Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography...

46
Overview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form lattices Snow flakes 3. Molecular form lattices Proteins 4. Polygonal lattices and polygrams Pentagonal case 5. Pentagonal proteins Cyclophilin, D-aminopeptidase 6. Decagonal DNA B-DNA 7. Integral lattices Frank’s ’cubic’ hexagonal lattice 8. Conclusions Stuttgart, Max-Planck Institute, 16.03.04 A. Janner . – p.1/35

Transcript of Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography...

Page 1: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

Overview

Molecules in Wonderlandof Crystallography

Dedicated to the 70th anniversary of Peter Wyder, Emeritus

1. Introduction

2. Growth form lattices Snow flakes

3. Molecular form lattices Proteins

4. Polygonal lattices and polygrams Pentagonal case

5. Pentagonal proteins Cyclophilin, D-aminopeptidase

6. Decagonal DNA B-DNA

7. Integral lattices Frank’s ’cubic’ hexagonal lattice

8. Conclusions

Stuttgart, Max-Planck Institute, 16.03.04 A. Janner

. – p.1/35

Page 2: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

alice

Alice’s adventures in wonderland

. – p.2/35

Page 3: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

magnet

Peter’s adventures in wonderland

. – p.3/35

Page 4: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

mignon

(Sci.Am. 2)

Kennst du das Wunderland,

Wo Moleküle die Schneeflockengleichen,

Kennst du es wohl?

. – p.4/35

Page 5: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

Cryst+Growt latt. (SA) [SAa]

Ice and Snow Flake: Microscopic and Macroscopic Lattices

Crystal lattice Growth lattice

Ch. and N. Knight, Scientific American (1973) 100-107 . – p.5/35

Page 6: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

Sa1+Sa2[SAb]

Hexagrammal Scaling Symmetry of Snow Crystals

Facet-like snow flake Dendric-like snow flake

(Sci.Am. 2) (Sci.Am. 1)

Scientific American (1961)

Hexagrammal Scaling Symmetry of Snow CrystalsMid-edge star hexagons: λME = 1/2 Vertex star hexagons: λV E = 1/

3

(Sci.Am. 2) (Sci.Am. 1)

. – p.6/35

Page 7: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

Sa1+Sa2[SAb]

Hexagrammal Scaling Symmetry of Snow Crystals

Facet-like snow flake Dendric-like snow flake

(Sci.Am. 2) (Sci.Am. 1)

Scientific American (1961)

Hexagrammal Scaling Symmetry of Snow CrystalsMid-edge star hexagons: λME = 1/2 Vertex star hexagons: λV E = 1/

3

(Sci.Am. 2) (Sci.Am. 1)

. – p.6/35

Page 8: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

Indexed starhex. vert.

(ls5/decacg33)

Indexed Star Hexagon

Vertex Scaling Relations

Scaling: Rotation:1 / √3 π / 6

3 -3

6 3

3 6

-3 3

-6 -3

-3 -6

1 -1

2 1

1 2

-1 1

-2 -1

-1 -2

3 0

3 30 3

-3 0

-3 -3 0 -3

1 0

1 10 1

-1 0

-1 -1 0 -1

(2 -1)

(1 1)(-1 2)

(-2 1)

(-1 -1) (1 -2)

(2 -1)

(1 1)(-1 2)

(-2 1)

(-1 -1) (1 -2)

(1 0)

(0 1)

(1 -1)

(-1 0)

(0 -1)

(1 -1)

. – p.7/35

Page 9: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

Indexed hexagram

Indexed Star Hexagon

mid-edge scaling relations

8,0

8,8

0,8

-8,0

-8,-8

0,-8

4,0

4,4

0,4

-4,0

-4,-4

0,-4

2,0

2,2

0,2

-2,0

-2,-2

0,-2

1,0

1,10,1

-1,0

-1,-10,-1

(1,0)

(0,1)(-1,1)

(-1,0)

(0,-1) (1,-1)

(1,0)

(0,1)

(1,-1)

. – p.8/35

Page 10: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

Olovsson

A Sample of Snow Flakes

An hyperbolic hexagon as growth form?

. – p.9/35

Page 11: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

olov-46a (fig1a)

Snow Crystals with Flat and Hyperbolic Boundaries

Olovsson, Bild der Wissenschaft, 12-1985, 50-59

(Olovsson)

. – p.10/35

Page 12: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

olov-46a (fig1a)

Snow Crystals with Flat and Hyperbolic Boundaries

Hexagon, hyperbolic hexagon, star hexagon and hexagonal lattice

(Olovsson)

(snow46a,n=5)

. – p.10/35

Page 13: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

bh109.7-73b (fig1c)

Snow Crystals with Flat and Hyperbolic Boundaries

Bentely & Humphreys, Snow Crystals, Dover, 1962 (109.7)

. – p.11/35

Page 14: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

bh109.7-73b (fig1c)

Snow Crystals with Flat and Hyperbolic Boundaries

Growth lattice-sublattice in Hexagrammal vertex relation

BH 109.7

. – p.11/35

Page 15: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

bh109.7-73b (fig1d)

Snow Crystals with Flat and Hyperbolic Boundaries

Bentely & Humphreys, Snow Crystals, Dover, 1962 (27.3)

. – p.12/35

Page 16: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

bh109.7-73b (fig1d)

Snow Crystals with Flat and Hyperbolic Boundaries

Growth lattice-sublattice in Hexagrammal mid-edge relation

BH 27.3. – p.12/35

Page 17: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

bh167.8-84 (fig5)

Dendritic Snow Crystal with Degenerated Hyperbolic Boundaries

Bentely & Humphreys, Snow Crystals, Dover, 1962 (167.8)

. – p.13/35

Page 18: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

bh167.8-84 (fig5)

Dendritic Snow Crystal with Degenerated Hyperbolic Boundaries

Hyperbolic branching sites at points of the growth lattice

. – p.13/35

Page 19: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

rG-quadruplex

Cubic Form Lattice of RNA Guanosine QuadruplexLattice-Sublattice relation: Central channel, Guanine and Sugar-phosphate

Zimmerman, J. Mol. Biol. 106 (1976) 663-672

Cubic Form Lattice of RNA Guanosine QuadruplexBackbone subsystem: Sugar-phosphate

Zimmerman, J. Mol. Biol. 106 (1976) 663-672

Cubic Form Lattice of RNA Guanosine QuadruplexBases subsystem: Guanine

Zimmerman, J. Mol. Biol. 106 (1976) 663-672

. – p.14/35

Page 20: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

rG-quadruplex

Cubic Form Lattice of RNA Guanosine QuadruplexBackbone subsystem: Sugar-phosphate

Zimmerman, J. Mol. Biol. 106 (1976) 663-672

Cubic Form Lattice of RNA Guanosine QuadruplexBases subsystem: Guanine

Zimmerman, J. Mol. Biol. 106 (1976) 663-672

. – p.14/35

Page 21: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

rG-quadruplex

Cubic Form Lattice of RNA Guanosine QuadruplexBackbone subsystem: Sugar-phosphate

Zimmerman, J. Mol. Biol. 106 (1976) 663-672

Cubic Form Lattice of RNA Guanosine QuadruplexBases subsystem: Guanine

Zimmerman, J. Mol. Biol. 106 (1976) 663-672 . – p.14/35

Page 22: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

R-phycoerythrin 1-hex.

Hexameric R-phycoerythrin (Trigonal 32)

Isometric hexagonal form lattice

a

b

x

y

a = 4r°r°

x

z

4r°

Chang et al., J.Mol.Biol 262 (1996) 721-731 (PDB 1lia) . – p.15/35

Page 23: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

Bacteriorhodopsin sqrt(3)-hex

Bacteriorhodopsin trimer√

3-hexagonal form lattice Cubic host lattice (Lipid)

a

re

x

y

a√3r0

z

x

c = a√3

Edman et al., Nature 401 (1999) 822-826 (PDB 1qko)

a = re = 3 r0 = 1√

3c

. – p.16/35

Page 24: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

Penta. Lattice

Pentagonal Case

(sgk1a)

x

y1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

-1 -1 -1 -1

Polygonal Lattice

Basis vectors:ak = a(cos kφ, sin kφ)

φ = 2π5

, k = 1, 2, 3, 4

Euler ϕ-function: ϕ(5) = 4

Note:a0 = −a1 − a2 − a3 − a4

Lattice points:P = (n1, n2, n3, n4)

Indices: n1, n2, n3, n4

(integers)

Only small indices are relevant!. – p.17/35

Page 25: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

Star Pentagon

Pentagonal Case

(sgk1b)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

-1 -1 -1 -1

-2 0 -1 -1

1 -1 1 0

0 1 -1 1

-1 -1 0 -2

2 1 1 2

Polygrammal Scaling

Star Pentagon:Schäfli Symbol {5/2}

Scaling matrix: (planar scaling)

2̄ 1 0 1̄

0 1̄ 1 1̄

1̄ 1 1̄ 0

1̄ 0 1 2̄

Scaling factor:-1/τ2 = −0.3820...

(τ = 1+√

5

2= 1.618...)

. – p.18/35

Page 26: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

Linear Scaling

Pentagonal Case

(sgk1c)

x

y

A

P

Q

B

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

-1 -1 -1 -1

-2 0 -1 -1

1 -1 1 0

0 1 -1 1

-1 -1 0 -2

2 1 1 2

1 -1 2 -1

1 2 0 3

-3 -2 -1 -3

3 0 1 2

-2 1 -2 -1

-1 2 -1 1

-1 -1 1 -2

2 1 0 3

-3 -1 -2 -3

3 0 2 1

Pentagonal Case

(sgk1d)

τ

τ

1 x

y

A

P

Q

B

1 0 0 0

0 0 0 1

-1 -1 -1 -1

-2 0 -1 -1

1 -1 1 0

0 1 -1 1

-1 -1 0 -2

2 1 1 2

1 2 0 3

-3 -2 -1 -3

3 0 1 2

-2 1 -2 -1

-1 -1 1 -2

2 1 0 3

-3 -1 -2 -3

3 0 2 1

Linear Scaling

Scaling transformation:Yλ(x, y) = (x, λy)

Scaling matrix:

0 1 1̄ 1

1 1̄ 2 1̄

1̄ 2 1̄ 1

1 1̄ 1 0

Scaling factor:1/τ3 = 0.2361...

(τ = 1+√

5

2= 1.618...)

Linear Scaling

The linear scaling Y1/τ3

appears alongthe pentagonal edgewith the scaling ratios

τ : 1 : τ

. – p.19/35

Page 27: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

Linear Scaling

Pentagonal Case

(sgk1d)

τ

τ

1 x

y

A

P

Q

B

1 0 0 0

0 0 0 1

-1 -1 -1 -1

-2 0 -1 -1

1 -1 1 0

0 1 -1 1

-1 -1 0 -2

2 1 1 2

1 2 0 3

-3 -2 -1 -3

3 0 1 2

-2 1 -2 -1

-1 -1 1 -2

2 1 0 3

-3 -1 -2 -3

3 0 2 1

Linear Scaling

Scaling transformation:Yλ(x, y) = (x, λy)

Scaling matrix:

0 1 1̄ 1

1 1̄ 2 1̄

1̄ 2 1̄ 1

1 1̄ 1 0

Scaling factor:1/τ3 = 0.2361...

(τ = 1+√

5

2= 1.618...)

Linear Scaling

The linear scaling Y1/τ3

appears alongthe pentagonal edgewith the scaling ratios

τ : 1 : τ

. – p.19/35

Page 28: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

Cyclophylin A

Cyclophilin A - Cyclosporin A Decamer Complex

Ribbond diagram viewed down the five-fold axis

Ke et al., Current Biology Structure, 2 (1994) 33-44. – p.20/35

Page 29: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

Cyclo. Tau

Cyclophilin A (Decamer)

Ke and Mayrose (PDB 2rma)

τ = 1.61803... the Golden Ratio

GLY(14)

τ 1 τ

. – p.21/35

Page 30: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

Cyclo. Tau

Cyclophilin A (Pentamer)

Pentamer: Pentagrammal scaled form

GLY(14)

τ 1 τ

. – p.21/35

Page 31: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

Cyclo. Iso-decagonal

Cyclophilin: 3D Form Lattice

Isometric decagonal lattice: r0 = a = c

(cy21a)

τ

τ

1 x

y

C

P

Q

x

z

4r°

2r°

. – p.22/35

Page 32: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

DppA Iso-pentagonal

D-aminopeptidase: 3D Form LatticeIsometric pentagonal lattice: Pentamer: τ3r0 = a = c Decamer: τ4r0 = a = c

x

yτ τ1

a

Zn ion

x

z

τ4r°

τ3r°

Remaut et al., Nature Struct. Biol. 8 (2001) 674-678 (PDB 1hi9) . – p.23/35

Page 33: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

B-DNA

Side and Axial Views of B-DNA

S. Arnott and R. Chandrasekaran (1981)

Decagonal right-handed helix 10122 . – p.24/35

Page 34: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

TAu B-DNA

The Golden Ratio in B-DNA(AGTCAGTCAG) Courtesy Maria van Dongen, Nijmegen (τ = 1.61803...)

(asca6a)

Projected P-atomic positions

G10C T6S

C1S A5C

A1C

C5S

G7S

A9C

G6C

T10S

T2S

C4C

A8S

C8C

G2C

A4S

T7C

C9S

G3S

T3C

τ 1 τ

. – p.25/35

Page 35: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

B-DNA: Polygr. scal.

Star Decagons

Schäfli symbol { P/Q }

{ 10/2 }

λ (10/2) = 0.8506...

{ 10/3 }

λ (10/3) = 0.6180...

{ 10/4 }

λ (10/4) = 0.3249...

Polygrammal scalings with scaling factor λ(P/Q)

. – p.26/35

Page 36: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

B-DNA:{10/2},{10/3}

Polygrammal Scaling in B-DNA

Star decagons {10/3} and {10/2}

Backbone Region

Code-Dependent Region

Intermediate Region

. – p.27/35

Page 37: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

B-DNA 3D form

B-DNA (GC): 3D Form Lattice

Envelope: re Rise unit: p0 = re/2τ

(GC43f)

r e /2τp 0

r e

3D form lattice: 1

2-decagonal . – p.28/35

Page 38: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

evidence

Crystal’s evidence

. – p.29/35

Page 39: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

nt.hex.lattices

ca-Distribution of Hexagonal Crystals

Crystal Data Determinative TablesVol.2, Inorganic compounds, Donnay & Ondik, 1973

(24.000 entries)

B. Constant and P.J. Shlichta, Acta Cryst. A59 (2003) 281-282. – p.30/35

Page 40: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

nt.tetr.lattices

ca-Distribution of Hexagonal Crystals

32

1√

3√

2

2

8√

3

6

15√

22

8√

33

8√

3

. – p.30/35

Page 41: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

nt.tetr.lattices

ca-Distribution of Tetragonal Crystals

Crystal Data Determinative TablesVol.2, Inorganic compounds, Donnay & Ondik, 1973

(24.000 entries)

B. Constant and P.J. Shlichta, Acta Cryst. A59 (2003) 281-282 . – p.31/35

Page 42: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

nt.tetr.lattices

ca-Distribution of Tetragonal Crystals

12√

21√

31√

2

32

32√

2

3√

2

2

5√

22(?)

3√

2

6 2√

2√

107√

23

. – p.31/35

Page 43: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

Zn-Mg-Sn sqrt(8/3)

Z-Phase Zn6Mg3Sm:√

3

8-Hexagonal (P63/mmc)

Zone F: [211] ∼ [101̄1] Zone G: [212] ∼ [101̄2]

Singh, Abe and Tsai, Phil.Mag. Lett. 77 (1998) 95-103

Ranganathan, Singh and Tsai, Phil. Mag. Lett. 82 (2002) 13-19

. – p.32/35

Page 44: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

Latt.-Sublatt. sqrt(3/2)

Frank’s ’Cubic’ Hexagonal Lattice: c

a=

3

2

3D Hexagonal lattice projection of a 4D Cubic latticeHexagonal basis: a1, a2, a3

Sublattice basis: b1 = [0 3 0], b2 = [2̄ 1̄ 2], b3 = [2 1 1]

Metric tensors:

g(a) =

1 1̄

20

21 0

0 0 3

2

g(b) =

1 0 0

0 1 0

0 0 1

2

Transformation matrix: Sba =

0 2̄ 2

3 1̄ 1

0 2 1

Lattice-Sublattice transformation: S̃ba g(a) Sba = 9 g(b)

3

2-hexagonal

Sba

−→ 1√

2-tetragonal (Scaling factor 3)

F.C. Frank, Acta Cryst. 18 (1965) 862-866. – p.33/35

Page 45: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

Conclusions

Conclusions

The crystallographic laws are amazingly general

One learns crystallography from single molecules also

Crystallographic scaling relations between outer andinner envelope of axial bio-macromolecules

Challenging relevance of integral lattices (multimetrical)

To understand the physics of crystallographic scaling isnow a priority

. – p.34/35

Page 46: Molecules in Wonderland of CrystallographyOverview Molecules in Wonderland of Crystallography Dedicated to the 70th anniversary of Peter Wyder, Emeritus 1. Introduction 2. Growth form

mignon

Fig. 5

4 -4 -4

4 4 -4

-4 4 -4

-4 -4 -4

4 -4 4

4 4 4

-4 4 4

-4 -4 4

4 -4 -1

4 4 -1

-4 4 -1

-4 -4 -1

4 -4 1

4 4 -1

-4 4 1

-4 -4 1

1 -1 -41 1 -4-1 1 -4

-1 -1 -4

1 -1 41 1 4-1 1 4

-1 -1 4

Kennst du das Land,

Wo Moleküle die Kristalle gleichen,

Kennst du es wohl?

Dahin! Dahin,

Geht unser Weg!

. – p.35/35