MSV D32 v5 - Europa · Multiscale&Spatiotemporal&Visualisation&!Collectionof!exemplary!problems!!!...

26
Multiscale Spatiotemporal Visualisation STREP # FP7248032 MSV Deliverable D3.2 – Collection of exemplary problems Work package 3: Exemplary problems Rubén Cárdenes (UPF) Xavier Planes (UPF) 03/01/2012

Transcript of MSV D32 v5 - Europa · Multiscale&Spatiotemporal&Visualisation&!Collectionof!exemplary!problems!!!...

 Multiscale  Spatiotemporal  

Visualisation  STREP  #  FP7-­‐248032  

 

 

MSV  Deliverable  

 

D3.2  –  Collection  of  exemplary  problems    Work  package  3:  Exemplary  problems  

 

Rubén  Cárdenes  (UPF)  

Xavier  Planes  (UPF)  

 

 

 

 

 

 

03/01/2012  

 

 

 

 

 

      Multiscale  Spatiotemporal  Visualisation  

 Collection  of  exemplary  problems  

 

  2  

DOCUMENT  INFORMATION  

 

IST  Project  Number   FP7-­‐248032   Acronym   MSV    

Full  title   Multiscale  Spatiotemporal  Visualisation:  development  of  an  open-­‐source  software  library  for  the  interactive  visualisation  of  multiscale  data    

Project  URL   http://www.msv-­‐project.eu    

Document  URL   https://www.biomedtown.org/biomed_town/MSV/associates/reviewers/  

EU  Project  officer   Ivo  Locatelli  

 

Deliverable  Number   3.2   Title   Collection  of  exemplary  problems  

Work  package  Number   3   Title   Exemplary  problems  

 

Date  of  delivery   Planned   31-­‐12-­‐2011   Actual   03/01/2012  

Status     Version  v5   final    

Nature   Prototype        Report              Demonstrator          Other    

Dissemination  Level    

Public                  Consortium    

 

Authors  (Partner)   Rubén  Cárdenes  (UPF),  Xavier  Planes  (UPF)  

Responsible  Author    Rubén  Cárdenes   Email   [email protected]  

Partner   UPF   Phone   +34-­‐93-­‐5421447  

 

Abstract  (for  dissemination)  

This   document   summarizes   the   output   obtained   from   the   MSV   problem  assessment  exercise.   In  particular,  starting   from  the  preliminary   information  got   from   the   projects   approached   in   order   to   understand   the   multiscale  visualisation  needs,  a  set  of  data  have  been  collected  and  made  public  after  authorisation.     The   data   will   be   used   both   during   the   projects   for   the  assessment  of  the  demonstrators  that  are  being  developed  and  after  the  end  of   the   project   as   test   data   for   the  MSVTK   library.   The   exemplary   problems  data  collection  covers  a  number  of  biomedical  domains,  like  orthopaedics  and  trauma   modelling,   vascular   modelling   and   treatment   planning,   the   healthy  and   disease   heart  modelling,   cancer  modelling,   and   others.     The   data   have  been   mapped   to   the   multiscale   challenges   defined   already   in   previous  deliverables  in  order  to  provide  a  priority  scale  to  the  development.  

Keywords   Assessment   exercise,   exemplary  problems,  challenges.  

 

 

Version  Log  

Issue  Date   Rev  No.   Author   Change  

      Multiscale  Spatiotemporal  Visualisation  

 Collection  of  exemplary  problems  

 

  3  

21/12/2011   V1   Rubens  Cardenes   First  draft  with  all  contents  

22/12/2011   V2   Debora  Testi   Revised  version  with  MSV  template  and  few  other  additions  

31/12/2011   V3   Debora  Testi   Updated  use  cases  and  challenges  table  

03/01/2012   V4   Xavier  Planes   Added  information  on  data  licences  

03/01/2012   V5   Debora  Testi   Final  version  consolidation  

      Multiscale  Spatiotemporal  Visualisation  

 Collection  of  exemplary  problems  

 

  4  

Project  Consortium  Information  

 

   

Disclaimer:   This   document   is   property   of   the  MSV  Consortium.   There   is   no  warranty   for   the  accuracy   or   completeness   of   the   information,   text,   graphics,   links   or   other   items   contained  within  this  material.  This  document  represents  the  common  view  of  the  consortium  and  does  not  necessarily  reflect  the  view  of  the  individual  partners.  

 

 

      Multiscale  Spatiotemporal  Visualisation  

 Collection  of  exemplary  problems  

 

  5  

 

LIST  OF  ABBREVIATIONS  

 

SCS   SCS  srl  

BED   University  of  Bedfordshire  

UPF   University  POmpeu  Fraba  

KIT   Kitware  

AUK   University  of  Auckland  

DTI   Diffusion  tensor  imaging  

ECG   Electrocardiography  

3DRA   Three-­‐dimensional  rotational  angiography  

CFD   Computational  Fluid  Dynamics  

US   Ultrasounds  

MRI   Magnetic  Resonance  Imaging  

 

 

 

      Multiscale  Spatiotemporal  Visualisation  

 Collection  of  exemplary  problems  

 

  6  

 

Summary  Summary  .......................................................................................................................................  6  

1   Introduction  ............................................................................................................................  9  

2   Use  cases  ..............................................................................................................................  10  

2.1   Cardiology  ......................................................................................................................  10  

2.1.1   Fiber  multiscale  visualizacion  of  the  myocardium  ..................................................  10  

2.1.2   Multiscale  visualizacion  of  the  propagation  of  the  electrical  signals  in  the  heart  ..  10  

2.1.3   Electrical  simulation  of  the  Heart  ...........................................................................  11  

2.1.4   Electro-­‐physiological  dataset  ..................................................................................  11  

2.1.5   Heart  model  ............................................................................................................  12  

2.1.6   Heart  model  ............................................................................................................  12  

2.1.7   Heart  tissue  .............................................................................................................  12  

2.1.8   Cardiac  Coupled  Electromechanics  and  Propagation  to  Torso  Skin  .......................  12  

2.2   Cerebral  aneurysms  .......................................................................................................  13  

2.2.1   Cerebral  aneurysm  flow  dynamics  .........................................................................  13  

2.3   Musculoskeletal  modelling  ............................................................................................  13  

2.3.1   From  body  to  microCT  data  of  the  human  bones  ...................................................  13  

2.3.2   Lumbar  spine  surgery  .............................................................................................  14  

2.3.3   Osteoporosis  ...........................................................................................................  14  

2.4   NeuroImaging  ................................................................................................................  14  

2.4.1   DTI  with  follow  up  ...................................................................................................  14  

2.4.2   SISCOM  analysis  ......................................................................................................  15  

2.4.3   EEG-­‐fMRI  .................................................................................................................  15  

2.4.4   Purkinje  neuron  ......................................................................................................  15  

2.4.5   Cortical  neurons  from  Alzheimers  disease  patients  ...............................................  16  

2.5   Oncology  ........................................................................................................................  16  

2.5.1   MRI  data,  histopathology  and  gene  data  of  a  cerebral  tumor  ...............................  16  

2.5.2   Breast  Radiotherapy  DICOM  Data  ..........................................................................  16  

2.5.3   MR-­‐guided  prostate  interventions  .........................................................................  16  

2.5.4   Mammography  .......................................................................................................  17  

2.5.5   Lung  cancer  .............................................................................................................  17  

2.6   Virtual  Colonoscopy  .......................................................................................................  17  

      Multiscale  Spatiotemporal  Visualisation  

 Collection  of  exemplary  problems  

 

  7  

2.6.1   3D  high  resolution  CT  image  of  abdomen  ..............................................................  17  

2.7   Human  Anatomy  ............................................................................................................  18  

2.7.1   BodyParts3D  ...........................................................................................................  18  

2.8   Mouse  Atlas  ...................................................................................................................  18  

2.8.1   µMRI  Atlas  of  Mouse  Development  ........................................................................  18  

2.9   Zebrafish  embryo  ...........................................................................................................  19  

2.10   Genetics  .......................................................................................................................  19  

2.10.1   Cardiac  Disorders  ..................................................................................................  19  

2.11   Clotting  ........................................................................................................................  19  

2.11.1   Example  11.1:  Constructing  a  protofibril  from  fibrin  monomers  .........................  20  

2.11.2   Example  11.2:  Constructing  a  fiber  from  protofibrils  ...........................................  20  

2.11.3   Example  11.3:  Constructing  a  clot  from  fibers  ......................................................  20  

3   Use  cases  and  challenges  ......................................................................................................  21  

4   ANNEX:  authorisations  to  data  use  where  applicable  ..........................................................  22  

4.1   LHDL  data  .......................................................................................................................  22  

4.2   UPF  data  ........................................................................................................................  22  

4.3   Cardiac  Atlas  Project  ......................................................................................................  22  

4.4   Cell  Centered  Database  .................................................................................................  22  

4.4.1   Acceptance  of  Terms  ..............................................................................................  23  

4.4.2   Copyright  ................................................................................................................  23  

4.4.3   Data  ........................................................................................................................  23  

4.4.4   Acknowledgements  ................................................................................................  24  

4.5   Auckland  Bioengineering  Institute  .................................................................................  24  

4.6   GIB-­‐UB  research  group  ..................................................................................................  24  

4.7   National  Cancer  Institute  ...............................................................................................  24  

4.8   Breast  Radiotherapy  DICOM  Data  .................................................................................  25  

4.9   MR-­‐guided  prostate  interventions  ................................................................................  25  

4.10   Digital  Database  for  Screening  Mammography  (DDSM)  .............................................  25  

4.11   ELCAP  Public  Lung  Image  Database  .............................................................................  25  

4.12   OSIRIX  ..........................................................................................................................  25  

4.13   BodyParts3D  ................................................................................................................  25  

4.14   µMRI  Atlas  of  Mouse  Development  ............................................................................  26  

4.15   EMAP  ...........................................................................................................................  26  

      Multiscale  Spatiotemporal  Visualisation  

 Collection  of  exemplary  problems  

 

  8  

4.16   Digital  Fish  Project  .......................................................................................................  26  

 

      Multiscale  Spatiotemporal  Visualisation  

 Collection  of  exemplary  problems  

 

  9  

1 Introduction  After  the  identification  of  the  challenges  to  be  covered  in  MSV  (see  D3.1  for  details),  and  the  protential   applications   and   projects,   UPF,   in   collaboration  with   the   other  MSV   partners,   has  collected  a  set  of  use  cases  to  test  the  paradigms  and  prototypes  that  will  be  finally  integrated  as   the  MSV   library.    The  cases,  which  are   listed  below,  have  been  selected  based  on  several  criteria.    First,  they  should  be  cases  where  one  or  several  of  the  challenges  already  identified  are  present,  and  secondly  they  need  to  have  a  clear  clinical  value,  and  potential  usefulness  for  the  scientific  community   in  the  near   future.    All   the  descriptions,   together  with  the  data,   file  descriptions   challenges   covered   can   be   found   at   the   MSV   public   Data   wiki  (https://www.biomedtown.org/biomed_town/MSV/reception/wikis/Data),  while  in  this  report  a  brief  summary  of  them  is  reported.    

This   document   ends   with   a   summary   table   of   the   challenges   and   how   the   collected   data  examples  map  on  those,  so  to  provide  a  clear  overview  to  be  used  to  define  the  development  priorities  (as  reported  in  D2.1  addendum).        

      Multiscale  Spatiotemporal  Visualisation  

 Collection  of  exemplary  problems  

 

  10  

2 Use  cases  This  section  is  an  extraction  from  the  public  wiki  mentioned  before.      

The  data  examples  have  been  grouped  by  biomedical  domain  and  each  examples   is  provided  with  a  description,  one  or  more  snapshot,  and  links  to  download  the  data  where  authorisation  have  been  got.  

2.1 Cardiology  

2.1.1 Fiber  multiscale  visualizacion  of  the  myocardium    

This   example   shows   the   fiber   structure   of   the  heart,   with   its   helix   shape   form   in   both  ventricles.    The  data  used  is  coming  from  an  ex-­‐vivo  heart  of   a  pig  acquired  with  a  MR  scanner  using  a  DTI  protocol,  in  the  context  of  a  national  project   in   collaboration   with   hospital   clinic   de  Barcelona,  Spain.    In  order  to  check  the  relation  between   the   data   coming   from   the   organ   level  (DTI  derived  data),  and  the  one  coming  from  the  cell  level,  it  is  important  to  be  able  to  see  in  the  same  reference  system,  data  coming  from  both,  to   show   that   orientation   of   the   macroscopic  representation   of   the   fibers   corresponds   to  cellular   structure   at   a   particular   position.    Therefore,   two   spatial   levels   are   shown   here  

(organ   and   tissue/cell)   representing   the  myocites   orientation   of   the   heart.     This   use   case   is  interesting   to   validate   the   methods   used   to   generate   the   macroscipic   fiber   data   (DTI   post  processing)  when  a  subsample  of  the  tissue  can  be  obtanied  at  a  particular  known  position  of  the   heart.     Note   that   in   this   case,   although   the   organ   level   comes   from   real   data,   cell   level  comes  from  simulated  data  generated  only  for  visualization  purposes.  

2.1.2 Multiscale  visualizacion  of  the  propagation  of  the  electrical  signals  in  the  heart  

These   data   shows   the   electrical   activity   in   the   cardiac  conduction   system   and,   in   particular,   in   the   Purkinje  network   and   the   myocardium   of   a   patient   specific  structure   following   electrical   stimulation   at   a   selected  point  of  the  above  network.  

The   Purkinje   network   and   the   myocardium   are  respectively  represented  with  1D  linear  elements  and  a  3D  polyhedron  mesh  disposed  along  curved   lines.     The  simulated  electrical   activity   is   given   in   form  of   a   scalar  field  whose  discretization  points  are  the  nodes  of  those  computational   1D/3D   descriptions.     The   Purkinje  network  and  the  myocardium  mesh  are  associated  with  the  tissue  and  organ  levels,  respectively.  

All  the  data  derive  from  simulations  and  the  Purkinje  network  is  a  synthetic  structure  whereas  the   myocardium   structure   is   a   patient   specific   model.     Pashaei   and   other   colleagues   are  

      Multiscale  Spatiotemporal  Visualisation  

 Collection  of  exemplary  problems  

 

  11  

advancing  in  understanding  processes  at  the  cell-­‐level  responsible  for  the  complex  conduction  of   the   electrical   activity   between   the   terminal   points   of   the   Purkinje   network   and   the  myocardium  structure,   i.e.   the  regions  called  Purkinje-­‐Ventricular   Junctions.     In   the  case  that  the  corresponding  data  will  not  be  available  soon  enough,  UPF  group  can  synthetize  them  so  as  to  have  a  tree-­‐scale  dataset  (instead  of  a  two-­‐scale  one).  

The  electrical  activity  can  be  represented   in   form  of  a   time-­‐independent  color  map,  wherein  the   color   represents   the   arrival   time   following   the   electrical   stimulus   (featuring   null   time).    Here,   the   aim   is   to   visualize   it   as   a   time-­‐varying   1D/2D   manifold   within   the   Purkinje  network/myocardium.  

2.1.3 Electrical  simulation  of  the  Heart    

This   use   case   shows   an   electrical   simulation   of   a   heart   using  several   image   modalities   as   input.     Input   images   have   been  segmented   and   a   surface   heart   model   is   used   to   create   a  volumetric   mesh   that   will   be   the   input   for   the   simulation  engine.     A   model   for   human   ventricular   tissue   is   used   to  simulate  the  electrical  propagation  in  the  Midmyocardial  Cells.  

Part   of   this   dataset   has   been   generated   using   the   tools   of  euHeart  EC-­‐funded  project.  

 

 

2.1.4 Electro-­‐physiological  dataset  

This  use  case  shows  a  dataset  of  electro-­‐physiological   CARTO   points   with   some  sample   ECG   signals.   This   data   allow  studying   electrical   behaviour   of   the  heart   and   can   be   used   to   model   and  plan   the   sucess   of   resynchronization  therapy.  

Electrical  data  are  sampled  at  1KHz  for  a  period   of   2.5   s,   having   a   total   of   2500  samples  for  each  point.    The  number  of  channels  and  their  meaning  depends  on  the   catheter   that   was   used   for   the  acquisition.     In   the   cases   we   worked  with,   the   22   channels   correspond   to  

superficial   unipolar   and   bipolar   ECGs   (I,   II,   III,   AvR,   AvL,   AvF,   V1,   V2,   V3,   V4,   V5   and   V6  derivations),   six   unipolar   signals   measured   in   the   tip   of   the   catheter   (with   six   different  distances  from  the  catheter  tip)  and  three  bipolar  signals.  

 

 

 

      Multiscale  Spatiotemporal  Visualisation  

 Collection  of  exemplary  problems  

 

  12  

 

2.1.5 Heart  model  

This   example   shows   a   left   ventricle   heart   model  segmented  over  the  input  images  with  modality  US,  and  MRI.    This  is  the  first  step  for  patient  specific  treatment.    This  surface  mesh  will  be  used  for  quantification  and  for  simulation.  

This   dataset   has   been   provided   by   CISTIB-­‐UPF   from  Barcelona.     Part   of   this   dataset   has   been   generated  using  the  tools  of  euHeart  EC-­‐funded  project.  

 

2.1.6 Heart  model  

This   example   shows   a   left   ventricle   heart   model   segmented  over  the  input  DICOM  images  with  modality  MR.    This  example  provides  Cardiac  MRI  images  and  cardiac  surface  model  of  the  heart  beating.  

This   dataset   has   been   retrieved   from   the   Cardiac   Atlas  Project1.  

 

 

2.1.7 Heart  tissue  

This   example   shows   a   generated   tomographic   volume   of   heart  tissue   from   mouse   left   ventricle   acquired   using   confocal   and  electron  tomography.    The  structures  shown  in  the  image  are:  T-­‐tubules,  junctional  sarcoplasmic  reticulum  and  mitochondria  of  a  myocyte  cell.  

This  dataset  has  been  retrieved  from  Cell  Centered  Database2  ID:  3603  

 

2.1.8 Cardiac  Coupled  Electromechanics  and  Propagation  to  Torso  Skin  

This  model   solved   coupled   electromechanics   in   the   left   ventricle  (LV)  model  over  some  300000  cell/grid  points  embedded  in  a  128  element  LV  mesh  over  which  geometry   is  described  by  a  tricubic-­‐Hermite  interpolated  field.  

For   each   element   in   the   mesh,   electrical   dipoles   have   been  generated  to  summarize  the  net  effect  of   the  potential   flow,  and  these  have  been  used  to  simulate  the  forward  problem  to  model  

                                                                                                                         1 http://www.cardiacatlas.org/web/guest/tools 2 http://ccdb.ucsd.edu/

      Multiscale  Spatiotemporal  Visualisation  

 Collection  of  exemplary  problems  

 

  13  

the  electrical  potential  on  the  torso  surface  arising  from  the  LV  model.    

These   data   were   provided   by   Auckland   Bioengineering   Institute   and   can   be   visualised   now  using  the  cmGUI  software3.  

2.2 Cerebral  aneurysms  

2.2.1 Cerebral  aneurysm  flow  dynamics  

3DRA   image   modality   is   used   to   obtain   a   good  image   quality   of   the   patient   aneurysm.     Input  image  before  treatment   is  segmented  to  obtain  a  surface   mesh   of   the   brain   vessels.     Aneurysm   is  located   in   one   of   the   vessels   and   some   mesh  processing  filters  are  used  to  isolate  it.    The  output  surface   mesh   is   used   to   compute   several  descriptors.    Finally,  blood  flow  is  simulated  within  the   segmented   vessel   using   a   CFD   simulator   like  ANSYS4  to  analyze  the  aneurysm  hemodynamics.  

Part  of  this  dataset  has  been  generated  using  the  tools  of  @neurist  EC-­‐funded  project.  

 

2.3 Musculoskeletal  modelling  

2.3.1 From  body  to  microCT  data  of  the  human  bones  

This   set   of   data   was   collected   as   part   of  the   LHDL   EC-­‐funded   project   and  represents  a  data  collection  from  the  body  level  down  to  the  microCT  level.    The  data  collected   are   of   different   types:   images,  surfaces,  measurements  etc.    In  particular:  

▪ Body   level:   in   vitro  whole-­‐body   CT   and  MRI   scans   were   performed.     From  those   imaging   data   3D   models   of  bones   and   muscles   were   obtained  through  segmentation.   In  parallel,   in-­‐vivo   motion   analyses  (stereophotogrammetry,   force   plate  

measurements,   and   electromyography)   were   performed   on   volunteers,   including   two  volunteers  that  anthropometrically  matched  the  two  cadavers.  

▪ Organ   level:   passive   joint   kinematics   was   obtained   using   conventional  stereophotogrammetry   with   skeletal-­‐attached   frames.     Full   deep   dissection   of   the  cadavers   made   it   possible   the   digitization   of   various   muscle   parameters   (pennation  angles,   origin   &   insertion   location,   etc.)   and   the   measurement   of   muscle   mass   and  volume.     Long   bones   were   then   dissected   and   bone   biomechanical   properties  

                                                                                                                         3 http://www.cmiss.org/cmgui 4 http://www.ansys.com

      Multiscale  Spatiotemporal  Visualisation  

 Collection  of  exemplary  problems  

 

  14  

measured  (whole  bone  stiffness,  strain  distribution,  bone  strength).  

▪ Tissue  level:  bone  properties  were  further  processed  at  tissue  level  by  performing  microCT  of  cancellous  bone  biopsies  taken  from  various  regions  of  the  skeleton  and  by  testing  the  mechanical  properties  of  both  cortical  and  cancellous  bone  specimens.  

2.3.2 Lumbar  spine  surgery  

This  example  shows  a  MRI  image  of  the  patient's  spine  with  a  preliminary  segmentation  of  the  spinal  discs.  

This  dataset  has  been  collected  from  the  project  mySpine  EC-­‐funded   project.     The   overall   objective   of   MySPINE   is   to  develop  a   simulation  platform  able   to  help   the  diagnosis  and  the  prognosis  of  lumbar  spine  back  pain.  

 

 

 

2.3.3 Osteoporosis  

This  example   shows  a  DXA   image  of  a  patient's   femur  head.  Dual-­‐emission  X-­‐ray  absorptiometry  (DXA)  is  a  means  of  measuring  bone  mineral   density   (BMD).   Two   X-­‐ray   beams   with   differing   energy  levels  are  aimed  at  the  patient's  bones  

This   dataset   has   been   collected   thanks   to   the   project   VERTEX  (VERTebral  Extensive  diagnosis  based  on  X-­‐ray  images).    The  aim  of  the  project  VERTEX  is  to  improve  the  diagnosis  of  osteoporosis  and  to  provide  a  better  prevention  of  vertebral  fractures  by  developing  and  validating  novel  medical  software.  

 

 

2.4 NeuroImaging  

2.4.1 DTI  with  follow  up  

Two   DTI   image   data   sets   have   been   scanned   for   a  healthy   control   subject  at   two  different   time   instants  using  two  different  scanners  and  acquisition  protocols,  and   with   a   separation   period   of   4   years.   In   this  example   the   fiber’s   structure   can   be   extracted   and  visualized   for   the   two  different   time   instants,   to   look  for  significant  differences  or  structural  changes.    

 

 

 

 

      Multiscale  Spatiotemporal  Visualisation  

 Collection  of  exemplary  problems  

 

  15  

 

2.4.2 SISCOM  analysis  

About  10  percent  of  patients  with  epilepsy  have  very  frequent   seizures   that   are   not   controlled   by  medication   and   adversely   affect   their   quality   of   life.  These   patients   should   be   evaluated   for   epilepsy  surgery.  In  doing  so,  it  is  important  that  we  can  clearly  spot   seizure   location   in   the   brain.     Subtraction   Ictal  SPECT   Co-­‐registered   to   MRI   (SISCOM)   is   an   imaging  technology  developed   to  pinpoint  epilepsy  uptake.   In  SISCOM   imaging   interictal   brain   perfusion   SPECT  images   are   subtracted   from   ictal   SPECT   and   the   final  image  is  co-­‐registered  and  superimposed  with  an  MRI  

image.    This  dataset  has  been  contributed  from  GIB-­‐UB  research  group  at  Hospital  Clinic  from  Barcelona.  

2.4.3 EEG-­‐fMRI  

"EEG-­‐fMRI   (short   for   EEG-­‐correlated   fMRI   or  electroencephalography-­‐correlated   functional  magnetic   resonance   imaging)   is   a  multimodal  neuroimaging   technique   whereby   EEG   and  fMRI  data  are   recorded  synchronously   for   the  study   of   electrical   brain   activity   in   correlation  with   haemodynamic   changes   in   brain   during  the  electrical  activity,  be   it  normal  function  or  associated  with  disorders."  from  Wikipedia5  

Localization   of   the   epileptogenic   zone   is  pivotal   in   the   evaluation   and   treatment   of  

patients   with   intractable   partial   epilepsy.     The   epileptic   zone   will   be   removed   to   improve  patient's   life.     Combining   EEG   simultaneously   acquired   with   Functional   magnetic   resonance  imaging  (fMRI)  yields  regions  of  activation  that  are  presumably  the  source  of  spiking  activity.    These   regions   are   highly   linked   with   epileptic   foci   and   epileptogenic   lesions   in   a   significant  number  of  patients.  

This   dataset   has   been   contributed   from   GIB-­‐UB   research   group   at   Hospital   Clinic   from  Barcelona.  

2.4.4 Purkinje  neuron  

This   example   shows   a   Purkinje   neuron   from   rat   cerebellum   injected  with  Lucifer   Yellow   and   imaged   using   confocal   microscopy.   This   dataset   has  been  retrieved  from  the  Cell  Centered  Database6  dataset  with  ID2.    

The   second   dataset   (Purkinje   dendrite)   shows   a   tomographic  reconstruction  of  stained  Purkinje  cell  dendrite  from  rat  cerebellum.    

The  third  dataset  (Purkinje  Neuron  Actin)   is  the  subcellular  distribution  of  

                                                                                                                         5 http://en.wikipedia.org/wiki/EEG-fMRI 6 http://ccdb.ucsd.edu/

      Multiscale  Spatiotemporal  Visualisation  

 Collection  of  exemplary  problems  

 

  16  

F-­‐actin  (protein)  in  cerebellar  Purkinje  cell  spines.    

2.4.5 Cortical  neurons  from  Alzheimers  disease  patients  

This   example   shows   a   reconstruction   of   a   cortical   neuron   from  biopsy  material   obtained   from  Alzheimers  disease  patient.     The  image  shows  the  major  subcellular  structures  in  the  cell  body  of  a  cortical   pyramidal   neuron:   Golgi   apparatus,   lipofuscin,   nucleus,  nucleolus,  paired  helical  filament  and  plasma  membrane.  

This  dataset  has  been  retrieved  from  the  Cell  Centered  Database  dataset  with  ID  3716.    

 

 

 

2.5 Oncology  

2.5.1 MRI  data,  histopathology  and  gene  data  of  a  cerebral  tumor  

This  example  shows  cerebral   tumor  at  different  space  scales  levels:   MR   data   of   the   head   of   the   patient   and  microscopy  image  of   the   tumor   tissue.  The  microscopy   image   is  used   to  perform   several   genetic   analyses.     Some   clinical   data   is   also  available.  

This  cancer  is  of  type  Glioblastoma  Multiforme  (GBM).    GBM  is   a   fast-­‐growing   type   of   malignant   brain   tumor   that   is   the  most  common  brain  tumor  in  adults.  

Data  has  been   retrieved   from  http://imaging.nci.nih.gov  and  http://tcga-­‐data.nci.nih.gov.  

2.5.2 Breast  Radiotherapy  DICOM  Data  

Computed  Tomography  scan  of  a  patient's  breast  with  the  radiotherapy  rays  of  the  treatment.  

The  data  has  been  retrieved  from:  

http://code.google.com/p/dicompyler/.    

2.5.3 MR-­‐guided  prostate  interventions  

Prostate   cancer   has   the   second-­‐highest   mortality   rate   of   all  cancers  in  American  men:  one  in  six  men  will  be  diagnosed,  and  it  kills   one   in   thirty-­‐five   (American   Cancer   Society).   One   possible  diagnosis  is  the  Needle  biopsy:  a  procedure  to  obtain  a  sample  of  cells   from   your   body   for   laboratory   testing.   One   possible  treatment   is   Brachytherapy:   a   form   of   radiotherapy   where   a  radiation   source   is   placed   inside   or   next   to   the   area   requiring  treatment.  

      Multiscale  Spatiotemporal  Visualisation  

 Collection  of  exemplary  problems  

 

  17  

This  dataset  contains  two  MR  images  (T1  and  T2)  and  a  level  map  (Label)  of  4  prostate  regions:  the  prostate,  the  tumour,  and  structures  to  be  avoided  (such  as  the  neurovascular  bundle)  that  help  to  locate  these  regions  during  the  intervention.    The  dataset  also  contains  the  segmented  regions  as  a  surface  mesh.  

To   use   this   pre-­‐operative   data,   the   intra-­‐operative  MR   image   needs   to   be   registered   during  real   time.     An   example   of   these   images   is   also   provided   (preoperativeMR   and  intraoperativeMR).  

2.5.4 Mammography  

The   Digital   Database   for   Screening   Mammography  (DDSM)   is   a   resource   for   use   by   the   mammographic  image   analysis   research   community.     Each   study  includes   two   images  of  each  breast,   along  with   some  associated   patient   information   (age   at   time   of   study,  ACR   breast   density   rating,   subtlety   rating   for  abnormalities,   ACR   keyword   description   of  abnormalities)  and  image  information  (scanner,  spatial  resolution,...).     Screening   mammography   typically  involves   taking   two   views   of   the   breast,   from   above  (cranial-­‐caudal   view,   CC)   and   from   an   oblique   or  

angled  view  (mediolateral-­‐oblique,  MLO).  

2.5.5 Lung  cancer  

This  example  shows  a  CT  image  of  a  lung  with  the  cancer  nodules  annotations.  Lung  Cancer  is  one  of  the  deadliest  of   all   cancers   and   kills   more   people   in   one   year   than  breast,  prostate  and  colon  cancer  combined.    The  image  has   been   taken   to   detect   lung   cancer   in   an   early   stage  and  start  treatment.    With  early  detection,  85  percent  of  cancers  can  be  found  in  the  earliest,  most  curable  stage.  If   treated  promptly  with   surgery,   their   cure   rate   is   92%  (New   England   Journal   of   Medicine   2006:   355:   1763-­‐1771).  

This   dataset   has   been   retrieved   from   I-­‐ELCAP   project7  with  ID  W0001.    The  I-­‐ELCAP  web-­‐based  teaching  file  is  a  training   tool   developed   to   familiarize   its   users   with  

various  radiological  and  pathologic  appearances  of  early  lung  cancer,  conditions  that  simulate  lung  cancer,  and  associated  findings.  

 

 

 

2.6 Virtual  Colonoscopy  

2.6.1 3D  high  resolution  CT  image  of  abdomen  

                                                                                                                         7 http://ielcap.org/index.htm

      Multiscale  Spatiotemporal  Visualisation  

 Collection  of  exemplary  problems  

 

  18  

CT   scan   image   at   resolution   of   512x512x889   of   the   patient  abdomen  allows  performing  virtual  colonoscopy,  after  colon  segmentation.   Basic   segmentation   of   colon   has   been  performed   using   connected   threshold   algorithm   and  marching  cubes.  

This   image   has   been   retrieved   from   Osirix   public   data:  http://pubimage.hcuge.ch:8080/  

 

 

2.7 Human  Anatomy    

2.7.1 BodyParts3D  

BodyParts3D  is  a  dictionary-­‐type  database  for  anatomy  in  which   shapes   and   positions   of   body   parts   are  represented   by   3D   human   models.   This   directory  contains   the   models   labeled   with   anatomical   terms   in  BodyParts3D.   The   original   dataset   has   865   files   in   OBJ  format.   In   order   to   manage   the   data   easily,   these   files  have  been  grouped  depending  on  the  organ  system.    The  number  of   files  has  been  reduced  to  17  VTK  files  with  a  size  of  217  MB.  

This   dataset   has   been   retrieved   from:  

ftp://ftp.dbcls.jp/archive/bodyparts3d/20100816/README_e.html   BodyParts3D,   ©The  Database  Center  for  Life  Science  licensed  under  CC  Attribution-­‐Share  Alike  2.1  Japan.  

2.8 Mouse  Atlas    

2.8.1 µMRI  Atlas  of  Mouse  Development  

The  µMRI  Atlas  of  Mouse  Development  is  a3D  digital  atlas  of  normal   mouse   development   constructed   from   magnetic  resonance   image   data.   A   series   of   µMRI   based   atlas   of  normal   C57Bl/6  mouse   development.   There   are   six   atlases  Theiler  Stages  (ts)  13,  21,23,  24,  25  and  26  and  MRI  data  for  an  unlabeled  ts19  embryo.  

This  dataset  has  been  retrieved  from:  

http://mouseatlas.caltech.edu/index.html  

 8.2.  EMAP,  the  e-­‐Mouse  Atlas  and  EMAGE,  e-­‐Mouse  

Atlas  of  Gene  Expression  EMA   is   a   3-­‐D   anatomical   atlas   of   mouse  embryo  development   including   detailed  

      Multiscale  Spatiotemporal  Visualisation  

 Collection  of  exemplary  problems  

 

  19  

histology.  EMA  includes  the  EMAP  ontology  of  anatomical  structure.  EMAGE  is  a  database  of  in  situ  gene  expression  data  in  the  mouse  embryo  and  an  accompanying  suite  of  tools  to  search  and   analyse   the   data.     mRNA   in   situ   hybridisation,   protein   immunohistochemistry   and  transgenic  reporter  data  is  included.  Link:  http://www.emouseatlas.org/emap/home.html  

 

2.9 Zebrafish  embryo  9.1.  Digital  Fish  Project  

As   part   of   the   Center   of   Excellence   in   Genomic  Science   at   Caltech,   we   have   initiated   the   Digital  Fish  Project.    Our  goal  is  to  use  in  toto  imaging  of  developing   transgenic   zebrafish   embryos   on   a  genomic   scale   to   acquire   digital,   quantitative,  cell-­‐based,  molecular  data   suitable   for  modelling  the   biological   circuits   that   turn   an   egg   into   an  embryo.   In   toto   imaging   uses   confocal/2-­‐photon  microscopy   to   capture   the   entire   volume   of  organs  and  eventually  whole  embryos  at   cellular  resolution  every   few  minutes   in   living  specimens  thoughout   their   development.     The  embryos   are  labelled   such   that   nuclei   are   one   color   and   cell  membranes   another   color   to   allow   cells   to   be  

segmented  and   tracked  as   they  move  and  divide.     The  use  of   a   transgenic  marker   in  a   third  color  allows  a  variety  of  molecular  data   to  be  marked.     In   toto   imaging  generates  4-­‐d   image  sets  (xyzt)  which  can  contain  100,000  to  1,000,000  images  per  experiment.    

This  dataset  has  been  retrieved  from:  

http://www.insight-­‐journal.org/midas/collection/view/37  

2.10 Genetics  

2.10.1 Cardiac  Disorders    

This  example  tries  to  summarize  how  different  types  of  data  ranging  from  medical  imaging  to  genetics  data  (including  computational  models  and  simulations)  can  be  integrated  into  a  single  application   to   study   a   relevant   disease.   Long   QT   Syndrome   (LQTS)   is   an   inherited   cardiac  disease   that   affects   ionic   conduction   in   the   Purkinje   fibers.   In   this   example,   cardiac   images  from   a   sample   case  were   processed   to   obtain   a   patient-­‐specific   3D  model.   A   file   describing  micro   array   data   (Cancer   Program  Publication)  was   edited  manually   to   include   dummy  data  showing   an   over-­‐expression   of   LQTS   susceptibility   genes   described   in   this   paper8.   Then,   a  simulation   of   electrical   propagation   wave   was   done   based   on   the   suspected   changes   in  electrical  activity  produced  by  the  LQTS  susceptibility  genes.  

2.11 Clotting  The   overall   goal   of   this   research   is   to   construct   a  model   of   a   fibrin   clot   that   goes   from   the  molecular   scale   all   the   way   up   to   the   clot   scale   and   which   is   consistent   with   the   known  structural  properties  of  clots  all  the  way  up.  This  goal  has  two  parts:  (1)  a  geometric  model  that                                                                                                                            8 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049907/pdf/nihms267562.pdf

      Multiscale  Spatiotemporal  Visualisation  

 Collection  of  exemplary  problems  

 

  20  

is   consistent   with   what   is   known,   and   (2)   a   dynamic   model   that   is   consistent   with   what   is  known.   Within   the   geometric   model,   there   are   several   sub-­‐parts:   one   example   explores  constructing  a  protofibril   from  fibrin  monomers,  while  another  explores  constructing  a   fibrin  fiber  from  protofibrils.    

2.11.1 Example  11.1:  Constructing  a  protofibril  from  fibrin  monomers  

The   goal   of   this   subproject   is   to   construct   a   protofibril   (a   double   strand   of   monomers)   by  assembling  a  number  of  fibrin  monomers  (molecule  1M1J  from  the  Protein  Data  Bank,  above,  is  one  such  monomer).    The  structure  of  the  protofibril  must  be  consistent  with  those  seen  in  TEM   images,   and   with   the   known   interaction   sites   within   the   protein.     Constructing   this  requires   building   a   pair   of   long,   thin   chains   (each   half   of   the   protofibril)   and   then   attaching  them  to  each  other  in  such  a  way  as  to  produce  the  desired  close  contacts  between  monomers  both  within   and  between   chains.     The   resulting   structure  must   also   be   consistent  with   TEM  images  taken  of  protofibrils.  

Therefore,   two   spatial   levels   are   present:   the   atomic-­‐resolution   interaction   between  monomers,  and  the  micron-­‐long  double-­‐stranded  protofibril  structure.  

 

2.11.2 Example  11.2:  Constructing  a  fiber  from  protofibrils  

The  goal  of  this  subproject  is  to  construct  a  fibrin  fiber  from  protofibrils.  The  structure  of  the  fiber  must  be  consistent  with  those  seen  in  TEM  images,  and  with  the  known  interaction  sites  within  the  protofibrils.  Constructing  this  requires  building  thick  chains  by  attaching  protofibrils  to  each  other  in  such  a  way  as  to  produce  the  desired  close  contacts  between  monomers  both  within  and  between  chains.  The  resulting  structure  must  also  be  consistent  with  TEM  images  taken  of   fibrin   fibers,  which  will   require  geometric  distortion   (twisting  and  stretching)  of   the  protofibril  structures.  

Therefore,   two   spatial   levels   are   present:   the   atomic-­‐resolution   interaction   between  monomers,  and  the  micron-­‐long  double-­‐stranded  protofibril  structure.  

There  is  no  approach  to  this  problem.  One  approach  would  be  to  enable  placement  and  repeat  of   protofibrils   to   form   a   fiber,   while   (simultaneously)   allowing   adjustment   of   the   protofibril  monomers.  However,  this  would  not  allow  some  protofibrils  to  stretch  while  others  remained  the   same.   Another   approach   might   be   to   run   an   energy-­‐minimizing   search   over   parameter  spaces  for  each  protofibril  independently.  Another  might  be  to  begin  with  a  straight  structure  and  twist  it  while  maintaining  constraints  on  the  interactions  between  protofibrils.  

2.11.3 Example  11.3:  Constructing  a  clot  from  fibers  

The  goal   of   this   subproject   is   to   construct   a   fibrin   clot   from   fibers.   The   structure  of   the   clot  must   be   consistent   with   those   seen   in   fluorescent   3D   images,   and   whose   stretching   and  deformation  behavior  matches  what  is  seen  experimentally.  Constructing  this  requires  building  thick   chains   by   attaching  protofibrils   to   each  other   in   such   a  way   as   to   produce   the  desired  close  contacts  between  monomers  both  within  and  between  chains.  

      Multiscale  Spatiotemporal  Visualisation  

 Collection  of  exemplary  problems  

 

  21  

Therefore,   three   spatial   levels   are   present:   the   atomic-­‐resolution   interaction   between  monomers,  the  micron-­‐long  double-­‐stranded  protofibril  structure,  and  the  millimeter-­‐sized  (or  larger)  fibrin  clot.  

There  is  no  approach  to  this  problem  even  if  there  are  data  at  the  clot  scale.  

 3 Use  cases  and  challenges  The  use   cases   just   described  has   been   analysed  with   respect   to   the  MSV   challenges   already  identified   D3.1.    With   respect   to   D3.1,   the   spatial   and   temporal   multiscale   challenges   have  been  split  in  two  separate  ones.        

Thus  the  use  cases  collected  are  divided  into  9  different  categories,  and  are  summarized  in  the  table  below,  relating  them  with  the  challenges  they  cover.  The  challenges  listed  are:    

Ch1:  different  spatial  scales  

Ch2:  registration  issues    

Ch3:  very  large  data  sets  

Ch4:  gaps  between  scales  

Ch5:  heterogeneous  data  types  

Ch6:  heterogeneous  dimensionality  

Ch7:  high  dimensionality  

Ch8:  interactive  visualisation  

Ch9:  time  varying  issues  

The   example   numbering   for   the   use   cases   correspond   to   the   paragraph   numbering   of   the  previsou  section.  

4 ANNEX:  authorisations  to  data  use  where  applicable  

4.1 LHDL  data  LHDL  data  available  in  example  #3.1  are  publicly  available  under  the  following  licence.  

Non-­‐Commercial  use  

Everyone  can  download  all  data  resources  part  of  the  LHDL  collection  available  on  Physiome  Space  under    the  following  Creative  Commons  use  license  

http://creativecommons.org/licenses/by-­‐nc-­‐sa/2.0/be/deed.en_GB  

In  simple  words,  it  says  that  at  download:  

You  are  free:  

-­‐  to  copy,  distribute,  display,  and  perform  the  work  

-­‐  to  make  derivative  works  

Under  the  following  conditions:  

-­‐  Attribution.  You  must  give  the  original  authors  credit.  

-­‐  Non-­‐Commercial.  You  may  not  use  this  work  for  commercial  purposes.  

-­‐  Share  Alike.  If  you  alter,  transform,  or  build  upon  this  work,  you  may  distribute  the  resulting  work  only  under  a  licence  identical  to  this  one.  

o  For  any  reuse  or  distribution,  you  must  make  clear  to  others  the  licence  terms  of  this  work.  

o  Any  of  these  conditions  can  be  waived  if  you  get  permission  from  the  copyright  holder.  

o  Nothing  in  this  license  impairs  or  restricts  the  author's  moral  rights.  

The  license  is  written  according  to  the  Belgian  law.  

4.2 UPF  data  The  data  of  the  examples  #1.1,  #1.2,  #1.3,  #1.4,  #1.5,  #2.1,  #3.2,  #3.3,  #4.1  and  #10.1  are  available  under  the  following  license  and  copyright:  

http://creativecommons.org/licenses/by-­‐nc-­‐sa/3.0/  

Copyright  (c)  2011,  

Computational  Image  and  Simulation  Technologies  in  Biomedicine  (CISTIB),  

Universitat  Pompeu  Fabra  (UPF),  Barcelona,  Spain.  All  rights  reserved.  

All  rights  reserved.  

4.3 Cardiac  Atlas  Project  The   data   of   the   example   #1.6   is   available   without   restrictions   and   has   been   downloaded   from  http://www.cardiacatlas.org/web/guest/tools.    

4.4 Cell  Centered  Database  The  data  of  the  examples  #1.7,  #4.4  and  #4.5  are  available  under  the  following  license  and  copyright:  

      Multiscale  Spatiotemporal  Visualisation  

 Draft  non-­‐profit  business  plan  

23    

http://ccdb.ucsd.edu/agreement/index.shtm    

http://ccdb.ucsd.edu/copyright/index.shtm    

4.4.1 Acceptance  of  Terms  

When  you  access   the  CCDB  website  or  database,   you  acknowledge   that  you  have   read  and  have  agreed   to   the   terms  described  below.  If  you  do  not  agree  to  these  terms,  you  should  exit  this  site  now.  If  you  have  any  questions  about  these  terms  contact  the  webmaster.    

4.4.2 Copyright  

Copyright   2002–2007,   The   Regents   of   the   University   of   California.   All   Rights   Reserved.   Permission   to   use,   copy,   modify,   and  distribute  any  part  of  the  Cell  Centered  Database  (CCDB)  website  for  educational,  research,  and  non-­‐profit  purposes,  without  fee,  and  without  a  written  agreement   is  hereby  granted,  provided  that  the  above  copyright  notice,   this  paragraph,  and  the  following  three  paragraphs  appear  in  all  copies.    

Those   desiring   to   incorporate   this   CCDB  website   into   commercial   products   or   use   for   commercial   purposes   should   contact   Dr.  Maryann  Martone  at  858-­‐822-­‐0745  and  Technology  Transfer  and  Intellectual  Property  Services,  University  of  California,  San  Diego,  9500  Gilman  Drive,  La  Jolla,  CA  92093-­‐0910,  Phone:  (857)  534-­‐5815,  Fax:  (858)  534-­‐7345,  email:  [email protected].    

In  no  event  shall  the  University  of  California  be  liable  to  any  party  for  direct,  indirect,  special,  incidental,  or  consequential  damages,  including   lost   profits,   arising   out   of   the   use   of   this   CCDB  website,   even   if   the   University   of   California   has   been   advised   of   the  possibility  of  such  damage.    

The  CCDB  website  provided  herein  is  on  an  “as  is”  basis,  and  the  University  of  California  has  no  obligation  to  provide  maintenance,  support,   updates,   enhancements,   or   modifications.   The   University   of   California   makes   no   representations   and   extends   no  warranties  of  any  kind,  either  implied  or  express,  including,  but  not  limited  to,  the  implied  warranties  of  merchantability  or  fitness  for  a  particular  purpose,  or  that  the  use  of  the  CCDB  website  will  not  infringe  any  patent,  trademark,  or  other  rights.    

4.4.3 Data  

Data  Sharing  Policy:   The  mission  of   the  CCDB   is   to  promote  data   sharing  among   scientists   interested   in   cellular   and   subcellular  anatomy  and   in  developing   computer  algorithms   for  3D   reconstruction  and  modeling  of   such  data.  Data   sets  may  be  viewed  or  shared   at   the   discretion   of   the   author   of   the   data.   In   some   cases,   the   data   may   be   freely   viewed   and   Downloaded   without  contacting  the  original  author,  while  in  other  cases,  permission  of  the  author  may  have  to  be  obtained  prior  to  receiving  data.  In  either   case,   failure   to   cite   or   give   credit   to   the   original   authors   who   collected   these   data   in   subsequent   published   articles   or  presentations  is  on  par  with  plagiarism,  is  unacceptable,  and  unprofessional.  Although  the  CCDB  is  not  in  a  position  to  police  every  intended  use  of  these  data,  we  trust  that  the  scientific  community  will  ensure  that  this  does  not  happen.  However,  we  do  insist  that  researchers  re-­‐analyzing  these  published  data  reference  the  original  published  article  and  the  CCDB.  An  example  of  an  appropriate  acknowledgement  is  provided  in  the  usage  terms  agreed  to  upon  data  download  and  is  also  included  below    

The   CCDB   schema   is   owned   by   the   CCDB.   Individual   data   and   data   sets   remain   the   property   of   the   principal   investigator   who  contributed  it.  Any  question  as  to  proper  use  of  this  data  set  should  be  directed  to  the  principal  investigator  and  the  CCDB.    

Depositing  Data  to  the  CCDB:  The  CCDB  will  accept  data  from  outside  users.  Policies  for  deposition  of  outside  data  are  still  being  developed,   but   it   is   expected   that   users  will   deposit   data   in   accordance  with   the  mission   of   the   CCDB   to  make   3D   cellular   and  subcellular  data  available  to  the  greater  scientific  community.  Thus,  any  data  deposited  must  have  sufficient  descriptive  data  that  is  interpretable  by  an  independent  user  and  as  far  as  possible,  original  imaging  data  should  be  included.    

Disclaimer:  The  data  provided  by  the  CCDB  is  freely  distributed.  This  data  is  distributed  in  the  hope  that  it  will  be  useful  but  without  any  warranty.  This  data  is  provided  by  CCDB  “as  is”  and  any  express  or  implied  warranties,  including,  but  not  limited  to,  the  implied  warranties  of  merchantability,  fitness  for  a  particular  purpose,  or  non-­‐infringement,  are  disclaimed.  In  no  event  shall  the  CCDB  be  liable  for  any  direct,  indirect,  incidental,  special,  exemplary,  or  consequential  damages  (including,  but  not  limited  to,  procurement  of  substitute  goods  or  services;  loss  of  use,  data,  or  profits;  or  business  interruption)  however  caused  and  on  any  theory  of  liability,  whether  in  contract,  strict  liability,  or  tort  (including  negligence  or  otherwise)  arising  in  any  way  out  of  the  use  of  this  data,  even  if  advised  of  the  possibility  of  such  damage.    

      Multiscale  Spatiotemporal  Visualisation  

 Draft  non-­‐profit  business  plan  

24    

4.4.4 Acknowledgements  

Data  used  from  the  CCDB  should  be  appropriately  referenced,  including  both  the  author  of  the  data  and  the  CCDB.  If  the  data  were  from  a  published  study,  the  reference  is  included  in  the  database  record.  The  following  reference  should  be  cited  for  the  CCDB:    

Martone,  M.   E.,   Gupta,   A.,  Wong,  M.,   Qian,   X.,   Sosinsky,   G.,   Ludaescher,   B.,   and   Ellisman,  M.   H.   A   cell   centered   database   for  electron  tomographic  data.  J.  Struct.  Biology  138:  145-­‐155,  2002.    

In  addition,  the  support  for  the  Cell  Centered  Database  should  be  included  in  the  acknolwedgement  section  of  any  publication:    

The  Cell  Centered  Database  is  supported  by  NIH  grants  from  NCRR  RR04050,  RR  RR08605  and  the  Human  Brain  Project  DA016602  from   the   National   Institute   on   Drug   Abuse,   the   National   Institute   of   Biomedical   Imaging   and   Bioengineering   and   the   National  Institute  of  Mental  Health.    

4.5 Auckland  Bioengineering  Institute  The  data  of  the  example  #1.8  is  available  under  the  following  restriction:    

The  data  is  free  to  use,  but  it  would  be  appreciated  if  people  could  cite  the  following  articles  when  they  do  use  it:  

• "New  developments   in  a  strongly  coupled  cardiac  electromechanical  model",  David  Nickerson,  Nicolas  Smith  and  Peter  Hunter,  Europace  (2005)  7  (s2):  S118-­‐S127.  doi:  10.1016/j.eupc.2005.04.009.  This  one  gives  a  detailed  description  of  the  model  being  simulated  in  this  dataset  

• "Computational  multiscale  modeling   in   the   IUPS  Physiome  Project:  Modeling   cardiac  electromechanics",  Nickerson,  D.;  Nash,   M.;   Nielsen,   P.;   Smith,   N.;   Hunter,   P.;   IBM   J.   RES.   &   DEV.   VOL.   50   NO.   6   NOVEMBER   2006,   DOI:  10.1147/rd.506.0617.   This   one   gives   details   on   the   numerical   and   computational   methods   used   in   the   simulations  presented  in  the  first  one  

4.6 GIB-­‐UB  research  group  The  data  of   the   examples   #4.2   and  #4.3   are   available  without   any   restriction.   These  datasets   have  been  contributed  from  GIB-­‐UB  research  group  at  Hospital  Clinic  from  Barcelona.  

4.7 National  Cancer  Institute  The  data  of  the  example  #5.1  is  available  under  the  following  disclaimer:  

LEGAL  FRAMEWORK  AND  ETHICAL  USE  OF  THIS  RESOURCE    The  National  Cancer   Institute   (NCI)  offers   this   image   repository   to  encourage  cross-­‐disciplinary   science.  Some  of   this  data  may  already  be  published  or  in  public  domain.  In  addition,  confidential  information  may  be  posted  which  has  not  yet  been  published  or  is  subject  of  patent  applications  yet  to  be  filed.  Data  may  also  be  subject  to  copyright  and  commercial  use  may  be  protected  under  United  States  and  foreign  copyright  laws.  Other  parties  may  retain  rights  to  publish  or  reproduce  these  documents.  In  addition,  some  data  may  be  the  subject  of  patent  applications  or  issued  patents,  and  you  may  need  to  seek  a  license  for  its  commercial  use.  Contact  us  if  in  doubt.  If  you  are  a  contributor  submitting  data  to  this  image  repository,  you  are  certifying  that  you  are  the  original  source  of  this  data  and  are  authorized  to  release  the  data  that  is  permitted  by  your  local  IRB,  when  relevant.  You  also  certify  that  you  will  consult  with  your  institution's  technology  development  office  before  posting  or  disclosing  confidential   information  which  may  be  patentable.  You  may  browse,  download,  and  use  the  data  for  non-­‐commercial,   scientific   and  educational   purposes.  However,   you  may  encounter   documents   or   portions  of  documents  contributed  by  private   institutions  or  organizations.  NCI  does  not  warrant  or  assume  any   legal   liability  or  responsibility  for  accuracy,   completeness   or   usefulness   of   information   in   this   archive.   Every   effort  will   have   been  made   to   remove   private  health  information  (PHI)  from  images  both  by  the  submitter  and  again  by  tested  automatic  de-­‐identification  processes  by  the  NCI   as   required   by   HIPAA   for   data   use   agreements   [45CFR164.514(e)(4)],   i.e.,   appropriate   safeguards   to   ensure   that  protected  health  information  (PHI)  is  not  used  or  disclosed  inappropriately.  Nonetheless  ethical  principles  command  all  users  to  make   no   attempt   to   identify   individuals   from  whatever   data   elements   and  metadata   remain.   By   continuing   with   this  registration  process,  you  understand  that  all  necessary  information  describing  the  use  of  the  system  is  detailed  in  the  online  help  PDF  documentation  accessible  from  the  left-­‐menu  bar  from  within  the  application.  USER  REGISTRATION  PRIVACY  ACT  NOTIFICATION  STATEMENT    The  National  Biomedical  Imaging  Archive  (NBIA)  web  portal  asks  users  to  register.  The  use  of  this  information  is  to  allow  the  NCI  to  continuously  improve  the  image  repository  as  a  public  service.  Collection  of  this  information  is  authorized  under  Title  IV  of   the  PHS  Act,   Section  410[285].   This   information  may  be  disclosed   to   researchers   for   research  purposes,   contractors  

      Multiscale  Spatiotemporal  Visualisation  

 Draft  non-­‐profit  business  plan  

25    

responsible  for  the  maintenance  of  the  repository  and  to  other  registered  repository  users  for  non-­‐commercial,  scientific  and  educational  purposes.  Submission  of  this  information  is  voluntary.  However,  when  registering  please  complete  all  fields.  The  NBIA  web  portal  also  records  IP  addresses  and  aggregated  user  query  information.  However,  the  IP  address  is  not  associated  with  any  user  registration  information.  The  user  registration  data,  IP  addresses  and  aggregated  user  query  information  are  used  for  NCI   internal  reporting  purposes  only  to  allow  for   improvement  of  the  NBIA  web  portal  based  on  users  needs.  For  additional   information,   please   refer   to   the   Legal   Rules   noted   above,   and   the   link   to   our   Privacy   Policy.   We   do   not   use  "cookies"  on  our  web  site.  We  do  not  give,  share,  sell  or  transfer  any  personal  information  to  a  third  party.  When  inquiries  are  e-­‐mailed  to  us,  we  store  the  question  and  the  e-­‐mail  address  information  so  that  we  can  respond  electronically.  Unless  otherwise  required  by  statute,  we  do  not   identify  publicly  who  sends  questions  or  comments  to  our  web  site.  We  will  not  obtain   information   that  will   allow  us   to  personally   identify   you  when  you  visit  our   site,  unless   you   chose   to  provide   such  information   to  us.   To   assure   the   integrity  of   information  on   this   server,  we   reserve   the   right   to  monitor   system  access   if  malicious  actions  are  taken  to  disable  our  on-­‐line  services  or  intentionally  gain  unauthorized  access  to  NCI  systems.  

4.8 Breast  Radiotherapy  DICOM  Data  The  data  of  the  example  #5.2  is  available  without  restrictions  and  has  been  downloaded  from  the  web  site  http://code.google.com/p/dicompyler/.    

4.9 MR-­‐guided  prostate  interventions    The  data  of  the  example  #5.3  is  available  without  restrictions  and  has  been  downloaded  from  the  web  site  http://prostatemrimagedatabase.com/OtherHtml/Slicer.html  .    

4.10 Digital  Database  for  Screening  Mammography  (DDSM)  The  data  of  the  example  #5.4  is  available  under  the  following  restriction:  

If  I  use  data  from  DDSM  in  publications...  Please  credit  the  DDSM  project  as  the  source  of  the  data,  and  reference:    

• The  Digital  Database  for  Screening  Mammography,  Michael  Heath,  Kevin  Bowyer,  Daniel  Kopans,  Richard  Moore  and  W.  Philip  Kegelmeyer,  in  Proceedings  of  the  Fifth  International  Workshop  on  Digital  Mammography,  M.J.  Yaffe,  ed.,  212-­‐218,  Medical  Physics  Publishing,  2001.  ISBN  1-­‐930524-­‐00-­‐5.    

• Current   status   of   the  Digital  Database   for   Screening  Mammography,  Michael  Heath,   Kevin   Bowyer,  Daniel   Kopans,  W.  Philip   Kegelmeyer,   Richard   Moore,   Kyong   Chang,   and   S.   MunishKumaran,   in  Digital   Mammography,   457-­‐460,   Kluwer  Academic  Publishers,  1998;  Proceedings  of  the  Fourth  International  Workshop  on  Digital  Mammography.    

Also,  please  send  a  copy  of  your  publication  to  Professor  Kevin  Bowyer  /  Computer  Science  and  Engineering  /  University  of  Notre  Dame  /  Notre  Dame,  Indiana  46530.  

4.11 ELCAP  Public  Lung  Image  Database  The  data  of  the  example  #5.5  is  available  without  restrictions:  

http://www.via.cornell.edu/lungdb.html      

4.12 OSIRIX  The  data  of  the  example  #6.1   is  available  without  restrictions.   It  has  been  downloaded  from  the  web  site  http://pubimage.hcuge.ch:8080/.  

4.13 BodyParts3D  The  data  of  the  example  #7.1  is  available  under  the  following  license:  

You  may  use  this  database  in  compliance  with  the  terms  and  conditions  of  the  license  described  below.  The  license  specifies  the  license   terms   regarding   the   use   of   this   database   and   the   requirements   you   must   follow   in   using   this   database. The   license   for   this   database   is   specified   in   the   Creative   Commons   Attribution-­‐Share   Alike   2.1   Japan.  If  you  use  data  from  this  database,  please  be  sure  attribute  this  database  as  follows:  "BodyParts3D,  ©  The  Database  Center  for  Life  Science  licensed  under  CC  Attribution-­‐Share  Alike  2.1  Japan".With  regard  to  this  database,  you  are  licensed  to:  

      Multiscale  Spatiotemporal  Visualisation  

 Draft  non-­‐profit  business  plan  

26    

1. freely  access  part  or  whole  of  this  database,  and  acquire  data;  2. freely  redistribute  part  or  whole  of  the  data  from  this  database;  and  3. freely  create  and  distribute  database  and  other  derivative  works  based  on  part  or  whole  of  the  data  from  this  database,  

under  the  license,  as  long  as  you  comply  with  the  following  conditions:  

1. You  must  attribute  this  database  in  the  manner  specified  by  the  author  or  licensor  when  distributing  part  or  whole  of  this  database  or  any  derivative  work.  

2. You  must  distribute  any  derivative  work  based  on  part  or  whole  of  the  data  from  this  database  under  the  license.  3. You   need   to   contact   the   Licensor   shown   below   to   request   a   license   for   use   of   this   database   or   any   part   thereof   not  

licensed  under  the  license.  

4.14 µMRI  Atlas  of  Mouse  Development  The   data   of   the   example   #8.1   is   available   without   resctictions   and   has   been   downloaded   from:  http://mouseatlas.caltech.edu/index.html.  

4.15 EMAP  The   data   of   the   example   #8.2   is   available   without   resctictions   and   has   been   downloaded   from:  http://www.emouseatlas.org/emap/home.html    

When  citing   the  EMAP  project,  or   the  resources  developed  as  part  of  EMAP,  please  use  the   following  text:  EMAP  eMouse  Atlas  Project  (http://www.emouseatlas.org).  When  acknowledging  the  use  of  data  located  in  the  EMAP  online  resources,  please  refer  to  its  ID  where  possible  (e.g  expressed  as  EMA:#,  where  #  is  the  numerical  identifier  for  the  EMA  anatomy  model,  EMAP:#,  where  #  is  the  numerical  identifier  of  the  anatomy  ontology  term  etc),  and  the  date  (month/year)  when  the  data  was  retrieved.  

4.16 Digital  Fish  Project    The   data   of   the   example   #9.1   is   available   without   resctictions   and   has   been   downloaded   from  http://www.insight-­‐journal.org/midas/collection/view/37  .    

Please  use  this  identifier  to  cite  or  link  to  this  collection:  http://hdl.handle.net/1926/580