MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ......

28
Case Study: Amp5 Design of a WiMAX Power Amplifier Presented by Michael Steer Reading: Chapter 19, Section 19.6 Based on material in Microwave and RF Design: A Systems Approach, 2 nd Edition, by Michael Steer. SciTech Publishing, 2013. Presentation copyright Michael Steer MICROWAVE AND RF DESIGN Index: CS_Amp5

Transcript of MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ......

Page 1: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

Case Study:Amp5Design of a WiMAX Power AmplifierPresented by Michael Steer

Reading:Chapter 19, Section 19.6 Based on material in Microwave and RF

Design: A Systems Approach, 2nd Edition, by Michael Steer. SciTech Publishing,

2013.Presentation copyright Michael Steer

MICROWAVE AND RF DESIGN

Index: CS_Amp5

Page 2: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

Design of a WiMAX Power Amplifier

Slides copyright 2013 M. Steer.

3.4 to 3.8 GHz Power Amplifier

Output power at 1 dB gain compression is 28 dBm

2

Page 3: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

WiMAX power amplifier

● Necessary to use nonlinear simulation, harmonic balance analysis preferred.

● Thermal heat-sinking is very important.● Must consider possible layout at the beginning.● Must have a topology in mind.● Specifications:

– 28 dBm output power– 3.4 to 3.8 GHz

3

Page 4: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

Z = 50 0

PORT 1

InputMatchingNetwork

Z = 50 0

PORT 2

MatchingNetwork

Output

_

M 1 M 2

Input

Gate bias

1 2

Transistor

50 V

100 mA

Output

21

1.115 V

119 A

Drain bias

Amplifier

RF RF

Amplifier topology● High level topology:

● LinearClass ABamplifierloadline:

VDS

ID DC loadline

AC loadline

Quiescent point4

(Final bias voltages are shown)

3.4 to 3.8 GHz

Page 5: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

Transistor selection

GATE

DRAIN

SOURCE

DIE

DIE

DIE

CACB

CC

BONDWIRES

BONDWIRES

SOURCE

BONDWIRES

2.1 GHz silicon LDMOS transistor. 

5

Page 6: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

Bias concept

VDS

I D(m

A)

VGS

1008060402000

300

600

700

500

400

200

100

(V)

0 V

-0.5 V

-1 V

-1.5 V

6Quiescent DC power = 5 W. 

Page 7: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

S11 and S22

11S

22S

(dB

)S

3.51.50.5 2.5 4.5 5.5

0

-5

-10

-15

-20

3.4 to 3.8 GHz operating frequency

Output33  //  4.4 pF2.5 –j11 

Input almost 50 (with small parallel capacitance) 7

Page 8: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

S21 and S123.4 to 3.8 GHz operating frequency

S21

S12

(dB

)S

-40

-20

0

20

40

1.50.5 2.5 3.5 4.5 5.5Frequency (GHz)

8

Page 9: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

Design concept

INPUT

OUTPUT

9

Page 10: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

Amplifier Layout

10Presentation copyright Michael SteerIndex: CS_Amp5B

Page 11: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

Layout

OUTPUTINPUT

11

Page 12: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

Input matching network

TRANSISTOR GATERF INPUT

GND

GND

DC BLOCK

CAPACITORS

500  RESISTOR

LINE WITH HIGH Z0

GATE BIAS

50  LINE

12

GND

Page 13: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

Output matching network

TRANSISTOR DRAIN RF OUTPUT

GND

GND

DC BLOCK

CAPACITORS

LINE WITH HIGH Z0

DRAIN BIAS

50  LINE

(2.5 –j11 

13

Page 14: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

Input matching network

MTEEID=TL3

MSTEPID=TL25W1=1 mmW2=1.88 mm

MLINID=TL2W=1.88 mmL=3.55 mm

MLINID=TL1W=1.88 mmL=8 mm

MLINID=TL8W=1.88 mmL=2.8 mm

CAPID=C2C=5.6 pF

500

PORTP=2Z=50 Ohm

MSUBEr=3.38H=0.8128 mmT=0.03556 mmRho=1.0Tand=0.002ErNom=3.38Name=SUB1

MLINID=TL23W=1.156 mmL=0.8 mm

MSTEPID=TL24W1=1.156 mmW2=0.254 mm

MLINID=TL6W=0.254 mmL=12.8 mm

MTEEID=TL12

MTEEID=TL5

MTEEID=TL9

MLINID=TL4W=1.2 mmL=1 mm

VIAID=V1D=0.635 mmH=0.813 mmD=0.0356 mm

VIAID=V2D=0.635 mmH=0.813 mmD=0.0356 mm

MLINID=TL13W=1.2 mmL=1 mm

CAPID=C4C=10 nF

VIAID=V3D=0.635 mmH=0.813 mmD=0.0356 mm

MLINID=TL21W=1.2 mmL=1.5 mm

MLINID=TL10W=1.2 mmL=1 mm

MLINID=TL20W=1.2 mmL=1.5 mm

MLINID=TL17W=0.254 mmL=0.99 mm

MLINID=TL14W=1.6 mmL=1 mm

MTEEID=TL15

MLINID=TL22W=1.6 mmL=1.5 mm

VIAID=V4D=0.635 mmH=0.813 mmD=0.0356 mm

MLINID=TL18W=3 mmL=5 mm

MLINID=TL16W=0.254 mmL=1 mm

MLINID=TL11W=0.254 mmL=1 mm

MLINID=TL7W=0.254 mmL=1 mm

PORTP=1Z=50 Ohm

MLINID=TL19W=1.2 mmL=1.5 mm

CAPID=C3C=5.6 pF

CAP

C=1 nFID=C1

CAPID=C6C=1 uF

1.115 VGate DC bias voltage

RF input Active device

14

Page 15: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

MTEEID=TL3

MSTEPID=TL25W1=1 mmW2=1.88 mm

MLINID=TL2W=1.88 mmL=3.55 mm

MLINID=TL1W=1.88 mmL=8 mm

MLINID=TL8W=1.88 mmL=2.8 mm

CAPID=C2C=5.6 pF

500

PORTP=2Z=50 Ohm

MSUBEr=3.38H=0.8128 mmT=0.03556 mmRho=1.0Tand=0.002ErNom=3.38Name=SUB1

MLINID=TL23W=1.156 mmL=0.8 mm

PORTP=1Z=50 Ohm

1.115 VGate DC bias voltage

RF input Active device

Input matching network (RF Path)

15

Page 16: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

Input matching network (detail)

MTEEID=TL3

MSTEPID=TL25W1=1 mmW2=1.88 mm

MLINID=TL2W=1.88 mmL=3.55 mm

MLINID=TL1W=1.88 mmL=8 mm

MLINID=TL8W=1.88 mmL=2.8 mm

CAPID=C2C=5.6 pF

500

PORTP=2Z=50 Ohm

MSUBEr=3.38H=0.8128 mmT=0.03556 mmRho=1.0Tand=0.002ErNom=3.38Name=SUB1

MLINID=TL23W=1.156 mmL=0.8 mm

MSTEPID=TL24W1=1.156 mmW2=0.254 mm

MLINID=TL6W=0.254 mmL=12.8 mm

MTEEID=TL5

MLINID=TL4W=1.2 mmL=1 mm

VIAID=V1D=0.635 mmH=0.813 mmD=0.0356 mm

PORTP=1Z=50 Ohm

MLINID=TL19W=1.2 mmL=1.5 mm

CAPID=C3C=5.6 pF

RF input Active device

REST OF BIAS CIRCUIT 16

Page 17: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

Input matching network

MTEEID=TL3

MSTEPID=TL25W1=1 mmW2=1.88 mm

MLINID=TL2W=1.88 mmL=3.55 mm

MLINID=TL1W=1.88 mmL=8 mm

MLINID=TL8W=1.88 mmL=2.8 mm

CAPID=C2C=5.6 pF

500

PORTP=2Z=50 Ohm

MSUBEr=3.38H=0.8128 mmT=0.03556 mmRho=1.0Tand=0.002ErNom=3.38Name=SUB1

MLINID=TL23W=1.156 mmL=0.8 mm

MSTEPID=TL24W1=1.156 mmW2=0.254 mm

MLINID=TL6W=0.254 mmL=12.8 mm

MTEEID=TL12

MTEEID=TL5

MTEEID=TL9

MLINID=TL4W=1.2 mmL=1 mm

VIAID=V1D=0.635 mmH=0.813 mmD=0.0356 mm

VIAID=V2D=0.635 mmH=0.813 mmD=0.0356 mm

MLINID=TL13W=1.2 mmL=1 mm

CAPID=C4C=10 nF

VIAID=V3D=0.635 mmH=0.813 mmD=0.0356 mm

MLINID=TL21W=1.2 mmL=1.5 mm

MLINID=TL10W=1.2 mmL=1 mm

MLINID=TL20W=1.2 mmL=1.5 mm

MLINID=TL17W=0.254 mmL=0.99 mm

MLINID=TL14W=1.6 mmL=1 mm

MTEEID=TL15

MLINID=TL22W=1.6 mmL=1.5 mm

VIAID=V4D=0.635 mmH=0.813 mmD=0.0356 mm

MLINID=TL18W=3 mmL=5 mm

MLINID=TL16W=0.254 mmL=1 mm

MLINID=TL11W=0.254 mmL=1 mm

MLINID=TL7W=0.254 mmL=1 mm

PORTP=1Z=50 Ohm

MLINID=TL19W=1.2 mmL=1.5 mm

CAPID=C3C=5.6 pF

CAP

C=1 nFID=C1

CAPID=C6C=1 uF

1.115 VGate DC bias voltage

RF input Active device

17

Page 18: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

MTEEID=TL10

MTEEID=TL18

MTEEID=TL16

MTEEID=TL17

MTEEID=TL6

PORTP=1Z=50 Ohm

MLINID=TL1W=10 mmL=5 mm

MLINID=TL3W=3 mmL=5.7 mm

CAPID=C3C=5.6 pF

MSTEPID=TL9W1=10 mmW2=3 mm

PORTP=2Z=50 Ohm

MLINID=TL12W=1.88 mmL=2.88 mm

MLINID=TL23W=1.2 mmL=1.5 mm

CAPID=C1C=0.500 pF

VIAID=V1D=0.635 mmH=0.813 mmD=0.0356 mm

VIAID=V2D=0.635 mmH=0.813 mmD=0.0356 mm

CAPID=C2C=10 nF

MLINID=TL13W=1.2 mmL=1 mm

MLINID=TL24W=1.2 mmL=1.5 m

MLINID=TL15W=1.6 mmL=1 mm

MLINID=TL26W=1.6 mmL=1.5 mm

CAPID=C6C=1 uF

VIAID=V4D=0.635 mmH=0.813 mmD=0.0356 mm

VIAID=V3D=0.635 mmH=0.813 mmD=0.0356 mm

CAPID=C4C=100 nF

MLINID=TL14W=1.2 mmL=1 mm

MLINID=TL22W=3 mmL=6.6 mm

MLINID=TL5W=1.2 mmL=1 mm

MLINID=TL25W=1.2 mmL=1.5 mm

MSUBEr=3.38H=0.8128 mmT=0.03556 mmRho=1.0Tand=0.002ErNom=3.38Name=SUB1

MLINID=TL7W=0.508 mmL=1 mm

MLINID=TL8W=0.508 mmL=13.4 mm

MLINID=TL19W=0.508 mmL=1 mm

MLINID=TL20W=0.508 mmL=1 mm

MLINID=TL21W=0.508 mmL=1 mm

MLINID=TL2W=10 mmL=8.85 mm

MSTEPID=TL4W1=1 mmW2=10 mm

Drain DC bias voltage 50 V

RF OutputActive device

Output matching network

18

Page 19: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

Amplifier Design

19Presentation copyright Michael SteerIndex: CS_Amp5C

Page 20: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

Z = 50 0

PORT 1

InputMatchingNetwork

Z = 50 0

PORT 2

MatchingNetwork

Output

_

M 1 M 2

Input

Gate bias

1 2

Transistor

50 V

100 mA

Output

21

1.115 V

119 A

Drain bias

Amplifier

RF RF

Amplifier topology● Final bias voltages are shown.

● LinearClass ABamplifierloadline:

VDS

ID DC loadline

AC loadline

Quiescent point20

Page 21: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

Poweramplfiier

Signalsource Automated

tunerActivedevice

Impedancetransformer Automated

tuner

Spectrumanalyzer

Highpowerattenuator

Powersensor

PowermeterPower

sensor

Powermeter

controllerInstrument

Load‐pull system

21

Page 22: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

Load‐pull points

22

Poweramplfiier

Signalsource Automated

tuner

Z in

Page 23: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

• At 3.5 GHz showing the reflection coefficient (here S11) looking into the output matching network and the contours of constant output power.

• POUT,MAX = 42.6 dBm. • Output power for the first 

contour surrounding POUT,MAX is 42.5 dBm and the powers of the contours reduce in 0.5 dBmsteps. 

• S11 of the final output matching network design is shown from 3.4 to 3.8 GHz

S11

Output POUT,MAX

Output load‐pull contour of POUT

23

Page 24: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

POUT

50

40

30

20

10

013 33233

Gain

Gai

n (d

B)

or O

utpu

t pow

er (

dBm

)

Input power (dBm)

Output power and gain at 3.5 GHz

24

Page 25: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

POUT

Drain efficiency

Gain

0

50%

40%

30%

20%

10%

Dra

in e

ffici

ency

0

10

20

30

40

50

10 20 25 30 32Input power (dBm)

15

Gai

n(d

B) a

nd O

utpu

t pow

er (

dBm

)

Output power, gain, and drain efficiency at 3.4, 3.5, 3.6, 3.7, and 3.8 GHz

25

Page 26: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

Tones at 3.500 GHz and 3.501 GHz each 23 dBm.

34.2 dBm

-10.5 dBm-6.89 dBm

11.5 dBm10.8 dBm

-21.0 dBm

34.2 dBmf1

f5f7

f2

f3 f4

f6

40

30

20

10

0

-10

-20

-30

-40

-503.496 3.497 3.498 3.499 3.5 3.501 3.502 3.503 3.504 3.505

Pow

er (

dBm

)

Frequency (GHz)3.495

Two‐tone input f1 and f2

26

Page 27: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

Input tones are at 3.500 GHz and 3.501 GHzFundamental plotted is at 3.501 GHz.

-60

-40

-20

0

20

40O

utpu

t pow

er (

dBm

)

0 5 1510 20 25Input power (dBm)

IM3

Fundamental

3:1

1:1

Response to a two‐tone input signal

U

27

Page 28: MICROWAVE AND RF Case Study: Amp5 Design of a WiMAX … · CA CB CC BONDWIRES BONDWIRES SOURCE ... 11 and S 22 11 S 22 S (dB) S 0.5 2.51.5 3.5 4.5 5.5 0-5-10-15-20 ... 0.5 2.51.5

Summary● Transistor vendors strive to offer transistors for

high volume applications that simplify design effort.

● A few standard topologies are used.● For high power amplifier design harmonic

balance analysis is used.– High dynamic range is not available with transient

simulators.

● Load pull analysis used in simulation and also when adjusting final amplifier design.

28