

TE modesTM modesTE cut-offTMcut-off

TE

TM

Ener

gy(m

eV)

k ( /dx)(arb.units)TE0 TM0 140 ITOTE(0) and TM(0) modes in waveguide

Page 13: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

-1 0 1 2 30

500

1000

1500

2000

2500

3000

dx = 300 nmLz = 140 nm

substrate light coneslab light cone

vacuum light cone

TE modesTM modesTE cut-offTM cut-off

TE

TM

Ener

gy(m

eV)

k ( /dx)TE0 TM0 140 ITO ,

. 1 300TE(0) and TM(0) modes in waveguidefolded into 1BZ of the grating, period 300 nm

Page 14: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

TE0 TM0 140 ITO ,. 1 300

-

-1 0 1 2 30

500

1000

1500

2000

2500

3000

dx = 300 nmLz = 140 nm

substrate light coneslab light cone

vacuum light cone

TE modesTM modesTE cut-offTMcut-offNanowirePlasmon

TE

TM

Ener

gy(m

eV)

k ( /dx)TE(0) and TM(0) modes in waveguidefolded into 1BZ of the grating, period 300 nmBlue horizontal line is the localoized plasmon on a single wire

Page 15: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

-1 0 1 2 30

500

1000

1500

2000

2500

3000

dx = 450 nmLz = 140 nm

substrate light coneslab light cone

vacuum light cone

TE modesTM modesTE cut-offTM cut-offNanowirePlasmon

TE

TM

Ener

gy(m

eV)

k ( / 300 nm)TE0 TM0 140 ITO ,

. 1 450 -

TE(0) and TM(0) modes in waveguidefolded into 1BZ of the grating, period 450 nmBlue horizontal line is the localoized plasmon on a single wire

Page 16: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

300 400 500 6000.00.10.2

1.5

2.0

2.5

-16 -8 0 8 160.00.10.2

1.6

1.8

2.0

2.2

-16 -8 0 8 160.00.10.2

1.8

2.0

2.2

2.4

2.6

Line

wid

th (e

V)

Period (nm)

Extinction maxima: TM, experiment TM, theory

Polariton modes: Lower TM Middle TM Upper TM

Rabi splitting ~ 250 meV

(a)

Pho

ton

Ener

gy (e

V)

Angle (deg)

(b)

dX = 450 nm

Angle (deg)

dX = 375 nm

(c)

Extinction maxima: calculated (filled symbols) and calculated (emptysymbols); lines are the polariton model

Waveguide-plasmon polaritonA. Christ, S.G.Tikhodeev, N.A.Gippius, J.Kuhl, and H. Giesen,B. PRL 91, 183901 (2003)

Page 17: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

1.6 1.8 2.0 2.2

0

2

4

6

8

10

12

14

16

18

20

22

24

1.6 1.8 2.0 2.2

0

2

4

6

8

10

12

14

16

18

20

22

24

u=1

u=0

TE TM

(b)(a)

Experiment Theory

Extin

ctio

n

Photon energy (eV)

dx=425 nm

Extin

ctio

n

Photon energy (eV)

#1 ... #N

Introducing disorder kills the waveguide-plasmon polariton

Page 18: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

MotivatonPlasmonic metamaterials

Localized plasmonshybridization

Nanostructurting modification of the optical response

Near-field couplingInteraction with image

charges

Page 19: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

1D

Extinction (- ln T) and absorption calculated for 20-nm vertical distancebetween gratings

Plasmons in pairs of metallic nanowires:symmetric and antisymmetric

Page 20: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

(a)

(c)

(b)

(d)

Electric (top) and magnetic (bottom) near field distributions inantisymmetric (left) and symmetric (right) plasmons

Page 21: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

1D grating of metal nanowires near metal film: interactinglocalized and surface plasmons

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen,Phys.Rev. B 74,155435 (2006)

Page 22: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

Near field distributions of the electric (left) and magnetic (right) fields nearthe low-energy resonance

Strong near field modification: diamagnetism at optical frequencies (effective= 1 and possibility of < 0 )/

Page 23: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

Symmetry-breaking allows to control the localized plasmons propertiesA.Christ, O.J.F.Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, Nano Lett8, 2171 (2008)

Page 24: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

a,b: Red lines: wires are aligned vertically; Blue lines: top wires are in the middlebetween the bottom wires.Narrow dip is the antisymmetric plasmon, broad maximum os the symmetric plasmon.c,d: position of the antisymmetric plasmon as a function of the horizontal displacement

Symmetry-breaking allows to control the localized plasmons propertiesA.Christ, O.J.F.Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, Nano Lett8, 2171 (2008)

Page 25: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

OUTLINE

1. Introduction: localised and surface plasmons, nanoplasmonics;polaritonic photonic crystals

2. Polaritonic photonic crystals: controlling optical properties and nearfields

3. Metamaterials based on polaritonic photonic crystals: unit-cell-shape-controlled effective electromagnetic response

4. Conclusions

Page 26: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

Metamaterials: nanostructured artificial materials, e.g. short-period plasmon-polaritonic crystals, period << .

Goal: to control the electromagnetic response by nanostructuring(incl. unit cell shape) and material choice (metal/dielectric,metal/semiconductor)

Motivation: engineering of new unusual optical systems(Veselago lens, cloaking, transformation optics, structures withstrong optical chirality )

Page 27: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

D. R. Smith et al 2000;R. A. Shelby et al, 2001n( )< 0,

Metamaterials

Metamaterials are artificial electromagnetic (multi-) functional materialsengineered to satisfy the prescribed requirements. The prefix meta means after,beyond and also of a higher kind. Superior properties as compared to what canbe found in nature are often underlying in the spelling of metamaterial. Thesenew properties emerge due to specific interactions with electromagnetic fieldsor due to external electrical control.

http://www.metamorphose-eu.org, December 2006.

Shuster 19091940

1967Pendry 2000Smith et al 2000Shelby et al 2001

Page 28: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

Effective and do not describe fully the optical response of ageneral asymmetric and chiral media.

Chirality connects D with H and B with E directly:

In a more symmetric non-chiral media: bianisotropy. For example,if there is a preferential direction, n, then

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves inChiral and Bi-Isotropic Media (Artech House, Boston, 1994).

In the metamaterials: shape-induced chirality and bianisotropywhich appear to be nonlocal

Page 29: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

1 = 2 n

1

2

S. Zhang et al, PRL 95, 137404 (2005)

Even if the shape itself is symmetric, the metamaterial slabis bianisotropic in case of the asymmetric dielectricbackground

Example: bi-fishnet structure on substrate

Passive (absorbing) media is left-handed if

Page 30: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

The retrieved bianisotropy is not small near the magnetic resonanceBUT: it disappears if the dielectric surrounding becomes symmetric

The retrieved permittivity, permeability, and bianistoropy

Re( )

-Im( )

Page 31: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

The retrieved permittivity, permeability, and no bianisotropyin a symmetric background

The retrieved bianisotropy is not small near the magnetic resonanceBUT: it disappears if the dielectric surrounding becomes symmetricA direct demonstration of the effective response NONLOCALITY

Re( )

-Im( )

Page 32: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

Examples of bi-anysotropic non-chiral metamaterials

X. Chen et al, PRE, 2005

Fedotov et al, PRL, 2007

M.S. Rill et al, Nat. Mater. 2008

Na Liu et al, Nat. Mater. 2008

Page 33: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

D.-H. Kwon et al, Opt Express, 2008

A. Papakostas et al, PRL, 2003M. Kuwata-Gonokami et al, PRL, 2005

»Na Liu et al, Nat. Photonics 2009

Examples of chiral metamaterials

Page 34: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

xy

z

“Stereometamaterials”Na Liu, Hui Liu, and Harald Giessen, 2009

Top layer

Bottom layer

Unit cell of 2D periodic (in XY plane) metamaterial with squarelattice

Example: 90 deg rotated pair of SRRs layers

Page 35: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

xy

z

Retrieved response matrix

Page 36: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

Giant natural optical activity

Page 37: Nanoplasmonics and plasmon- polariton metamaterials · Metamaterials – short period photonic crystals with controlled electromagnetic response Pendry 2000; Smith et al 2000; Podolskiy,

Conclusions

• Nanoplasmonics was known and used by mankind for centuries. However,the recent development of nanotechnology brings new interestingpossibilities

• Polaritonic photonic crystals are systems with interacting electronic andphotonic resonances. New possibilities to control the optical propertiesand local electromagnetic fields

3. As metamaterials (in short-period case) they demonstrate negativerefraction behavior (in far field) and giant chiral properties.

4. Important property of the electromagnetic response is its nonlocality