Multiple Antenna Systems and Space-Time Coding ...

12
UNIVERSITÀ DEGLI STUDI DI UDINE DIEGM DIPARTIMENTO DI INGEGNERIA ELETTRICA, GESTIONALE E MECCANICA Transmission Techniques for Wireless Channels Transmission Techniques for Wireless Channels “Stato dell’Arte e Futuro delle Tecniche di Trasmissione Wireless” Dr. Andrea Tonello e-mail: [email protected] - http://www.diegm.uniud.it/tlc/tonello Lecture on Comunicazioni Wireless Ubique: Tecnologie Esistenti e Future CISM - Centro Internazionale di Scienze Meccaniche Udine - May 20, 2004 2 DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004 Outline Introduction to Wireless Communication Systems. Part I Multiple Antenna Systems and Space-Time Coding. Part II Multicarrier Transmission. Part III Ultra Wide Band Communications. 3 DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004 Introduction 4 DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004 Wireless Communications Some reasons for success Wireless connection Simple and cheap deployment Coverage Mobility Terrestrial Radio Systems Free space Optical Comm. enjoy ubiquitous communications ! Satellite Systems

Transcript of Multiple Antenna Systems and Space-Time Coding ...

UNIVERSITÀ DEGLI STUDI DI UDINE

DIEGM DIPARTIMENTO DI INGEGNERIA ELETTRICA, GESTIONALE E MECCANICA

Transmission Techniques for Wireless ChannelsTransmission Techniques for Wireless Channels

“Stato dell’Arte e Futuro delle Tecniche di Trasmissione Wireless”

Dr. Andrea Tonello

e-mail: [email protected] - http://www.diegm.uniud.it/tlc/tonello

Lecture on

Comunicazioni Wireless Ubique: Tecnologie Esistenti e Future

CISM - Centro Internazionale di Scienze MeccanicheUdine - May 20, 2004

2DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Outline

Introduction to Wireless Communication Systems.

Part I

Multiple Antenna Systems and Space-Time Coding.

Part II

Multicarrier Transmission.

Part III

Ultra Wide Band Communications.

3DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Introduction

4DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Wireless Communications

Some reasons for success

– Wireless connection– Simple and cheap deployment– Coverage– Mobility

Terrestrial RadioSystems Free space

Optical Comm.

enjoy ubiquitous communications !

Satellite Systems

5DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Research and Technology Drivers

Marketing

Increasing Demand for Ubiquitous

High Rate, Real Time Services

Technical Challenge

Spectrum Limitations

Wireless Channel Unreliability

Co-channel Interference

Power Limitations

Develop Spectral Efficient Air-Interfaces

Source Codes

Channel Codes

Modulation and Multiple Access Techniques

Media Access Control and Resource

Allocation Algorithms

6DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Existing and Emerging Wireless TechnologiesExisting Technologies

System Standard Data Rate Band Mobility

WPAN (Bluetooth) IEEE 802.15.1 1 Mb/s ISM 2.4 GHz Low

WLAN ? Up to 1 Gb/s ? Low -High

Sensor Networks Ubiquitous Computing IEEE 802.15.4 5-200 Kb/s 0.433, 0.866, 0.916, 2.4 GHz None

Cellular 4G ? Up to 100 Mb/s High

WLANIEEE 802.11bIEEE 802.11a

IEEE 802.11g

11 Mb/s54 Mb/s

54 Mb/s

ISM 2.4 GHzISM/UNI 5 GHzISM 2.4 GHz

Low

WMANIEEE 802.16IEEE 802.16a

134 Mb/s70 Mb/s

10-66 GHz2-11 GHz

None

Cellular 1GAMPSETACS

Analog FM 0.8 GHz High

Cellular 2G

IS-136 TDMAGSMGPRSEDGE

9.6 kb/s9.6 kb/s115 kb/s384 kb/s

0.8 - 0.9 - 1.8 - 1.9 GHzHigh

Cellular 3G UMTS / WCDMA 2 Mb/s 1.9 - 2.025 GHz High

Emerging Technologies

WPAN (UWB) IEEE 802.15.3 Up to 400 Mb/s 3.1-10.6 GHz Low

7DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Wireless Channel in Mobile Wireless Networks

Propagation Phenomena

Attenuation (path-loss)

Slow Fading (shadow fading)

Slow variations of the received power caused by obstructions.

Fast Fading

Fast variations of the received power caused by multipath propagationin correspondence to movement in the order of the wavelength.

Performance of digital transmission is severely affected by fading.

Bit Mappingbi x(t) y(t) biPulse

ShapingRF

Modulator

ak RFDemodulator

MatchedFiltering

x(t)Detector

xk

h(t;τ) +

η(t)

8DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Base-Band Channel Impulse Response

( ) ( )k k kx x kT kT aα η= = +

( ; ) ( ) ( )h t tτ α δ τ=

Narrow Band Systems

Signal Bandwidth < Channel Coherence Band

Symbol duration ~ Channel Coherence Time

Time-Variant Flat Fading

Modelled as zero mean complex Gaussian (Rayleigh Fading)

0

( ; ) ( ) ( )PN

p pp

h t tτ α δ τ τ=

= −∑

0( )

PN

k p k p kp

x x kT aα η−=

= = +∑

Wide Band Systems

Signal Bandwidth > Channel Coherence Band

Symbol duration < Channel Coherence Time

Frequency Selective Fading

1τ 2τ 4τ3τ

2α3α

9DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

PART I

Multiple Antenna Systems

10DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Multiple Antenna Systems

Adaptive AntennasReceive antenna combining to gain spatial diversity

and cancel co-channel interference.

RX

MSMS

MS

RX

MS

MS

MS

MS Smart AntennasGenerate beams with phased arrays to sectorize

coverage.

Space-Time CodingMultiple transmit and receive antennas to increase

capacity.

RX

TX

11DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Multiple In – Multiple Out (MIMO) System Capacity

The received signal is the superposition of the NT transmitted signals.

All antenna links experience independent fading “in rich scattering”.

We keep the average transmitted energy constant.

,

1

1,...,TN

r r t t rsR

tT

Ey x n r N

=

= + =∑

transmitted complex signal by antenna t

channel weight link antenna (t-r)

TX RX

1

NT

1

NR

AWGN, m=0, σ2=N0

12DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

MIMO Capacity, cont.ed

The channel capacity conditioned on a channel realization reads

1,1 1,1 1 1

,1 ,

...... ... ... ... ... ...

T

R R R T T R

N

s

N N N N N NT

y x nEN

y x n

α α

α α

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

+s

T

EN

=y Hx n

†02

/log det / /S

HT

E NC bit s Hz

N⎛ ⎞

= +⎜ ⎟⎝ ⎠

I HH

We assume H to have independent complex Gaussian entries (Rayleigh fading)

The Outage Capacity is the distribution of CH

The Ergodic Capacity is the average of CH

[ ]HC P C K= <

[ ]HC E C=

13DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Mean Capacity

Ergodic Capacity is used to characterize fast fading channels.

Outage Capacity is used to characterize quasi-static fading channels.

Fundamental contribution by Foschini (1996 Bell Labs):

Capacity increases linearly with the number of TX antennas if NR≥ NT.

C < 9.16 bit/s/Hz with NT=NR=1 2 4 6 8 10 12 14 16 18 20 22 24

0

40

80

120

160

200

240

Cap

acity

(bit/

s/H

z)

Number of Antennas (NT=NR)

0 dB

5 dB

10 dB

SNR=15 dB

20 dB

30 dB

25 dB

14DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Space-Time Coding

To approach the Shannon Capacity we need to design powerful space-time codes:

joint channel coding, modulation, with transmission over multiple antennas.

Fundamental contribution by Tarokh, Seshadri, and Calderbank (1998 AT&T Labs)

ST Encoder S/Pbi

xk1

xkNT

xk2

Space-TimeDecoder

yk1

ykNR

yk2

bi

15DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Space-Time Coding ClassesThree Main ST Coding Approaches

ST Trellis Codes: extension of the TCM (trellis coded modulation) concept.

ST Block Codes: M-QAM block codes with orthogonal structure.

ST Bit-interleaved Codes

Diversity Gains and Coding Gains are determined by the rank and determinant of certain

matrices constructed from complex codewords. Recall that the transmitted signals overlap,

therefore, the ST code must have a structure that allows to separate the signals at the receiver.

2

1 1~ LL

T RPe L N NSNR χ

⎛ ⎞⎛ ⎞ ≤⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

Prob

. Err

or

decr

easi

ng

SNR

Diversity GainDiversity Gain

( )~ LSNR −

SNR

Coding GainCoding Gain

( )2~L

χ−

Prob

. Err

or

decr

easi

ng

16DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

ST-BICM: ST Bit-Interleaved Coded Modulation

ST-BICM comprises

coder (block, convolutional, turbo)

bit interleaverspace-time mapper (M-PSK / M-QAM).

Flexible approach.

Full diversity codes can be designed for both quasi-static and time-variant fading

channels.

Encoder Bit-Interlever S/P

Bit-SymbolMapper

Bit-SymbolMapper

Bit-SymbolMapper

bi ci di

xk1

xkNT

xk2

di1

di2

diNT

17DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Turbo MIMO Decoding

The receiver has to separate the overlapping signals and recover the information bits.

Iterative (turbo) decoding procedure:

MIMO Demapping at the Detector: A Posteriori Probability Calculator for Each Coded Bit.

Maximum a Posteriori Channel Decoder: Improved Extrinsic Information for the Coded Bits.

,

1( ) ( ) ( ) ( )

TNr r t t rk CH

t ny y kT x nT g kT nT kTη

=

= = − +∑∑

Bit-DeInterlever

P/SJoint Soft-In

Soft-OutDetection

yk1

ykNR

yk2

Soft-In Soft-OutDecoder

Bit-Interlever

S/P

λe(di1)

λe(di2)

λe(diNT)

λa(di1)λa(di

NT)

λa(ci1)

λe(ci1)

bi

18DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Example of Application to GSM/EDGE Air Interface1 Bit/s/Hz 2 Bit/s/Hz 3 Bit/s/Hz

260

b its

1 TXit=1

Single receive antenna – TU channel model – 4/8 PSK with STBI convolutional coding.

1 TXit=4

1 TXit=41 TX

it=4

2 TXit=4

1 TXit=4

19DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Remarks

Spectral efficiency of wireless channels is significantly increased with MIMO technology

It is fundamental to

Study and model the MIMO channel

Design good Space-time codes

Develop simplified decoding algorithms

Turbo (iterative) processing is the state-of the art detection/decoding approach.

20DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

PART II

Multicarrier Transmission

21DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Multicarrier Transmission Principles

Motivation

– Simplify the equalization task in wide band frequency selective channels.

Principle

– Divide the spectrum in a number of narrow band sub-channels (flat faded).

– Allocate transmission power over the good channels (water filling principle).

Applications

– ADSL : advanced digital subscriber line– DAB : digital audio broadcast– DVB : digital video broadcast– IEEE 802.11 and Hiperlan II : wireless LAN– proposed although killed for 3rd generation cellular– likely to be chosen for next generation cellular.

f

|H(f)|

22DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

General Multicarrier Architecture

Two efficient digital implementations

DMT (Discrete Multitone): well known OFDM (orthogonal frequency division multiplexing)

scheme. Prototype filter with rectangular impulse response.

FMT (Filtered Multitone): prototype pulse with time-frequency concentrated response.

Channel +

( )tη

10( )a lT

h(.)

h(.)0( )ka lT

g(.)

g(.)

Equalizer

Equalizer

kf

0( )My nT

10( )y nT 1

0ˆ ( )a lT

0ˆ ( )Ma lT

x

x

1f

Mf−

x

x

1f−

+

h(.)0( )Ma lT

Mf

x

RFMod

RFDem g(.) Equalizer

0( )ky nT 0ˆ ( )ka lTx

kf−

QAM / PSK symbols

23DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Efficient Digital Implementation• Overall bandwidth W = 1 / T.

• Uniformly spaced sub-carriers fk = k / (MT) , k=0,…,M-1.

• DMT – OFDM : Rectangular impulse response prototype pulse h(nT).

• FMT : Frequency concentrated prototype pulse, e.g., square root raised cosine.

Sub-Ch. Data Period:

T0 = MT

Tone Spacing:

∆f = 1 / MT

Sub-Ch. Data Period:

T0 = MT

Tone Spacing:

∆f = 1 / MT

Sub-Ch. Data Period:

T0 = NT

Tone Spacing:

∆f=1 / MT

N / M = K > 1

DMT - OFDM

CS-FMT

NCS-FMT

24DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Cyclically Prefixed DMT / OFDM

Transmitter

M points IDFT

Add a cyclic prefix of duration µT

Sub-channel symbol period T0=NT=(M+ µ)T

2 ( )( 1)

0 01

( ) ( ) 0,..., 1M j n kk M

kx nT lT a lT e n N

π µ− −

=

+ = = −∑Receiver

Disregard cyclic prefix

M points DFT

One tap equalizer

IFFTP/S

FFTS/P

Channel1

0( )a lT

0( )Ma lT

( )x nT ( )y nT

0( )Mz lT

10( )z lT

DAC

RF RF

ADC

M M+µM M+µ M M

µµ1

0( )A lT

0( )MA lT

25DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

One Tap Equalization for CP-DMT

Transmitted block is cyclically

convolved with the channel

2 ( 1)( ) ( ) ( )0 0 0 0

0( ) { ( )} { ( )} { } ( )

PN j p kk k k k k Mp

pz lT DFT lT DFT lT DFT a lT e

π

α− −

=

⎛ ⎞= = = ⎜ ⎟

⎝ ⎠∑y A α

Hypothesis

• Channel with duration shorter than µT:

• Static over a DMT symbol

Thesis

• The DFT output equals the data symbol weighted by the channel frequency response.

• The receiver simplifies into a simple one-tap equalizer.

0( ) ( )

PN

CH pp

g nT nT pTµ

α δ≤

=

= −∑

DFT received block

26DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

FMT: Digital Implementation

Ref: Cherubini, Eleftheriou, Olcer, Cioffi, 2000

Prototype pulse

00

1 1,...,kkf T MT k MT−

= = =

0 0( ) (( 1) )kg mT h k T mT= − +

CS-FMT

IFFT P/S FFTS/P

Channel1

0( )a lTg1(mT0)

gM(mT0)0( )Ma lT

( )x nT

g1(-mT0)

gM(-mT0)

( )y nT

0( )Mz lT

10( )z lT

DAC

RF RF

ADC

ICI~0

ISI

M M M M

27DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Equalization for FMT

Hypothesis

• Frequency separated sub-channels and static wide band channel.

Thesis

• The receiver simplifies into a bank of independent equalizer.

• In general scenarios we get both inter-symbol (ISI) and inter-carrier interference (ICI).

0 0 0 0 0 00

( ) ( ) (0) ( ) ( ) ( )k k k k kEQ EQ

mz lT a lT g a lT mT g mT lTη

= + − +∑

ISIuseful data equivalent sub-channel impulse response

l-th output sample of the k-th RX filter

28DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

FMT, cont.ed

The presence of some sub-channel ISI can be handled with

Linear or DFE equalization.

Optimal maximum likelihood detection (Viterbi equalization).

The sub-channel equalizer has low complexity since the sub-channel impulse response is short (sub-channel is narrow band).

Practical issues (real world !!)

Extra ICI and ISI because of

- Overlapping sub-channels (finite duration TX pulses)

- Timing Errors (Time Offsets) and Carrier Frequency Offsets.

29DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Example of Sub-Channel Frequency Response

0.5 0.505 0.51 0.515 0.52 0.525 0.53-80

-70

-60

-50

-40

-30

-20

-10

0

f T|H

(f)| (

dB)

CS-FMT

0.5 0.505 0.51 0.515 0.52 0.525 0.53-80

-70

-60

-50

-40

-30

-20

-10

0

f T|H

(f)| (

dB)

NCS-FMT

0.5 0.505 0.51 0.515 0.52 0.525 0.53-80

-70

-60

-50

-40

-30

-20

-10

0

f T

|H(f)

| (dB

)

DMT

M = 128 B = 25 MHz

NCS-FMT: square root raised cosine pulses

N/M = 1.125 + 4 virtual carriers

CS-FMT: rectangular windowed pulses + 4 virtual carriers

CP-DMT: CP length = 30 chips + 16 virtual carriers

30DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Probability [ Achievable Bit Rate > K ]

------ DMT------ CS-FMT------ NCS-FMT

Rayleigh exponential with τrms=100 nsRayleigh exponential with τrms=40 ns

* Ricean exponential with R=5 dB, τrms=40ns

40 45 50 55 60 65 70 75 80 85 900

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M bit/s

Com

plem

enta

ry D

istri

butio

n of

the

Ach

ieva

ble

Bit

Rat

e

31DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Remarks

DMT-OFDM is an elegant simple solution to overcome channel frequency selectivity.

FMT can yield higher spectral efficiency than DMT.

FMT is more robust to time and frequency offsets.

FMT is more complex than DMT since it requires filtering and equalization.

32DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

PART III

Ultra Wide Band Communications

33DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

UWB Main Characteristics

FCC definition of UWB:

Signal bandwidth > 500 MHz or Bandwidth / Center-frequency ≥ 0.2

Most popular schemes are based on impulse modulation with short duration pulses

Simple base band (carrier less) implementation.

Good penetration properties.

Good spatial and temporal resolution.

Co-existence with other radio systems.

Very tight emission masks have been set. Therefore, practical application is limited to

short range communications.

34DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Impulse Modulation

Convey a bit sequence via a sequence of monocycles (short duration pulses)

• Bi-Phase PAM modulation or Time-Hopped modulation.

• Guard time to cope with the channel time dispersion.

Multiplex users via Time Hopping or DS-CDMA with codes of length L frames.

0 1 2 3 4 -1

-0.5

0

0.5

1

t

s(t)

b0= +1 b1= -1 b3= -1 b2= +1

Tg

Tf

35DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Time-Hopped Solution

1

, , ,0

( ) ( ) ( )−

=

= − − − ⇒ = −∑ ∑ ∑L

TH THu u k u l f f u k u f

k l k

s t b g t c T lT kLT b v t kLT

± 1 bit sequence monocyclehopping codeword of user u and length L

TX signal of user u

signature waveform

slots: NST

TgT

frame: Tf

burst: LTf

,0 0=THuc ,1 2=TH

uc ,1 3=THuc

1 1/

→∞= ⎯⎯⎯→+

SN

g S

RT T N T

Aggregate data rate:

36DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

DS-CDMA Solution

TX signal of user u11

, , , ,0 0

( ) ( ) ( ) ( )−−

= =

= − − − ⇒ = −∑ ∑ ∑ ∑SNL

O I DSu u k u l u m f f u u k u f

k l m k

s t b c c g t mT lT kLT s t b v t kLT

± 1 bit sequence monocycle

inner codeword user u and length Ns

outer codeword user u and length L

signature waveform

TgT

,0 1=Ouc ,1 1= −O

uc ,2 1=Ouc

,

1 1 1 1

Iu mc =

− −

slots: NST

frame: Tf

burst: LTf

,

1 1 1 1

Iu mc =

− −,

1 1 1 1

Iu mc =

− −

Aggregate data rate identical to the TH solution.

37DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Monocycle Shape

( )20 /2( ) ~

t Tg t e

π−

-3 -2 -1 0 1 2 3-1

-0.5

0

0.5

1

g(t)

First Derivative

-3 -2 -1 0 1 2 3-1

-0.5

0

0.5

1

g(t)

Second Derivative

-3 -2 -1 0 1 2 3-1

-0.5

0

0.5

1

g(t)

t / T0

Third Derivative

-3 -2 -1 0 1 2 3-1

-0.5

0

0.5

1

g(t)

t / T0

Fourth Derivative

We can use time-frequency concentrated pulses as the family of:

Derivatives of Gaussian monocycle

The antennas act as a filter: they differentiate the wide band impulse signal.

38DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

FCC Requirements

0 2 4 6 8 10 12 14-40

-30

-20

-10

0

|G(f)

|2 (dB

)

First Derivative

0 2 4 6 8 10 12 14-40

-30

-20

-10

0

|G(f)

|2 (dB

)

Second Derivative

0 2 4 6 8 10 12 14-40

-30

-20

-10

0

|G(f)

|2 (dB

)

f (GHz)

Third Derivative

0 2 4 6 8 10 12 14-40

-30

-20

-10

0

|G(f)

|2 (dB

)

f (GHz)

Fourth Derivative

The FCC specifications are very tight:

Transmission band 3.1 -10.6 GHz with Spectral Density of -41 dBm/MHz

We can transmit 0.6 mW !!

The fourth derivative of G-Pulse matches the FCC specs !

---- FCC spec

T0 = 0.087 ns

39DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Multiuser Scenario

1 1

,0 0

( ) * ( ) ( ) ( ) ( )η η− −

= =

= − ∆ + = − −∆ +∑ ∑ ∑U UN N

CH EQu u u u k u f u

u u k

y t s g t t t b v t kLT t t

Composite RX signal

Convolution of the u-th user’s signature waveform with the u-th user channel

TX 0TX 1

TXNU-1

RX 0

TX 2 TX 3

40DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Single User Receiver

Matched Filter Receiver is optimal with guard time longer than the channel dispersion and single user.

0 0 ( ) ( ) ( )MF

fZ k y t g kLT t t dt∞

−∞= + ∆ −∫

0 0 0( ) ( ) * ( )MF EQ TH DS CHg t v t v g t−= − = −

1 1 20 0, 0 , 0 0 0 0

1 0

( ) | ( ) | ( ) ( ) ( )U

f fNLT LTEQ EQ EQ

k u k n u f uu n

Z k b v t dt b v t nLT t t v t dt w k−

−= =

= + + + ∆ −∆ +∑ ∑∫ ∫

MAIuseful term noise

The RX filter has to be matched to the equivalent signature waveform:

ISI is assumed to be zero (it can be controlled with the guard time)

g0MF(t) LTf

Z0(k)y(t)

41DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Synthesis of Matched Filter and Rake Reception

UWB channel is highly frequency selective.

We assume to synthesize the channel with a finite number of taps (FIR filter).

, ,1

( ) ( )PN

CHu p u p u

p

g t tα δ τ=

= −∑

The received signature waveform can be synthesized as follows

1,

0 0, 0, 0,0 1

ˆˆ ˆ( ) ( )PNL

EQ TH THp l f p

l p

v t g t c T lTα τ−

= =

= − − −∑∑11

,0 0, 0, 0, 0,

0 0 1

ˆˆ ˆ( ) ( )S PN NL

EQ DS O Il m p f p

l m p

v t c c g t mT lTα τ−−

= = =

= − − −∑ ∑ ∑

1τ2τ 4τ

3τ 5τ

3α5α

2α4α

42DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Cont. ed

We need to estimate the channel tap delays and amplitudes. It can be done with a training approach.

We can implement a mixed Analog-Digital Rake Receiver

No Spreading / TH

g(-t)

nTf+τ1

Z0(k)y(t)

nTf+τ2

nTf+τN

x

α1

x

α2

x

αN

+

43DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Simulation ResultsFrame structure: 8 slots of duration D, plus 4D guard time. Orthogonal codes.

Channel: Exponential delay profile, 10 Rayleigh faded rays (with sign) and with uniform delay distribution in [0 4D].

Search and estimate only 3 taps with 100 training bits.

0 3 6 9 12 15 1810-4

10-3

10-2

10-1

TH -- Ns=8 -- L=1

BE

R

0 3 6 9 12 15 1810-4

10-3

10-2

10-1

TH -- Ns=8 --L=8

BE

R

SNR (dB) SNR (dB)

Nu=1

Nu=2

Nu=8

Nu=1

Nu=2

Nu=8

THId

eal C

hann

el E

stim

ate

44DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Cont. ed

0 3 6 9 12 15 1810-4

10-3

10-2

10-1

DS-CDMA -- Ns=8 -- L=1

BE

R

0 3 6 9 12 15 1810-4

10-3

10-2

10-1

DS-CDMA -- Ns=8 --L=8

BE

R

SNR (dB) SNR (dB)

Nu=1

Nu=2

Nu=8

Nu=1

Nu=2

Nu=8 DS

-CDM

AId

eal C

hann

el E

stim

ate

DS-CDMA UWB works better than TH UWB especially with a high number of users.

45DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Cont. ed

0 3 6 9 12 15 1810-4

10-3

10-2

10-1

DS-CDMA -- Ns=8 -- L=1

BE

R

0 3 6 9 12 15 1810-4

10-3

10-2

10-1

DS-CDMA -- Ns=8 --L=8

BE

R

SNR (dB) SNR (dB)

Nu=1

Nu=1

Nu=8

Nu=1

Nu=8

Nu=2

Nu=2

DS-C

DMA

Prac

tical

Cha

nnel

Est

imat

e

With practical channel estimation we get a tolerable performance loss.

46DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Remarks

UWB systems allow very high transmission speed (say in the order of Gb/s)

Potentially, their implementation is simple, however,

– Optimal receivers may be too complex.

– All-digital receiver is not currently applicable.

47DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

Conclusions

Reliable spectral efficient transmission over wireless channels is an Algorithmic Challenge.

The state of the art is represented by

Multiple Antenna Technology

Multi-carrier Modulation

Ultra Wide Band Transmission.

A powerful air interface allows for

Higher receiver sensitivity (coverage)

Robustness to co-channel interference (spectral efficiency)

Lower transmission power

Simpler processing complexity.

48DIEGM UNIVERSITÀ DEGLI STUDI DI UDINE CISM COURSE 2004

ReferencesSpace-Time Coding

Foschini, Bell Labs Tech. Journal 1996

Tarokh, Seshadri, Calderbank, IEEE Trans. IT, 3-1998 & 3-1999.

Tonello, IEEE Trans. Comm, 2-2003.

OFDM – FMT Systems

Cherubini, Eleftheriou, Olcer, Cioffi, IEEE Comm. Mag. 5-2000.

Assalini, Pupolin, Tomba, Proc. WPMC 2003.

Tonello, Bell Labs Tech. Journal 2003.

UWB Systems

Win, Scholtz, IEEE Comm. Letters, 1-1998.

Durisi, Benedetto, Proc. ICC 2003.

Tonello, Rinaldo, Bellin, Proc. ISPLC 2004.