Microstructure of high thermal conductivity mesophase ...

7
DOI: 10.1016/S1872-5805(21)60050-1 Microstructure of high thermal conductivity mesophase pitch-based carbon fibers YE Chong 1,2,3 , WU Huang 1,2,3 , ZHU Shi-peng 4 , FAN Zhen 4 , HUANG Dong 1,2,3, * , HAN Fei 1,3 , LIU Jin-shui 1,3, * , YANG Jian-xiao 1,3 , LIU Hong-bo 1,3 1. College of Materials Science and Engineering, Hunan University, Changsha 410082, China; 2. Hunan Province Engineering Research Center for High Performance Pitch Based Carbon Materials, Hunan Toyi Carbon Material Technology Co., Ltd., Changsha 410000, China; 3. Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China; 4. Key Laboratory of Advanced Functional Composite Materials, Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, ChinaAbstractThe microstructural characteristics of high thermal conductivity mesophase pitch-based carbon fibers were investig- ated by XRD, Raman spectroscopy, SEM and TEM. The relationship between microstructural characteristics and thermal conductiv- ity is discussed. Results show that the radial structure is always accompanied by a splitting stucture. La has more significant impact on the thermal conductivity than Lc. The Raman spectroscopy I D /I G value of the cross section was used as an essential index to evalu- ate the thermal conductivity of the carbon fibers. The microstructural characteristics including large graphite crystallite size, high pre- ferred orientation along the fiber axis, and few defects contribute to the high thermal conductivity of the carbon fibers. Key words: MicrostructureMesophase pitchCarbon fiberHigh thermal conductivity 1 Introduction Mesophase pitch-based carbon fibers have high- er Young’s modulus and thermal conductivity com- pared with polyacrylonitrile-based carbon fibers, ow- ing to their well-developed graphite crystallites and highly oriented crystalline along the fiber axis. These superior properties allow mesophase pitch-based car- bon fibers to be widely used in the fields of aerospace vehicles, electronic devices, and so on [13] . The high performance mesophase pitch-based carbon fibers are usually fabricated by a series of processes including pitch-synthesis, melt-spinning, pre-oxidation, carbon- ization, graphitization, surface treatment, and so on. Among them, melt-spinning plays a crucially import- ant role in controlling the microstructures and physic- al property of mesophase pitch-based carbon fibers. Until now, several various microstructural character- istics have been widely reported, such as the random structure, radial structure, onion-skin structure, flat- layer structure and folded-radial structure, and these microstructural characteristics are highly dependent on the melt-spinning conditions [4, 5] . Many studies have focused on the effects of melt-spinning technological parameters, spinneret design and chemical composition of pitch on the mi- crostructures and properties of the mesophase pitch- based carbon fibers [610] . Compared with chemical composition of mesophase pitch, melt-spinning is a direct and effective approach to control the micro- structure and properties of carbon fibers. Many re- searchers investigated the relationship between the typical microstructures of the mesophase pitch-based carbon fibers and the corresponding properties. The microstructure of mesophase pitch-based carbon fibers with ultra-high modulus was studied by Morinobu Endo [11] . The relationship between the mi- crostructure and the mechanical property of different carbon fibers (P25, P55, P75, P100 and P120, Cytec), with thermal conductivities in the range of 97− Received date2019-08-21Revised date2019-11-27 Corresponding authorHUANG Dong, Ph. D. E-mail: [email protected]; LIU Jin-shui, Ph. D, Professor. E-mail: [email protected] Author introductionYE Chong, Ph. D Candidate. E-mail: [email protected] 36 5 Vol. 36 No. 5 2021 10 NEW CARBON MATERIALS Oct. 2021

Transcript of Microstructure of high thermal conductivity mesophase ...

 

DOI: 10.1016/S1872-5805(21)60050-1

Microstructure of high thermal conductivity mesophasepitch-based carbon fibers

YE Chong1,2,3,  WU Huang1,2,3,  ZHU Shi-peng4,  FAN Zhen4,  HUANG Dong1,2,3,*,  HAN Fei1,3,  LIU Jin-shui1,3,*,  YANG Jian-xiao1,3,  LIU Hong-bo1,3

(1. College of Materials Science and Engineering, Hunan University, Changsha 410082, China;

2. Hunan Province Engineering Research Center for High Performance Pitch Based Carbon Materials,

Hunan Toyi Carbon Material Technology Co., Ltd., Changsha 410000, China;

3. Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China;

4. Key Laboratory of Advanced Functional Composite Materials, Aerospace Research Institute of Materials and

Processing Technology, Beijing 100076, China)

Abstract: The microstructural  characteristics  of  high  thermal  conductivity  mesophase  pitch-based  carbon  fibers  were   investig-ated by XRD, Raman spectroscopy, SEM and TEM. The relationship between microstructural characteristics and thermal conductiv-ity is discussed. Results show that the radial structure is always accompanied by a splitting stucture. La has more significant impacton the thermal conductivity than Lc. The Raman spectroscopy ID/IG value of the cross section was used as an essential index to evalu-ate the thermal conductivity of the carbon fibers. The microstructural characteristics including large graphite crystallite size, high pre-ferred orientation along the fiber axis, and few defects contribute to the high thermal conductivity of the carbon fibers.Key words: Microstructure;Mesophase pitch;Carbon fiber;High thermal conductivity 

1    Introduction

Mesophase pitch-based carbon fibers  have  high-er Young’s  modulus  and  thermal  conductivity   com-pared with  polyacrylonitrile-based  carbon  fibers,  ow-ing  to  their  well-developed  graphite  crystallites  andhighly oriented crystalline along the fiber axis. Thesesuperior properties  allow mesophase  pitch-based  car-bon fibers to be widely used in the fields of aerospacevehicles,  electronic  devices,  and  so  on[1–3].  The  highperformance mesophase pitch-based carbon fibers areusually  fabricated  by  a  series  of  processes  includingpitch-synthesis, melt-spinning,  pre-oxidation,   carbon-ization,  graphitization,  surface  treatment,  and  so  on.Among them, melt-spinning plays a crucially import-ant role in controlling the microstructures and physic-al  property  of  mesophase  pitch-based  carbon  fibers.Until now,  several  various  microstructural   character-istics  have been widely reported,  such as  the  randomstructure,  radial  structure,  onion-skin  structure,  flat-

layer  structure  and  folded-radial  structure,  and  thesemicrostructural  characteristics  are  highly  dependenton the melt-spinning conditions[4, 5].

Many  studies  have  focused  on  the  effects  ofmelt-spinning  technological  parameters,  spinneretdesign and chemical  composition  of  pitch  on the  mi-crostructures  and  properties  of  the  mesophase  pitch-based  carbon  fibers[6–10].  Compared  with  chemicalcomposition  of  mesophase  pitch,  melt-spinning  is  adirect and  effective  approach  to  control  the   micro-structure and  properties  of  carbon  fibers.  Many   re-searchers  investigated  the  relationship  between  thetypical  microstructures  of  the  mesophase  pitch-basedcarbon  fibers  and  the  corresponding  properties.  Themicrostructure  of  mesophase  pitch-based  carbonfibers  with  ultra-high  modulus  was  studied  byMorinobu  Endo[11]. The  relationship  between  the  mi-crostructure  and  the  mechanical  property  of  differentcarbon fibers (P25, P55, P75, P100 and P120, Cytec),with  thermal  conductivities  in  the  range  of  97−

  Received date: 2019-08-21;    Revised date: 2019-11-27Corresponding author: HUANG Dong, Ph. D. E-mail: [email protected];

LIU Jin-shui, Ph. D, Professor. E-mail: [email protected] introduction: YE Chong, Ph. D Candidate. E-mail: [email protected] 

第 36 卷   第 5 期 新    型    炭    材    料 Vol. 36   No. 52021 年 10 月 NEW CARBON MATERIALS Oct. 2021

640  W·m−1·K−1,  was  investigated  by  YanlingHuang[12]. The microstructural difference of the meso-phase  pitch-based  fibers  (E01,  E35,  E55,  E75,  E105,E120, E130, DU PONT) was also examined by G. M.Pennock[13].  Although  much  data  have  been  reportedin  the  literature  on  the  microstructures  of  mesophasepitch-based carbon fibers, there are few reports on themicrostructural features  of  the  high  thermal   conduct-ive  mesophase  pitch-based  carbon  fibers,  especiallyfor  ultra-high  thermal  conductive  (≥600  W·m−1·K−1)carbon fibers.  To  obtain  a  high  thermal  conductivity,it is  necessary  to  systematically  explore  the   micro-structures  of  mesophase  pitch-based  carbon  fibers  interms of the degree of graphitization, crystalline size,and preferred orientation.

In the present work, the relationship between mi-crostructural  characteristics  and  thermal  conductivityof mesophase pitch-based carbon fibers was investig-ated. The  morphology,  crystalline  size,  preferred  ori-entation,  and  other  microstructural  characteristics  ofthe  carbon  fibers  were  systematically  analyzed  byXRD,  Raman  spectroscopy,  SEM  and  TEM.  Thiswork will provide meaningful guidance for the fabric-ation of the high thermal conductive mesophase pitch-based carbon fibers. 

2    Experimental 

2.1 MaterialsFive kinds  of  high  thermal  conductive   meso-

phase pitch-based carbon fibers were employed in thiswork. The fibers were XN-90 (Nippon Graphite FiberCorp),  K13C2U  (Mitsubishi  Chemical  FunctionalProducts Inc.),  K13D2U (Mitsubishi  Chemical  Func-tional  Products  Inc.),  K1100  (Cytec)  and  HNU-3000

(homemade) respectively. 

2.2 Microstructural characterizationCrystallite  structural  parameters  were  tested  by

X-ray diffraction  (XRD)  on  a  D/Max-2550  PC   dif-fractometer  apparatus  with  Cu  Kα  radiation  (λ=0.154 184 nm) with  Si  as  an  internal  standard.   Inter-layer  spacing  d002,  crystalline  sizes  (La,  Lc) and   de-gree of graphitization (g) were calculated based on theXRD  data[14].  Misorientation  angles  (Z)  of  graphenesheets with reference to the fiber axis were measuredby full width at half maxima (FWHM) of the diffrac-tion profile from the azimuthal scan.

Morphology  and  microstructures  of  the  fiberswere  examined  by  scanning  electron  microscopy(SEM, NOVA 400 NANO), transmission electron mi-croscopy (TEM, Titan G260-300) and Raman spectro-scopy (Horiba JY, XploRA, λ=633 nm), respectively. 

2.3 Thermal conductivity testThermal  conductivity  of  the  carbon  fibers  was

obtained  by  an  indirect  method.  The  axial  electricalresistivity of carbon fibers was measured with a four-probe  method,  and  the  thermal  conductivity  valueswere  calculated  by  different  empirical  formulas.  Thecalculated values were compared with the manufactur-ers’ data[15–17].

The empirical formula λ1=1261/ρ was establishedby  Zhang  X[18]. λ2=1272.4/ρ−49.4  was  established  byYamamoto[19],  and  λ3=440000/(100ρ+258)−295  wascreated by Lavin[20]. The results show that the thermalconductivity  values  calculated  from  the  formula  λ1=1261/ρ  are  consistent  with  the  reported  values  whenthe  thermal  conductivity  exceeds  600  W·m−1·K−1.When  the  thermal  conductivity  is  less  than  600W·m−1·K−1,  the  formula  λ=440000/(100ρ  +258)−295is  more  accurate.  The  properties  of  the  5  mesophasepitch-based carbon fibers are listed in Table 1. 

Table 1 Properties of the five types of mesophase pitch-based carbon fibers.

Sample R(Ω) S(μm2) ρ(μΩ·m) λ1(W·m−1·K−1) λ2(W·m−1·K−1) λ3(W·m−1·K−1) λ*(W·m−1·K−1)XN-90 1023.17 73.27 2.95 428.89 383.76 501.27 500K13C2U 789.00 65.94 2.07 609.87 566.39 651.64 620K13D2U 423.33 95.42 1.58 799.08 757.30 762.98 800K1100 362.33 80.47 1.15 1099.42 1058.14 884.86 1100

HNU-3000 192.57 165.78 1.12 1127.00 1088.19 893.27 −

Note: λ* manufacturers’ data[24, 25]

     第 5 期 YE Chong et al: Microstructure of high thermal conductivity mesophase pitch-based carbon fibers · 981 ·   

3    Results and discussion 

3.1 SEMSEM  micrographs  and  schematic  diagrams  of

these carbon fibers are shown in Fig. 1. It can be seenthat all the fibers present obvious graphite layer-struc-ture.  XN-90,  K13C2U,  and  K13D2U  are  all  round-shape, while K1100 and homemade HNU-3000 exhib-it  a  round-split  structure.  Some irregular  hole-defectsare observed on the cross section of XN-90 . The out-er  region of  XN-90 exhibits  a  folded-radial  structure,while  the  central  region  shows  onion-skin  structure(Fig.  1(a)). Both  K13C2U  and  K13D2U  present   vis-ible  folded-like  structure.  It  should  be  noted  that  thegraphite layers in the outer region of K13D2U are lar-ger in size and more ordered along the axial directionin  comparison  with  K13C2U  (Fig.  1(b)  and

Fig.  1(c)).  As  a  result,  K13D2U  possess  higherthermal  conductivity  than  K13C2U.  Both  K1100 andHNU-3000 present well-developed graphite layers, asshown  in  Fig.  1(d)  and  Fig.  1(e).  Notably,  K1100show a perfect  radial-split  structure.  However,  HNU-3000  seems  to  be  folded-radial  structure  with  thethicker graphite layers. Among these 5 types of fibers,K1100 and HNU-3000 have the largest graphite layer,the highest  orientation  and  the  highest  thermal   con-ductivity. Based on the above results, it can be foundthat the orientation and size of the graphite layers arehighly correlated with the thermal conductivity of thecarbon  fibers,  and  the  carbon  fibers  with  a  radialstructure unavoidably exhibit wedge-splitting features. 

3.2 XRDThe XRD patterns of the carbon fibers are shown

in Fig.  2.  As seen,  all  of  the 5 types of  carbon fibersexhibit  narrow  and  sharp  peak  of  (002)  and  distinctpeak of (004) in the equatorial scan patterns (Fig. 2(a)),indicating the large crystallite size and small interlay-er  spacing.  The  results  demonstrate  that  the  graphitelayers  are  compactly  stacked  and  orderly  alignedalong the fiber axis direction.

Fig. 2(b) displays the meridional scan patterns ofthe  5  kinds  of  carbon  fiber.  The  diffraction  peaks  of(100)  and  (101)  planes  are  clearly  displayed  in  thesepatterns,  indicating  the  three-dimensional  orderedstructure of the graphite crystallites in all  the 5 kindsof carbon fiber.

The  misorientation  angle  Z  is  determined  byFWHM of  the  diffraction  profile  from  the  azimuthalscan (Fig. 2(c)), as listed in Table 2. Among them, theZ value of K1100 carbon fiber is the smallest, indicat-ing the highest orientation degree of the graphite lay-ers  in  K1100.  In  XN-90,  K13C2U,  K13D2U  andK1100,  the  Z  value  gradually  decreases  and  thethermal conductivity increases in turn.  However,  it  isinteresting  to  find  that  HNU-3000  have  a  larger  Zvalue than K13C2U, K13D2U and K1100, which doesnot agree with the above mentioned results.  This res-ult  is  attributed to the larger graphite layers in HNU-3000,  which  inhibits  the  regular  arrangement  ofgraphite crystallites along the fiber axis direction dur-

(a)

2 μm 1 μm(b)

2 μm 1 μm

(c)

2 μm 1 μm

(d)

2 μm 1 μm

(e)

2 μm 1 μm 

Fig. 1    SEM micrographs and sketches of mesophase pitch-based carbonfibers: (a) XN-90, (b) K13C2U, (c) K13D2U, (d) K1100 and (e) HNU-3000.

  · 982 ·     新        型        炭        材        料 第 36 卷     

ing graphitization.As shown in Fig.  2(d),  the (002) peak is  narrow

and sharp, and the (004) peak can also be clearly seenin  all  the  fibers.  The  interlayer  spacing  of d002,graphene-layer stacking height of Lc, graphite crystal-lite width of La and graphitization degree of g are cal-culated according to the XRD powder diffraction pat-terns, as listed in Table 2. From Table 1 and 2, it canbe found that the La, Lc and g values all have positivecorrelations  with  thermal  conductivity  of  the  fibers,while the d002 value has a negative correlation with it.Considering  the  larger  La,  smaller  Lc  and  higher

thermal  conductivity  in  HNU-3000   than   K1100,  itcan be concluded that the La has more significant im-pact on the thermal conductivity than the Lc. Smallerd002,  larger  La,  Lc  and  g  mean  more  perfect  crystalwith fewer defects, contributing to the increase of themean  free  path  and  the  decrease  of  the  scattering  ofphonons, further leading to higher thermal conductiv-ity[21, 22]. 

3.3 Raman spectraFig. 3 shows Raman spectra of the 5 kinds of car-

bon  fibers  on  their  surface  (Fig.  3(a)) and  cross   sec-tion  (Fig.  3(b)). D  peak  at  1 360  cm−1  represents  thenumber  of  the  disordered  layer  structures,  which  iscaused  by  lattice  defects,  small  sizes  of  crystallitesand  low  degrees  of  orientation.  The  G  peak  at1  580  cm−1  is  attributed  to  the  in-plane  bond-stretch-ing vibration of sp2-hybridized C atoms. The intensityratio of D peak to G peak, denoted as ID/IG, is definedas the degree of disorder R[23]. There is a negative cor-relation  between  the  thermal  conductivity  and  R  onthe cross section of  the 5 kinds of  fiber.  A smaller R

(a)

10 20 30 40 50 60

Inte

nsity (

a.u

.)

2θ (°)

XN-90

K13C2U

K13D2U

HNU-3000

K1100

(004)

(002)

XN-90

K13C2U

K13D2U

HNU-3000

K1100

(b)

(100) (101)

60 70 80

Si(311)Si(111) C(004)

C(002)

XN-90

K13C2U

K13D2U

K1100

HNU-3000

(d)

−90 −60 −30 0 30 60 90

(c)

K13C2U

XN-90

K1100

HNU-3000

K13D2U

10 20 30 40 50 60

Inte

nsity (

a.u

.)

2θ (°)

Inte

nsity (

a.u

.)

β (°)

10 20 30 40 50 90

Inte

nsity (

a.u

.)

2θ (°)

Fig. 2    XRD patterns of the five kinds of carbon fiber with high thermal conductivities: (a) Equatorial scan, (b) Meridional scan,(c) Azimuthal scan on (002) crystal face and (d) powder diffraction.

 

Table 2 Crystalline parameters and degree of graphitiza-tion of carbon fibers.

Sample 2θ002(°) d002(nm) Lc(002)(nm) La(100)(nm) g(%)a Z(°)XN-90 26.38 0.3379 23.07 38.70 71.46 9.33K13C2U 26.41 0.3375 26.05 46.00 75.99 9.20K13D2U 26.43 0.3373 28.95 50.61 78.17 9.04K1100 26.47 0.3368 34.22 70.30 84.29 8.06

HNU-3000 26.48 0.3366 34.67 78.26 85.88 9.23Note:  aDegree  of  graphitization  (g)  was  calculated  by  the  equation  g=(0.3440−d002)/(0.3440−0.3354)

     第 5 期 YE Chong et al: Microstructure of high thermal conductivity mesophase pitch-based carbon fibers · 983 ·   

value in carbon fiber represents a higher thermal con-ductivity.  The  difference  of R  values  on  the  surfaceand  cross  section  is  mainly  ascribed  to  the  skin-corestructure  in  the  carbon  fibers.  It  is  worth  noting  thatK1100  and  HNU-3000  have  larger  R  values  on  thesurface but smaller R values on the cross section com-pared with K13D2U. It is believed that R value on thecross  section  can  be  used  as  an  important  index  toevaluate the thermal conductivity of carbon fibers. 

3.4 HRTEMThe HRTEM micrographs of the 5 kinds of car-

bon fibers are shown in Fig. 4. As seen, all the carbonfibers  present  an  ordered  lattice  structure  along  the

fiber  axis  direction.  There  is  a  positive  correlationbetween the thermal conductivity and crystal size. Theresult  well  agrees with the Lc values from XRD ana-lysis in Table 2. In addition, many crystalline defectssuch as distortion,  disorientation,  dislocation and dis-continuity of crystallites can also be found in HRTEMimages. In particular, the crystalline defects in K1100and  HNU-3000  are  rarely  found.  Considering  thethermal conductivity,  it  is  evident  that  fewer   crystal-line defects will bring higher thermal conductivity.

Based on the above analysis,  the axial  structuralcharacteristics of  the  5  high  thermal  conductive   car-bon  fibers  are  depicted  in  Fig.  5.  For  the  5  kinds  of

1000 1200 1400 1600 1800 2000

G

R=0.087

R=0.076

R=0.072

R=0.120

K1100

HNU-3000

K13D2U

K13C2U

XN-90

(a)

Wave number (cm−1) Wave number (cm−1)

R=0.144D

1000 1200 1400 1600 1800 2000

GD

XN-90

K13C2U

K13D2U

HNU-3000

K1100

R=1.18

R=1.13

R=1.00

R=0.81

R=0.75

(b)

Inte

nsi

ty (

a.u

.)

Inte

nsi

ty (

a.u

.)

Fig. 3    Raman spectra of the 5 kinds of carbon fiber: (a) surface and (b) cross section. 

(a)

10 nm

20 nm 20 nm

10 nm 10 nm

Lc=10 nm

Lc=

17 n

m

Lc=

64 n

m

Lc=

38 n

m

Lc=

26 n

m

Fib

er a

xis

Fiber axis

Fiber axis

Fiber axis

Fiber axis

(b) (c)

(e)(d)

Fig. 4    HRTEM images of the five kinds of carbon fiber: (a) XN-90, (b) K13C2U, (c) K13D2U, (d) K1100 and (e) HNU-3000. 

  · 984 ·     新        型        炭        材        料 第 36 卷     

mesophase pitch-based  carbon  fiber,  the  large  graph-ite  crystalline  size,  high  preferred  orientation  degreealong the axis direction, and few crystalline defects incarbon fibers lead to the high thermal conductivity. 

4    Conclusion

Based on the comparison of the five kinds of dif-ferent high thermal conductive mesophase pitch-basedcarbon  fiber  in  this  work,  it  is  found  that  thehomemade  HUN-3000  carbon  fiber  possessesthe highest  thermal  conductivity  of 1 127 W·m−1·K−1.The result shows that the radial structure is always ac-companied by a  split  structure and high thermal  con-ductivity.  La  has  more  significant  impact  on  thethermal  conductivity  than  the Lc.  Smaller d002,  largerLa, Lc and g mean more perfect crystal structures withfewer  defects,  thus  contributing  to  the  increase  ofmean  free  path  and  the  decrease  of  the  scattering  ofphonons,  leading  to  higher  thermal  conductivity.  Rvalue on the cross section can be used as the import-ant index to evaluate the thermal conductivity of car-bon  fibers.  The  microstructure  of  the  carbon  fiberswith  a  large  graphite  crystallite  size,  high  preferredorientation  degree  along  the  axis  direction,  and  fewcrystalline  defects  is  conductive  to  the  high  thermalconductivity.

AcknowledgementsThe Innovation  and  Entrepreneurship   Invest-

ment Project  of  Hunan  Provincial  Science  and  Tech-nology  Department  (2018GK5065);  Special  Fund  for

Innovative  Construction  Province  of  Hunan(2019GK2021, 2019RS2058).

References

 Kumar S, Anderson D, Crasto A. Carbon fibre compressive strength

and  its  dependence  on  structure  and  morphology[J].  Journal  of

Materials Science,1993,28(2):423-439.

[1]

 Edie D D. The effect of processing on the structure and properties of

carbon fibers[J]. Carbon,1998,36(4):345-362.

[2]

 Mochida I, Yoon S H, Takano N, et al. Microstructure of mesophase

pitch-based  carbon  fiber  and  its  control[J].  Carbon,1996,34(8):

941-956.

[3]

 Mochida  I,  Yoon  S  H,  Korai  Y.  Control  of  transversal  texture  in

circular  mesophase  pitch-based  carbon  fibre  using  non-circular

spinning  nozzles[J].  Journal  of  materials  science,1993,28(9):

2331-2336.

[4]

 Qin  X,  Lu  Y,  Xiao  H,  et  al.  A  comparison  of  the  effect  of

graphitization on microstructures and properties of polyacrylonitrile

and  mesophase  pitch-based  carbon  fibers[J].  Carbon,2012,

50(12):4459-4469.

[5]

 Hong S H, Korai Y, Mochida I. Mesoscopic texture at the skin area

of  mesophase  pitch-based  carbon  fiber[J].  Carbon,2000,38(6):

805-815.

[6]

 Yao  Y,  Chen  J,  Liu  L,  et  al.  Mesophase  pitch-based  carbon  fiber

spinning through a  filter  assembly and the microstructure  evolution

mechanism[J]. Journal of materials science,2014,49(1):191-198.

[7]

 Matsumoto  M,  Iwashita  T,  Arai  Y,  et  al.  Effect  of  spinning

conditions  on  structures  of  pitch-based  carbon  fiber[J].  Carbon,

1993,31(5):715-720.

[8]

 Wang  L,  Liu  Z,  Guo  Q,  et  al.  Structure  of  silicon-modified

mesophase  pitch-based  graphite  fibers[J].  Carbon,2015,94:335-

341.

[9]

 Alway-Cooper  R  M,  Anderson  D  P,  Ogale  A  A.  Carbon  black

modification  of  mesophase  pitch-based  carbon  fibers[J].  Carbon,

2013,59:40-48.

[10]

 Endo  M.  Structure  of  mesophase  pitch-based  carbon  fibres[J].

Journal of Materials Science,1988,23(2):598-605.

[11]

 Huang  Y,  Young  R.  Microstructure  and  mechanical  properties  of

pitch-based  carbon  fibres[J].  Journal  of  materials  science,1994,

29(15):4027-4036.

[12]

 Pennock G M, Taylor G H, Gerald J D F. Microstructure in a series

of  mesophase  pitch-based  fibers  from  du  pont:  zones,  folds,  and

disclinations[J]. Carbon,1993,31(4):591-609.

[13]

 Patterson  A  L.  The  scherrer  formula  for  X-Ray  particle  size

determination[J]. Physical Review,1939,56(10):978-982.

[14]

 Edie  D  D,  Fain  C  C,  Robinson  K  E,  et  al.  Ribbon-shape  carbon

fibers for thermal management[J]. Carbon,1993,31(6):941-949.

[15]

 Lu  S,  Blanco  C,  Rand  B.  Large  diameter  carbon  fibres  from

mesophase pitch[J]. Carbon,2002,40(12):2109-2116.

[16]

 Edie  D  D,  Robinson  K  E,  Fleurot  O,  et  al.  High  thermal

conductivity  ribbon  fibers  from  naphthalene-based  mesophase[J].

[17]

K13C2U

K13D2UXN-90

500Thermal conductivity (W·m−1·K−1)

800 1100

HNU-3000

K1100

 

Fig. 5    Sketches of the crystallite structure in the longitudinal section forthe high thermal conductive carbon fibers.

     第 5 期 YE Chong et al: Microstructure of high thermal conductivity mesophase pitch-based carbon fibers · 985 ·   

Carbon,1994,32(6):1045-1054.

 Zhang  X,  Fujiwara  S,  Fujii  M.  Measurements  of  thermal

conductivity and electrical conductivity of a single carbon fiber[J].

International Journal of Thermophysics,2000,21(4):965-980.

[18]

 Yamamoto I. J. P. Patent, 194117 (1998): JP.[19]

 Lavin J, Boyington D, Lahijani J, et al. The correlation of thermal-

conductivity  with  electrical-resistivity  in  mesophase  pitch-based

carbon-fiber[J]. Carbon,1993,31(6):1001.

[20]

 He F, Yang Y G. Super thermal conductive mesophase pitch-based

carbon fibers[J]. Hi-tech Fiber & Application,2003,5:27-31.

[21]

 Nika  D  L,  Pokatilov  E  P,  Askerov  A  S,  et  al.  Phonon  thermal

conduction  in  graphene:  Role  of  umklapp  and  edge  roughness

scattering[J]. Physical Review B,2009,79(15)

[22]

 Katagiri  G,  Ishida  H,  Ishitani  A.  Raman  spectra  of  graphite  edge

planes[J]. Carbon,1988,26(4):565-571.

[23]

 Minus  M,  Kumar  S.  The  processing,  properties,  and  structure  of

carbon fibers[J]. Jom,2005,57(2):52-58.

[24]

 Emmerich F G.  Young’s  modulus,  thermal  conductivity,  electrical

resistivity and coefficient of thermal expansion of mesophase pitch-

based carbon fibers[J]. Carbon,2014,79:274-293.

[25]

 高导热中间相沥青基炭纤维的微观结构研究

叶    崇1,2,3, 吴    晃1,2,3, 朱世鹏4, 樊    桢4, 黄    东1,2,3,*, 韩    飞1,3, 刘金水1,3,*, 杨建校1,3, 刘洪波1,3

(1.  湖南大学  材料科学与工程学院,湖南  长沙  410082;

2.  湖南东映碳材料科技有限公司  沥青基高性能碳材料湖南省工程研究中心,湖南  长沙  410000;

3.  湖南大学  先进炭材料及应用技术湖南省重点实验室,湖南  长沙  410082;

4.  航天材料及工艺研究所  先进功能复合材料技术重点实验室,北京  100076)

摘 要: 本文研究了高导热(500~1 127 W·m−1·K−1)中间相沥青基炭纤维的微观结构特征,初步建立了微观结构特征与

导热性能之间的影响关系。通过 XRD、拉曼光谱、SEM和 TEM对纤维的显微结构进行了系统表征,结果表明,辐射状的

纤维结构热导率较高,并伴随着劈裂状结构特征。La对热导率的影响比 Lc更加显著,纤维截面上的 R 值可作为评估热导

率的重要参照指标。在本研究所涉及的纤维中,石墨微晶尺寸越大,微晶缺陷越少,石墨微晶片层沿纤维轴向取向度越

好,则炭纤维的热导率越高。

关键词: 微观结构特征;中间相沥青;炭纤维;热导率

文章编号:   1007-8827(2021)05-0980-07                中图分类号: TQ536.2                文献标识码: A

基金项目:湖南省科学技术厅创新创业技术投资项目(2018KG5065);湖南创新型省份建设专项经费资助(2019GK2021,2019RS2058).

通讯作者:黄 东,博士. E-mail:[email protected]

刘金水,博士,教授. E-mail:[email protected]作者简介:叶 崇,博士研究生. E-mail:[email protected]本文的电子版全文由 Elsevier 出版社在 ScienceDirect 上出版(https://www.sciencedirect.com/journal/new-carbon-materials/)

  · 986 ·     新        型        炭        材        料 第 36 卷