MIXSEL - Nanotera Annual 2013

download MIXSEL - Nanotera Annual 2013

of 22

description

Semiconductor lasers are ideally suited for mass production and widespread applications, because they are based on a wafer-scale technology with a high level of integration. Not surprisingly, the first lasers entering virtually every household were semiconductor lasers in compact disk players. A new ultrafast semiconductor laser concept has been introduced by Prof. Keller, which is power scalable, suitable for pulse repetition rate scaling in the 10 to 100 GHz regime, supports both optical and electrical pumping and allows for wafer-scale fabrication. This class of devices is referred to as the modelocked integrated external-cavity surface emitting laser (MIXSEL). The next step towards even lower-cost and more compact ultrafast lasers will be electrical pumping with both pico- and femtosecond pulses. This would result in devices ideally suited for many applications such as telecommunications, optical clocking, frequency metrology, high resolution nonlinear multiphoton microscopy, optical coherence tomography, laser display . anywhere where the current ultrafast laser technology is considered to be too bulky or expensive. The project aims to demonstrate optically and electrically pumped MIXSELs in both the pico- and femtosecond regime. Picosecond MIXSELs are ideally suited for clocking applications whereas femtosecond MIXSELs are required for continuum generation and many biomedical applications. For both cases, average powers above 100 mW with electrical pumping and above 500 mW with optical pumping should be reached, which represent significant advances of ultrafast MIXSELs.

Transcript of MIXSEL - Nanotera Annual 2013

Masterslide - Version 02/05/02

Vertical integration of ultrafast semiconductor lasers for wafer-scale mass production

Prof. Ursula Keller (PI)Physics Department, ETH ZurichProf. Eli Kapon, Dr. Alexei SirbuInstitut de Photonique et dElectronique Quantiques, EPFL, LausanneProf. Thomas SdmeyerInstitut de Physique, Universit de NeuchtelProf. Bernd WitzigmannComputational Electronics and Photonics, University of Kassel (previously ETH Zurich)

nano-tera.ch ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 20131

Ultrafast lasers generate coherent light pulses with pico- or femtosecond durationobserve and use fast dynamics understand chemical reaction dynamics fast communication interconnects

optical clockingaccess ultrashort time scales

1 ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 2013Add pulse train2

Ultrafast lasers generate coherent light pulses with pico- or femtosecond durationobserve and use fast dynamics understand chemical reaction dynamics fast communication concentrate in time and spaceachieve extremely high intensities material processing multi-photon biomedical imaging access ultrashort time scales

R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Sdmeyer, Y. Barbarin, U. Keller, S. I. C. O Santos, D. Artigas and P. Loza-Alvarez, Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms, Biomedical Optics Express, vol. 2, No. 4, pp. 739-747, 2011

ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 20133

Ultrafast lasers generate coherent light pulses with pico- or femtosecond durationobserve and use fast dynamics understand chemical reaction dynamics fast communication achieve extremely high intensities material processing multi-photon biomedical imaging broad optical spectrum

generate ultrastable frequency combs high precision spectroscopy optical clocks concentrate in time and spaceaccess ultrashort time scales

1 ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 20134Ultrafast semiconductor lasers: our approach and goalsModelocked Integrated External-Cavity Surface Emitting LaserMIXSELVECSELVertical External Cavity Surface Emitting LaserSemiconductor Saturable Absorber Mirror SESAM

loss has to saturate faster than the gain:

use focus on QW-SESAM:

ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 20135Ultrafast semiconductor lasers: our approach and goalsModelocked Integrated External-Cavity Surface Emitting LaserMIXSELVECSELVertical External Cavity Surface Emitting LaserSemiconductor Saturable Absorber Mirror SESAM

integration of absorberMIXSELModelocked Integrated External-Cavity Surface Emitting LaserVECSELVECSELQD-SESAMQW-SESAM QW: quantum well QD: quantum dot ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 20136Ultrafast semiconductor lasers: our approach and goals Demonstrate ultrafast electrically pumped (EP) and optically pumped (OP) MIXSELs Feasibility studies and prototype development for performance goals: pulse reptition rate scaling from (1 GHz) 10 GHz to 100 GHznote: 50 GHz corresponds to a 3 mm long linear cavity pico- and femtosecond pulse generationEP-MIXSEL (>100 mW) and OP-MIXSEL (>500 mW), ps and fs pulses Feasibility of applications using novel prototypes:biodmedical: EU FAST-DOT optical clocking: Intel Inc. frequency metrology: Pierre Thomann (UniNEU)

integration of absorberMIXSELModelocked Integrated External-Cavity Surface Emitting LaserVECSEL

VECSELQD-SESAMQW-SESAM ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 20137World record high-power picosecond MIXSEL pulse duration:28 ps

output power:6.4 W

repetition rate:2.5 GHz

center wavelength:960 nm

MIXSELModelocked Integrated External-Cavity Surface Emitting LaserB. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Sdmeyer, U. Keller, Optics Express 18, 27582 (2010)

ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 2013World record high-power picosecond MIXSEL pulse duration:17 ps

output power:2.4 W

repetition rate:10 GHz

center wavelength:960 nm

MIXSELModelocked Integrated External-Cavity Surface Emitting LaserV. J. Wittwer, M. Mangold, M. Hoffmann, O. D. Sieber, M. Golling, T. Sdmeyer, U. Keller, Electronics Letters 48, 1144, 2012

ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 2013First watt-level femtosecond VECSELpulse duration:784 fsoutput power:1.05 W

repetition rate:5.4 GHzpeak power:219 W

center wavelength:970 nm TBP:1.3 sech2

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Krestnikov, D. A. Livshits, Y. Barbarin, T. Sdmeyer, and U. Keller, Optics Express 19, 8108, 2012

VECSELQD-SESAM ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 2013Electrically pumped (EP) VECSELs optical pumping: electrical pumping:

P. Kreuter, B. Witzigmann, D. J. H. C. Maas, Y. Barbarin, T. Sdmeyer, U. Keller, Appl. Phys. B 91, 257 (2008)Y. Barbarin, M. Hoffmann, W. P. Pallmann, I. Dahhan, P. Kreuter, M. Miller, J. Baier, H. Moench, M. Golling, T. Sdmeyer, B. Witzigmann, U. Keller, IEEE J. Selected Topics in Quantum Electronics (JSTQE) 17, 1779 (2011) ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 2013Task 1: Simulation, Prof. B. WitzigmannGoal (Delivery 5a): EP-VECSEL design and simulations power scaling with increased aperture and optimized current injectionResults: Predictive Electro-Opto-Thermal Simulation (matches Experiment) Main Challenges (& Proposed Solutions): Homogeneous Active Region Carrier Injection (p-Contact/Trench Design)Heat Removal (Low-Resistance DBR Design, Heat Spreaders)Low-Loss, Fundamental Mode Optics (Low Free Carr. Absorpt., Waveguide)

Active Carrier Injection: Measured (solid) vs. simulated (dashed)

top contactbottom contactHeat Spreaderp-DBRcurrent spreadinglayerAR sectionn-DBRSiNxSiNxactive region ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 2013

shortest pulse duration from an electrically pumped VECSEL so farexperimental results:pulse duration:9.5 psaverage output power:7.6 mWcenter wavelength:975.1 nmFWHM spectral width:0.43 nmpump current:480 mAVECSEL / SESAM temperature:-17.8C / 37.2Ctransmission OC:4%SESAM modelocked EP-VECSELsW. P. Pallmann, C. A. Zaugg, M. Mangold, V. J. Wittwer, H. Moench, S. Gronenborn, M. Miller, B. W. Tilma, T. Sdmeyer, U. Keller, Optics Express, vol. 20, pp. 24791-24802 (2012) ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 2013

Laser prototype for noise characterization

V. J. Wittwer, C. A. Zaugg, W. P. Pallmann, A. E. H. Oehler, B. Rudin, M. Hoffmann, M. Golling, Y. Barbarin, T. Sdmeyer, and U. Keller, IEEE Photonics Journal 3, 658 (2011)free-running laser212 fs rms[100 Hz, 1 MHz]rms amplitude noise 0.45% in [1 Hz, 40 MHz]timing jitter ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 2013

Laser prototype for noise characterization

V. J. Wittwer, R. van der Linden, B. W. Tilma, B. Resan, K. J. Weingarten, T. Sdmeyer, U. Keller IEEE Photonics Journal 5, 1400107 (2013)

free-running laserstabilized laser58 fs rms [1 Hz, 100 MHz]rms amplitude noise 0.45% in [1 Hz, 40 MHz]timing jitter ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 2013Ultrafast diode-pumped solid-state laser (DPSSL)1Low-loss cavity of DPSSL is a common technology advantage with MIXSELs DPSSL as first step towards stabilized MIXSELs1st fully stabilized DPSSL comb at 1.5 mm demonstrated, Er:Yb:glass laser (ERGO) State-of-the-art performances achievedBuilt in ETH, moved to UniNE

Detailed study of noise properties Deep understanding of mechanisms and requirements for comb self-referencing Guidelines for ultrafast semiconductor lasers ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 2013Femtosecond DPSSL: important outcomesRequirements on pulses duration:

Importance of the dynamic response of the laser for self-referencing:

LOCKIMPOSSIBLELOCKPOSSIBLE

A low-noise CEO beat with high SNR is not sufficient for comb self-referencing

N. Bucalovic, V. Dolgovskiy, M. C. Stumpf, C. Schori, G. Di Domenico, U. Keller, S. Schilt, T. SdmeyerOptics Lett. 37, 4428 (2012) M. C. Stumpf, S. Pekarek, A. E. H. Oehler, T. Sdmeyer, J. M. Dudley, U. Keller, Appl. Phys. B 99, 401(2010) ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 2013Femtosecond DPSSL: state-of-the-art performances

High CEO stability achieved for small feedback bandwidth (~5 kHz)20-fold improved stability compared to a fiber comb with similar feedback bandwidth

Pioneering use of the ERGO comb for ultra-stable microwave generation

Promising alternative to other established comb technologies (such as Ti:Sa or Er:fiber) for high-performance metrology applicationsS. Schilt, N. Bucalovic, V. Dolgovskiy, C. Schori, M. C. Stumpf, G. Di Domenico, S. Pekarek, A. E. H. Oehler, T. Sdmeyer, U. Keller, P. Thomann, Optics Express 19, 24171 (2011)S. Schilt, V. Dolgovskiy, N. Bucalovic, C. Schori, M. C. Stumpf, G. Di Domenico, S. Pekarek, A. E. H. Oehler, T. Sdmeyer, U. Keller, P. Thomann, Appl. Phys. B 109, 391 (2012)

ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 2013 Patented VECSEL- MIXSEL fusion

First step: AlGaAs/GaAsreflector is transfered on a InP substrateSecond step:The reflector is fused to the active cavity followed by substrate etch50mNo dark-line defects in Cathodo-Luminescence100x100 mA. Sirbu, N. Volet, A. Mereuta, J. Lyytikainen, J. Rautiainen, O. Okhotnikov, J. Walczak, M. Wasiak, T. Czyszanowski, A. Caliman, Q. Zhu, V. Iakovlev and E. Kapon, Wafer-Fused Optically Pumped VECSELs Emitting in the 1310-nm and 1550-nm Wavebands, Advances in Optical Technologies, vol. 2011, Article ID 209093, 8 pages, 2011

ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 2013J. Rautiainen, J. Lyytikinen, A. Sirbu, A., A. Mereuta, A. Caliman, E. Kapon, and O. G. Okhotnikov, Optics Express 16, 21881 (2009).J. Lyytikainen, J. Routiainen, L. Toikkanen, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon and O. Okhotnikov, Optics Express 17, 9047 (2009)A. Rantamki, J. Rautiainen, J. Lyytikinen, A. Sirbu, A. Mereuta, E. Kapon, and O. Okhotnikov, Optics Express 20, 9046-9051 (2012).A. Rantamki, A. Sirbu, A. Mereuta, E. Kapon, et al. Optics Express 18, 21645 (2010).E. J. Saarinen, J. Puustinen, A. Sirbu, A. Mereuta, A. Caliman, E.Kapon, and O. G. Okhotnikov, Opt. Lett. 34, 3139 (2009)J. Rautiainen, J. Lyytikainen, L. Toikkanen, J. Nikkinen, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, O. G. Okhotnikov, IEEE Photonics Technology Letters 22, 748, (2013)

180 m pump spot;M~1.5Passive modelocking

1550 nm VECSELS :13 ps pulses0.6 W average power (5)

1300 nm VECSELS:6.4 ps pulses100 mW average power (6) State of the art 15XX nm and 13XX nm VECSELs with intra-cavity diamond heatspreaders300 m pump spot 290 m pump spot

Frequency doubling

1300 nm VECSELs:3W at 650 nm (4)1550 nm VECSELs:1W at 785 nm (3) ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 2013Ultrafast semiconductor lasers: our approach and goals Demonstrate ultrafast electrically pumped (EP) and optically pumped (OP) MIXSELs Feasibility studies and prototype development for performance goals: pulse reptition rate scaling from (1 GHz) 10 GHz to 100 GHznote: 50 GHz corresponds to a 3 mm long linear cavity pico- and femtosecond pulse generationEP-MIXSEL (>100 mW) and OP-MIXSEL (>500 mW), ps and fs pulses Feasibility of applications using novel prototypes:biodmedical: EU FAST-DOT optical clocking: Intel Inc. frequency metrology: Pierre Thomann (UniNEU)

integration of absorberMIXSELModelocked Integrated External-Cavity Surface Emitting LaserVECSEL

VECSELQD-SESAMQW-SESAM ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 201321Posters for further information

http://www.nano-tera.ch/events/posterlist.php

ETH ZurichUltrafast Laser Physicsnano-tera.ch annual 2013