molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and...

35
S1 Electronic Supplementary Information (ESI) for Long-chain aliphatic polyesters from plant oils for injection molding, film extrusion and electrospinning Florian Stempfle , a Benjamin S. Ritter , b,c Rolf Mülhaupt*, b,c and Stefan Mecking* a Both authors contributed equally to this work. a Chair of Chemical Materials Science, University of Konstanz, Department of Chemistry, Universitätsstraße 10, 78457 Konstanz, Germany. E-mail: [email protected]; Fax: +49 7531 88-5152; Tel: +49 7531 88-2593 b Freiburg Materials Research Center (FMF), Stefan-Meier-Straße 21, D-79104 Freiburg, Germany. E-mail: [email protected]; Fax: +49 761 203-6319; Tel: +49 761 203-6273 c Institute for Macromolecular Chemistry of the University of Freiburg, Stefan-Meier-Straße 31, D-79104 Freiburg, Germany Table of content Dimethyl-1,19-nonadecanedioate S2 Dimethyl-1,23-tricosanedioate S3 Poly[1,19-nonadecadiyl-1,19-nonadecanedioate] (PE-19.19) S4 Poly[1,23-tricosadiyl-1,23-tricosanedioate] (PE-23.23) S5 Rheological properties S6 Tensile properties S9 Electrospinning S10 Dynamic mechanical analysis S11 Polyester compounds S12 DMA-analyses of PE-19.19 polymer compound S13 DSC-analyses of PE-19.19 polymer compound S18 DMA-analyses of PE-23.23 polymer compound S23 DSC-analyses of PE-23.23 polymer compound S28 SEM images of the polymer compounds S33 Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2014

Transcript of molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and...

Page 1: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S1

Electronic Supplementary Information (ESI)

for

Long-chain aliphatic polyesters from plant oils for injection

molding, film extrusion and electrospinning

Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and Stefan Mecking*a

† Both authors contributed equally to this work.a Chair of Chemical Materials Science, University of Konstanz, Department of Chemistry, Universitätsstraße 10, 78457

Konstanz, Germany. E-mail: [email protected]; Fax: +49 7531 88-5152; Tel: +49 7531 88-2593b Freiburg Materials Research Center (FMF), Stefan-Meier-Straße 21, D-79104 Freiburg, Germany. E-mail:

[email protected]; Fax: +49 761 203-6319; Tel: +49 761 203-6273c Institute for Macromolecular Chemistry of the University of Freiburg, Stefan-Meier-Straße 31, D-79104 Freiburg, Germany

Table of content

Dimethyl-1,19-nonadecanedioate S2

Dimethyl-1,23-tricosanedioate S3

Poly[1,19-nonadecadiyl-1,19-nonadecanedioate] (PE-19.19) S4

Poly[1,23-tricosadiyl-1,23-tricosanedioate] (PE-23.23) S5

Rheological properties S6

Tensile properties S9

Electrospinning S10

Dynamic mechanical analysis S11

Polyester compounds S12

DMA-analyses of PE-19.19 polymer compound S13

DSC-analyses of PE-19.19 polymer compound S18

DMA-analyses of PE-23.23 polymer compound S23

DSC-analyses of PE-23.23 polymer compound S28

SEM images of the polymer compounds S33

Electronic Supplementary Material (ESI) for Green Chemistry.This journal is © The Royal Society of Chemistry 2014

Page 2: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S2

Dimethyl-1,19-nonadecanedioate

O O

O O11

3 3

4 4

5

22

1H NMR (CDCl3, 25 °C, 400 MHz): δ 3.66 (s, 6H, H-1), 2.30 (t, 3JH-H = 7.6 Hz, 4H, H-3), 1.67-1.56 (m, 4H, H-4), 1.35-1.20

(m, 26H, H-5).13C NMR (CDCl3, 25 °C, 101 MHz): δ 174.48 (s, C-2), 51.56 (s, C-1), 34.28 (s, C-3), 30.16-29.15 (C-5), 25.12 (s, C-4).

Figure S1: Gas chromatogram (1.0 min isothermal at 90 °C, 30 K min-1 to 280 °C, 8 min) isothermal of pure dimethyl-1,19-nonadecanedioate.

Page 3: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S3

Dimethyl-1,23-tricosanedioate

O

O O

O11

2 233

44

5

1H NMR (CDCl3, 25 °C, 400 MHz) δ 3.66 (s, 6H, H-1), 2.29 (t, 3JH-H = 7.6 Hz, 4H, H-3), 1.68-1.58 (m, 4H, H-4), 1.35-1.18

(m, 34H, H-5).13C NMR (CDCl3, 25 °C, 101 MHz): δ 174.45 (s, C-2), 51.55 (s, C-1), 34.27 (s, C-3), 30.18-29.13 (C-5), 25.12 (s, C-4).

Figure S2: Gas chromatogram (1.0 min isothermal at 90 °C, 30 K min-1 to 280 °C, 8 min) of pure dimethyl-1,23-tricosanedioate.

Page 4: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S4

Poly[1,19-nonadecadiyl-1,19-nonadecanedioate] (PE-19.19)

Figure S3: GPC trace (160 °C in 1,2,4-trichlorobenzene, vs. linear polyethylene standards) of PE-19.19.

Figure S4: DSC trace (10 K min-1 heating and cooling rate, respectively; data reported are from second heating cycles) of PE-19.19.

Page 5: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S5

Poly[1,23-tricosadiyl-1,23-tricosanedioate] (PE-23.23)

Figure S5: GPC trace (160 °C in 1,2,4-trichlorobenzene, vs. linear polyethylene standards) of PE-23.23.

Figure S6: DSC trace (10 K min-1 heating and cooling rate, respectively; data reported are from second heating cycles) of PE-19.19.

Page 6: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S6

Rheological properties

Figure S7: Isothermals of G` and G`` for rheological study of PE-19.19 (gap = 0.5 mm).

In order to obtain the master curves the isotherms were shifted only in horizontal dimension (bT = 1) at a reference

temperature of T0 = 150 °C using the following aT-values:

Table S1: aT-values of PE-19.19.

entry temperature [K] aT-value

1 383.1 2.727

2 393.1 2.075

3 403.1 1.607

4 413.1 1.266

5 423.1 1.000

6 433.1 0.803

7 443.1 0.655

8 453.1 0.522

Figure S8: temperature dependence of the aT-values measured from PE-19.19.

Page 7: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S7

Figure S9: Isothermals of G` and G`` for rheological study of PE-23.23 (gap = 0.5 mm).

In order to obtain the master curves the isotherms were shifted only in horizontal dimension (bT = 1) at a reference

temperature of T0 = 150 °C using the following aT-values:

Table S2: aT-values of PE-23.23.

entry temperature [K] aT-value

1 383.1 2.650

2 393.1 2.035

3 403.1 1.581

4 413.1 1.251

5 423.1 1.000

6 433.1 0.812

7 443.1 0.660

8 453.1 0.544

9 463.1 0.454

Figure S10: temperature dependence of the aT-values measured from PE-23.23.

Page 8: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S8

Figure S11: Master curves of G` and G`` for PE-19.19 (from measurements at 110, 120, 130, 140, 150, 160, 180 and 190 °C). Shifting temperature is 150 °C.

Figure S12: Master curves of G` and G`` for PE-23.23 (from measurements at 110, 120, 130, 140, 150, 160 and 180 °C). Shifting temperature is 150 °C.

To determine zero-shear viscosity from experimental data, Carreau-Yasuda1 equation is used:

𝜂` = 𝜂0

(1 + 𝑎𝜔𝛼)𝛽

Were η´ stands for complex viscosity, ηo is zero-shear viscosity, with ω for frequency and a, α and β are fitting parameters.

The values of parameters in Carreau-Yasuda equation for the studied samples are reported in Table S3.

Table S3: Fitted parameters for Carreau-Yasuda equation.

Page 9: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S9

a α β η0 [Pa s]

PE-19.19 355 3092 198 3717 ± 26

PE-23.23 979 3955 1189 4032 ± 24

Tensile properties

Figure S13: Left: Stress-strain curves (constant drawing rate of 50 mm min-1, room temperature) of PE-23.23. Right: Image of test bar for tensile testing before and after strain experiment.

Page 10: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S10

Electrospinning

Figure S14: SEM images of electrospun PE19.19 fibers.

Figure S15: SEM images of electrospun PE23.23 fibers.

Page 11: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S11

Dynamic mechanical analysis

Dynamic mechanical analyses (DMA, at a frequency of 1 Hz) of PE-23.23 exhibit a glass transitiona around -27 °C; the

second relaxation phenomenon at around -130 °C can be ascribed to the motion of the methylene sequences of the polyester

main-chain (Figure S16).

Figure S16: Dynamic mechanical analysis (deformation of 0.1 % and frequency of 1Hz) of PE-23.23.

a Glass transition temperatures (Tg) were determined from maximum in loss modulus (G``).

Page 12: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S12

Polyester compounds

Long-chain polyesters (PE-19.19 and PE-23.23) were blended with various types of commercially available thermoplastics

such as linear low density polyethylene (LLDPE, Affinity 8200G) and high density polyethylene (HDPE, Hostalen GC

7260), as well as a thermoplastic elastomer (SEBS, Kraton G1643 MS) and a biodegradable aliphatic-aromatic polyester

(Ecoflex F Blend C1200, BASF). Thermal properties of these blends were determined by means of both DMA and DSC

measurements. The observation of the thermal transitions of the individual components (and also the moduli) support that the

blended polymer combinations studied are not miscible (c.f. Table S4).

Table S4: Thermo-mechanical properties of different polymer blends.

Tga /

(°C)Tg

b / (°C)

Tma /

(°C)Tc

a / (°C)

G´ (RT) b / (Pa)

G´´(RT) b / (Pa)

PE-19.19 (neat) - -37 102 83 1100 84

PE-23.23 (neat) - -27 107 86 880 60

Affinity 8200G (neat) - -44 65 45 48 2

PE-19.19/Affinity 8200G (15:85 wt.) - -45 68/103 44/90 48 2

PE-23.23/Affinity 8200G (15:85 wt.) 66/106 46/90 34 2

Kraton G1643MS (neat) -39 -36 - - 38 2

PE-19.19/Kraton G1643MS (15:85 wt.) -44 -35 100 87 25 2

PE-23.23/Kraton G1643MS (15:85 wt.) -38 106 54/90 36 3

Ecoflex F Blend C1200 (neat) -25 -23 124 70 455 25

PE-19.19/Ecoflex F Blend C1200 (15:85 wt.) -34 -25 102 88 106 6

PE-23.23/Ecoflex F Blend C1200 (15:85 wt.) - 106 79/92 137 8

Hostalen GC 7260 (neat) - - 137 117 1770 130

PE-19.19/Hostalen GC 7260 (15:85 wt.) - 40 100/134 87/115 1135 113

PE-23.23/Hostalen GC 7260 (15:85 wt.) 106/136 93/116 1470 100

a Determined by DSC with a heating/cooling rate of 15 K min−1. b Determined by DMA (1 Hz, 0.1 % deformation).

Page 13: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S13

DMA-analyses of PE-19.19 polymer compound

-50 -25 0 25 50 75

0

500

1000

1500

2000

2500

3000

3500

4000

4500

G´ G´´ tan

Temperature [°C]

G´;

G´´

[MP

a]

0.0

0.1

0.2

0.3

tan

Figure S17: Dynamic mechanical analysis (deformation of 0.1 % and frequency of 1Hz) of PE-19.19 filled with 25 wt.% talc.

-25 0 25 50 75

0

500

1000

1500

2000

2500

3000

3500

4000

G´ G´´ tan

Temperature [°C]

G´;

G´´

[MP

a]

0,1

0,2

0,3

tan

Figure S18: Dynamic mechanical analysis (deformation of 0.1 % and frequency of 1Hz) of PE-19.19 filled with 45 wt.% talc.

Page 14: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S14

-50 -25 0 25 50

0

250

500

750

1000

1250

1500

G´ G´´tan

Temperature [°C]

G´;

G´´

[MP

a]

0,0

0,1

0,2

0,3

tan

Figure S19: Dynamic mechanical analysis (deformation of 0.1 % and frequency of 1Hz) of 15 wt. % PE-19.19 in Affinity 8200G (LLDPE).

-50 -25 0 25 50

0

250

500

750

G´ G´´ tan

Temperature [°C]

G´;

G´´

[MP

a]

0,0

0,1

0,2

0,3ta

n

Figure S20: Dynamic mechanical analysis (deformation of 0.1 % and frequency of 1Hz) of 5 wt. % PE-19.19 in Affinity 8200G (LLDPE).

Page 15: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S15

-50 0 50

0

250

500

750

1000

1250

1500

G´ G´´ tan

Temperature [°C]

G´;

G´´

[MP

a]

0,0

0,2

0,4

0,6

0,8

tan

Figure S21: Dynamic mechanical analysis (deformation of 0.1 % and frequency of 1Hz) of 15 wt. % PE-19.19 in Kraton G1643 MS (SEBS).

-50 -25 0 25 50

0

250

500

750

1000

1250

1500

G´ G´´ tan

Temperature [°C]

G´;

G´´

[MP

a]

0,0

0,2

0,4

0,6ta

n

Figure S22: Dynamic mechanical analysis (deformation of 0.1 % and frequency of 1Hz) of 5 wt. % PE-19.19 in Kraton G1643 MS (SEBS).

Page 16: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S16

-50 -25 0 25 50 75 100

0

500

1000

1500

2000

2500

3000

G´ G´´tan

Temperature [°C]

G´;

G´´

[MP

a]

0,0

0,1

0,2

0,3

tan

Figure S23: Dynamic mechanical analysis (deformation of 0.1 % and frequency of 1Hz) of 15 wt. % PE-19.19 in Ecoflex F Blend C1200.

-50 -25 0 25 50 75 100

0

500

1000

1500

2000

2500

3000

G´ G´´ tan

Temperature [°C]

G´;

G´´

[MP

a]

0,0

0,1

0,2

0,3ta

n

Figure S24: Dynamic mechanical analysis (deformation of 0.1 % and frequency of 1Hz) of 5 wt. % PE-19.19 in Ecoflex F Blend C1200.

Page 17: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S17

-50 -25 0 25 50 75 100

0

500

1000

1500

2000

2500

3000

3500

G´ G´´ tan

Temperature [°C]

G´;

G´´

[MP

a]

0,0

0,2

0,4

tan

Figure S25: Dynamic mechanical analysis (deformation of 0.1 % and frequency of 1Hz) of 25 wt. % PE-19.19 in Hostalen GC 7260 (HDPE).

Page 18: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S18

DSC-analyses of PE-19.19 polymer compound

-50 0 50 100-8

-6

-4

-2

0

2

4

Hea

t Flo

w [W

/g]

Temperature [°C]

PE-19.19_talc_25

cooling

Tc = 87 °CHc = - 86 J g-1

Tm = 108 °CHm = 92 J g-1

heating

exo

Figure S26: DSC analysis (15 K min-1 heating and cooling rate, respectively; data reported are from second heating cycles) of PE-19.19 filled with 25 wt.% talc.

-40 -20 0 20 40 60 80 100 120 140-6

-4

-2

0

2

4

Hea

t Flo

w [W

/g]

Temperature [°C]

PE-19.19_talc_45

cooling

Tc = 88 °CHc = - 74 J g-1

Tm = 107 °CHm = 75 J g-1

heating

exo

Figure S27: DSC analysis (15 K min-1 heating and cooling rate, respectively; data reported are from second heating cycles) of PE-19.19 filled with 45 wt.% talc.

Page 19: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S19

-50 -25 0 25 50 75 100 125-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

cooling

Tc = 44 °CHc = - 10 J g-1

Tc = 90 °CHc = - 10 J g-1

Tm = 68 °CHm = 4 J g-1

Hea

t Flo

w [W

/g]

Temperature [°C]

PE-19.19_Affinity_85

Tm = 103 °CHm = 8 J g-1

heating

exo

Figure S28: DSC analysis (15 K min-1 heating and cooling rate, respectively; data reported are from second heating cycles) of 15 wt. % PE-19.19 in Affinity 8200G (LLDPE).

-50 -25 0 25 50 75 100 125-4

-3

-2

-1

0

1

2

3

4

Hea

t Flo

w [W

/g]

Temperature [°C]

PE-19.19_Affinity_95

cooling

Tc = 43 °CHc = - 12 J g-1

Tc = 86 °CHc = - 7 J g-1

Tm = 66 °CHm = 5 J g-1

Tm = 100 °CHm = 6 J g-1

heating

exo

Figure S29: DSC analysis (15 K min-1 heating and cooling rate, respectively; data reported are from second heating cycles) of 5 wt. % PE-19.19 in Affinity 8200G (LLDPE).

Page 20: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S20

-50 0 50 100-10

-8

-6

-4

-2

0

2

4

Hea

t Flo

w [W

/g]

Temperature [°C]

PE-19.19_SEBS_85

cooling

Tc = 87 °CHc = - 9 J g-1

Tm = -44 °C

Tm = 101 °CHm = 9 J g-1

heating

exo

Figure S30: DSC analysis (15 K min-1 heating and cooling rate, respectively; data reported are from second heating cycles) of 15 wt. % PE-19.19 in Kraton G1643 MS (SEBS).

-50 -25 0 25 50 75 100 125-8

-6

-4

-2

0

2

4

Hea

t Flo

w [W

/g]

Temperature [°C]

PE-19.19_SEBS_95 cooling

Tc = 48 °CHc = - 2 J g-1

Tc = 86 °CHc = - 3 J g-1

Tg = -46 °C

Tm = 100 °CHm = 5 J g-1

heating

exo

Figure S31: DSC analysis (15 K min-1 heating and cooling rate, respectively; data reported are from second heating cycles) of 5 wt. % PE-19.19 in Kraton G1643 MS (SEBS).

Page 21: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S21

-50 -25 0 25 50 75 100 125-5

-4

-3

-2

-1

0

1

2

3

4

5

Hea

t Flo

w [W

/g]

Temperature [°C]

PE-19.19_Ecoflex_85

cooling

Tc = 88 °CHc = - 14 J g-1

Tg = -34 °C

Tm = 102 °CHm = 11 J g-1

heating

exo

Figure S32: DSC analysis (15 K min-1 heating and cooling rate, respectively; data reported are from second heating cycles) of 15 wt. % PE-19.19 in Ecoflex.

-50 0 50 100-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

Hea

t Flo

w [W

/g]

Temperature [°C]

PE-19.19_Ecoflex_95

cooling

Tc = 90 °CHc = - 18 J g-1

Tg = -34 °C

Tm = 101 °CHm = 1 J g-1

heating

exo

Figure S33: DSC analysis (15 K min-1 heating and cooling rate, respectively; data reported are from second heating cycles) of 5 wt. % PE-19.19 in Ecoflex F Blend C1200.

Page 22: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S22

-50 0 50 100 150-10

-8

-6

-4

-2

0

2

4

Hea

t Flo

w [W

/g]

Temperature [°C]

PE-19.19_Hostalen_75

cooling

Tc = 87 °CHc = - 18 J g-1

Tc = 115 °CHc = - 132 J g-1

Tm = 100 °CHm = 19 J g-1

Tm = 134 °CHm = 138 J g-1

heating

exo

Figure S34: DSC analysis (15 K min-1 heating and cooling rate, respectively; data reported are from second heating cycles) of 25 wt. % PE-19.19 in Hostalen GC 7260 (HDPE).

Page 23: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S23

DMA-analyses of PE-23.23 polymer compounds

-25 0 25 50 75 1000

500

1000

1500

2000

2500

3000

3500

4000

G´ G´´ tan

Temperature [°C]

G´;

G´´

[MP

a]

0,0

0,1

0,2

0,3

tan

Figure S35: Dynamic mechanical analysis (deformation of 0.1 % and frequency of 1Hz) of PE-23.23 filled with 25 wt.% talc.

0 25 50 75 100

0

500

1000

1500

2000

2500

3000

3500

G´ G´´ tan

Temperature [°C]

G´;

G´´

[MP

a]

0,0

0,2

0,4ta

n

Figure S36: Dynamic mechanical analysis (deformation of 0.1 % and frequency of 1Hz) of PE-23.23 filled with 45 wt.% talc.

Page 24: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S24

-50 -25 0 25 50

0

250

500

750

1000

1250

1500

G´ G´´ tan

Temperature [°C]

G´;

G´´

[MP

a]

0,0

0,1

0,2

0,3

tan

Figure S37: Dynamic mechanical analysis (deformation of 0.1 % and frequency of 1Hz) of 15 wt. % PE-23.23 in Affinity 8200G (LLDPE).

-50 -25 0 25 50

0

250

500

750

1000

1250

1500

G´ G´´ tan

Temperature [°C]

G´;

G´´

[MP

a]

0,0

0,1

0,2

0,3ta

n

Figure S38: Dynamic mechanical analysis (deformation of 0.1 % and frequency of 1Hz) of 5 wt. % PE-23.23 in Affinity 8200G (LLDPE).

Page 25: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S25

-50 -25 0 25 50

0

500

1000

1500

2000

2500

G´ G´´ tan

Temperature [°C]

G´;

G´´

[MP

a]

0,0

0,2

0,4

0,6

0,8

tan

Figure S39: Dynamic mechanical analysis (deformation of 0.1 % and frequency of 1Hz) of 15 wt. % PE-23.23 in Kraton G1643 MS (SEBS).

-50 0 50

0

1000

2000

G´ G´´ tan

Temperature [°C]

G´;

G´´

[MP

a]

0,0

0,2

0,4

0,6

0,8

tan

Figure S40: Dynamic mechanical analysis (deformation of 0.1 % and frequency of 1Hz) of 5 wt. % PE-23.23 in Kraton G1643 MS (SEBS).

Page 26: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S26

-50 -25 0 25 50 75

0

500

1000

1500

2000

G´ G´´ tan

Temperature [°C]

G´;

G´´

[MP

a]

0,0

0,1

0,2

0,3

tan

Figure S41: Dynamic mechanical analysis (deformation of 0.1 % and frequency of 1Hz) of 15 wt. % PE-23.23 in Ecoflex F Blend C1200.

-50 -25 0 25 50 75

0

500

1000

1500

2000

2500

G´ G´´ tan

Temperature [°C]

G´;

G´´

[MP

a]

0,0

0,1

0,2

0,3ta

n

Figure S42: Dynamic mechanical analysis (deformation of 0.1 % and frequency of 1Hz) of 5 wt. % PE-23.23 in Ecoflex F Blend C1200.

Page 27: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S27

-75 -50 -25 0 25 50 75 100

0

500

1000

1500

2000

2500

3000

G´ G´´ tan

Temperature [°C]

G´;

G´´

[MP

a]

0,0

0,2

0,4

0,6

tan

Figure S43: Dynamic mechanical analysis (deformation of 0.1 % and frequency of 1Hz) of 15 wt. % PE-23.23 in Hostalen GC 7260 (HDPE).

Page 28: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S28

DSC-analyses of PE-23.23 polymer compound

-50 0 50 100 150 200-6

-4

-2

0

2

4

Hea

t Flo

w [W

/g]

Temperature [°C]

PE-23.23_talc_25

cooling

Tc = 91 °CHc = - 104 J g-1

Tm = 108 °CHm = 122 J g-1

heating

exo

Figure S44: DSC analysis (15 K min-1 heating and cooling rate, respectively; data reported are from second heating cycles) of PE-23.23 filled with 25 wt.% talc.

0 50 100 150 200-8

-6

-4

-2

0

2

4

Hea

t Flo

w [W

/g]

Temperature [°C]

PE-23.23_talc_45

cooling

Tc = 94 °CHc = - 86 J g-1

Tm = 108 °CHm = 93 J g-1

heating

exo

Figure S45: DSC analysis (15 K min-1 heating and cooling rate, respectively; data reported are from second heating cycles) of PE-23.23 filled with 45 wt.% talc.

Page 29: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S29

-50 0 50 100 150 200-8

-6

-4

-2

0

2

4

Hea

t Flo

w [W

/g]

Temperature [°C]

PE-23.23_Affinity_85

Tm = 66 °CHm = 18 J g-1

Tc = 46 °CHc = - 10 J g-1

cooling

Tc = 90 °CHc = - 9 J g-1

Tm = 106 °CHm = 16 J g-1

heating

exo

Figure S46: DSC analysis (15 K min-1 heating and cooling rate, respectively; data reported are from second heating cycles) of 15 wt. % PE-23.23in Affinity 8200G (LLDPE).

0 50 100 150 200-12

-10

-8

-6

-4

-2

0

2

4

6

Hea

t Flo

w [W

/g]

Temperature [°C}

PE-23.23_Affinity_95

Tm = 66 °CHm = 15 J g-1

Tc = 47 °CHc = - 10 J g-1

cooling

Tm = 104 °CHm = 5 J g-1

heating

exo

Figure S47: DSC analysis (15 K min-1 heating and cooling rate, respectively; data reported are from second heating cycles) of 5 wt. % PE-23.23 in Affinity 8200G (LLDPE).

Page 30: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S30

-50 -25 0 25 50 75 100 125 150 175 200-8

-6

-4

-2

0

2

4

Hea

t Flo

w [W

/g]

Temperature [°C]

PE-23.23_SEBS_85

Tg = -38 °C

Tc = 54 °CHc = - 1 J g-1

cooling

Tc = 90 °CHc = - 10 J g-1

Tm = 106 °CHm = 17 J g-1

heating

exo

Figure S48: DSC analysis (15 K min-1 heating and cooling rate, respectively; data reported are from second heating cycles) of 15 wt. % PE-23.23 in Kraton G1643 MS (SEBS).

-50 -25 0 25 50 75 100 125 150 175 200-8

-6

-4

-2

0

2

4

6

Hea

t Flo

w [W

/g]

Temperature [°C]

PE-23.23_SEBS_95

Tg = -37 °C

Tc = 53 °CHc = - 2 J g-1

cooling

Tm = 105 °CHm = 4 J g-1

heating

exo

Figure S49: DSC analysis (15 K min-1 heating and cooling rate, respectively; data reported are from second heating cycles) of 5 wt. % PE-23.23 in Kraton G1643 MS (SEBS).

Page 31: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S31

0 50 100 150 200-8

-6

-4

-2

0

2

4

Hea

t Flo

w [W

/g]

Temperature [°C]

PE-23.23_Ecoflex_85

cooling

Tc = 79/ 92 °CHc = - 130 J g-1

Tm = 106 °CHm = 16 J g-1

heating

exo

Figure S50: DSC analysis (15 K min-1 heating and cooling rate, respectively; data reported are from second heating cycles) of 15 wt. % PE-23.23 in Ecoflex F Blend C1200.

0 50 100 150 200-4

-2

0

2

4

Hea

t Flo

w [W

/g]

Temperature [°C]

PE-23.23_Ecoflex_95 cooling

Tc = 79/91 °CHc = - 22 J g-1

Tm = 105 °CHm = 5 J g-1

heating

exo

Figure S51: DSC analysis (15 K min-1 heating and cooling rate, respectively; data reported are from second heating cycles) of 5 wt. % PE-23.23 in Ecoflex F Blend C1200.

Page 32: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S32

-50 0 50 100 150 200-8

-6

-4

-2

0

2

4

6

Tm = 106 °CHm = 9 J g-1

Tc = 93 °CHc = - 9 J g-1

Hea

t Flo

w [g

/W]

Temperature [°C]

PE-23.23_Hostalen_85

cooling

Tc = 116 °CHc = - 158 J g-1

Tm = 136 °CHm = 162 J g-1

heating

exo

Figure S52: DSC analysis (15 K min-1 heating and cooling rate, respectively; data reported are from second heating cycles) of 15 wt. % PE-23.23 in Hostalen GC 7260 (HDPE).

Page 33: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S33

SEM images of the polymer compounds

Figure S53: SEM images of PE-19.19 filled with 45 wt.% talc.

Figure S54: SEM images of PE-23.23 filled with 45 wt.% talc.

Figure S55: SEM images of 25 wt. % PE-19.19 in Hostalen GC 7260 (HDPE).

Page 34: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S34

Figure S56: SEM images of 15 wt. % PE-23.23 in Hostalen GC 7260 (HDPE).

Figure S57: SEM images of 15 wt. % PE-23.23 in Affinity 8200G (LLDPE).

Page 35: molding, film extrusion and electrospinning for · 2014-02-24 · molding, film extrusion and electrospinning Florian Stempfle†,a Benjamin S. Ritter†,b,c Rolf Mülhaupt*,b,c and

S35

Figure S58: SEM images of 15 wt. % PE-23.23 in Kraton G1643 MS (SEBS).

Figure S59: SEM images of 15 wt. % PE-23.23 in Ecoflex F Blend C1200.

1 J. R. Prakash. J. Rheol.,2002, 46, 1353.