Nanophotonics Class 2 - Surface Plasmon Polaritons

22
Nanophotonics Class 2 Surface plasmon polaritons

Transcript of Nanophotonics Class 2 - Surface Plasmon Polaritons

Page 1: Nanophotonics Class 2 - Surface Plasmon Polaritons

Nanophotonics

Class 2

Surface plasmon polaritons

Page 2: Nanophotonics Class 2 - Surface Plasmon Polaritons

Surface plasmon polariton: EM wave at metal-dielectric interface

EM wave is coupled to the plasma oscillations of the surface charges

tzkxkidd

zxeEtzxE 0,,,

tzkxkimm

zxeEtzxE 0,),,(

For propagating bound waves:- kx is real- kz is imaginary

x

z

Page 3: Nanophotonics Class 2 - Surface Plasmon Polaritons

Derivation of surface plasmon dispersion relation: k()

Wave equation:

Substituting SP wave + boundary conditions leads to the

Dispersion relation: 2/1

"'

dm

dmxxx c

ikkk

2,

2

,0,0,2

t

EE md

mdmdmd

x-direction:

ckNote: in regular dielectric:

2

k

Page 4: Nanophotonics Class 2 - Surface Plasmon Polaritons

Dispersion relation:

2/1

"'

dm

dmxxx c

ikkk

x-direction:

Bound SP mode: kz imaginary: m + d < 0, kx real: m < 0

so: m < -d

2/12

,,, "'

dm

mmzmzmz c

ikkk

z-direction:

ck

2

k

Page 5: Nanophotonics Class 2 - Surface Plasmon Polaritons

iim

Ne

E

Nex

E

P p

2

2

20

2

00

1111

0

2

m

Nep

Dielectric constant of metals

Drude model: conduction electrons with damping: equation of motion

with collision frequency and plasma frequency

If << p, then:

3

2

2

2

",1' pp

tieEdt

dxm

dt

xdm e02

2

no restoring force

Page 6: Nanophotonics Class 2 - Surface Plasmon Polaritons

Measured data and model for Ag:

3

2

2

2

",1' pp

3

2

2

2

",' pp

Drude model:

Modified Drude model:

Contribution of bound electrons

Ag: 45.5

200 400 600 800 1000 1200 1400 1600 1800-150

-100

-50

0

50

Measured data: ' "

Drude model: ' "

Modified Drude model: '

"

Wavelength (nm)

'

Page 7: Nanophotonics Class 2 - Surface Plasmon Polaritons

Bound SP modes: m < -d

200 400 600 800 1000 1200 1400 1600 1800-150

-100

-50

0

50

Measured data: ' "

Drude model: ' "

Modified Drude model: '

"

Wavelength (nm)

'

bound SP mode: m < -d

-d

Page 8: Nanophotonics Class 2 - Surface Plasmon Polaritons

p

d

p

1

Re kx

real kx

real kz

imaginary kx

real kz

real kx

imaginary kz

d

xck

Bound modes

Radiative modes

Quasi-bound modes

Surface plasmon dispersion relation:

Dielectric: d

Metal: m = m' +

m"

x

z

'm > 0)

d < 'm < 0)

('m < d)

2/1

dm

dmx c

k

Page 9: Nanophotonics Class 2 - Surface Plasmon Polaritons

Re kx

d

xck

Surface plasmons dispersion:

large k

small wavelength

Ar laser: vac = 488 nmdiel = 387 nmSP = 100 nmAg/SiO2

3.4 eV(360 nm)

X-ray wavelengthsat optical frequencies

2/1

dm

dmx c

k

2

k

Page 10: Nanophotonics Class 2 - Surface Plasmon Polaritons

Surface plasmon dispersion for thin filmsDrude model

ε1(ω)=1-(ωp/ω) 2 Two modes appear

L-

L-(symm)

Thinner film:Shorter SP wavelength

Example:HeNe = 633 nm

SP = 60 nm

L+(asymm)

Propagationlengths: cm !!!(infrared)

Page 11: Nanophotonics Class 2 - Surface Plasmon Polaritons

Cylindrical metal waveguides

k

E

z

rFundamentalSPP modeon cylinder:

E

• Can this adiabatic coupling scheme be realized in practice?

taper theory first demonstrated byStockman, PRL 93, 137404 (2004)

Page 12: Nanophotonics Class 2 - Surface Plasmon Polaritons

Delivering light to the nanoscale

0.0 0.2 0.4 0.6 0.8 1.01.7

1.8

1.9

2.0

2.1

2.2

2.3

neff =

kSPP/k

0

Waveguide width (µm)

1 µm

1 µm

|E|Field symmetry at tip similar to SPP mode in conical waveguide

E

++++++

+

Ewold Verhagen, Kobus Kuipers

k

E

xz

nanoscaleconfinement

Optics Express 16, 45 (2008)

Page 13: Nanophotonics Class 2 - Surface Plasmon Polaritons

Concentration of light in a plasmon taper: experiment

Ewold Verhagen, Kobus Kuipers

Au

Er

Al2O3

λ = 1.5 μm

Page 14: Nanophotonics Class 2 - Surface Plasmon Polaritons

exc = 1490 nm

PL

Inte

nsi

ty (

counts

/s)

10 µm

Ewold Verhagen, Kobus Kuipers (1

49

0 n

m)

Er3+

ene

rgy

leve

ls

transmission

1 µm

60 nm apex diam.

Nano Lett. 7, 334 (2007)

Concentration of light in a plasmon taper: experiment

Page 15: Nanophotonics Class 2 - Surface Plasmon Polaritons

550 nm

660 nm

• Detecting upconversion luminescence from the air side of the film (excitation of SPPs at substrate side)

Ewold Verhagen, Kobus Kuipers

Plasmonic hot-spot

Optics Express 16, 45 (2008)

k

E

xz

Theory: Stockman, PRL 93, 137404 (2004)

Concentration of light in a plasmon taper: experiment

Page 16: Nanophotonics Class 2 - Surface Plasmon Polaritons

FDTD Simulation: nanofocussing to < 100 nm

z = -35 nm

• Nanofocusing predicted: 100 x |E|2 at 10 nm from tip

• 3D subwavelength confinement: 1.5 µm light focused to 92 nm (/16)

• limited by taper apex (r=30 nm)

n1 = 1

n2 = 1.74

1 µm

1 µm

|E|2

starttip

+ ++++++

E

Ewold Verhagen, Kobus Kuipers

Optics Express 16, 45 (2008)

sym asym

Et, H

Page 17: Nanophotonics Class 2 - Surface Plasmon Polaritons

Coaxial MIM plasmon waveguides

Page 18: Nanophotonics Class 2 - Surface Plasmon Polaritons

FIB milling of coaxial waveguides

100 nm 100 nm

• Silica substrates with 250-500 nm thick Ag

• Ring width: 50-100 nm

• Two-step milling process

• ~7° taper angle

<w>=100 nm, L=485 nm <w>=50 nm, L=485 nm

René de Waele, Stanley BurgosNano Lett. 9, in press (2009)

Page 19: Nanophotonics Class 2 - Surface Plasmon Polaritons

Narrow channels show negative index

• Excitation above resonance, >sp

• 25 nm-wide channel in Ag filled with GaP

• Simulation shows negative phase velocity with respect to power flow

• Negative refractive index of -2

René de Waele, Stanley Burgos

Page 20: Nanophotonics Class 2 - Surface Plasmon Polaritons

Positive and negative index modes

René de Waele, Stanley Burgos

Page 21: Nanophotonics Class 2 - Surface Plasmon Polaritons

Plasmonic toolbox: , (), d - Engineer ()

0 200 400 600 800 1000

-1.0

-0.5

0.0

0.5

1.0

Y A

xis

Titl

e

Distance (nm)

thin section

Plasmonic concentrator Plasmonic lens

Plasmonic multiplexer

And much more …..

Plasmonic integrated circuits

Page 22: Nanophotonics Class 2 - Surface Plasmon Polaritons

Conclusions: surface plasmon polariton

Surface plasmon: bound EM wave at metal-dielectric interface

Dispersion: (k) diverges near the plasma resonance: large k, small

Control dispersion: control (k), losses, concentration

Manipulate light at length scalesbelow the diffraction limit