Microstructural Aspects of Glass Formation in Food Freezing and...

37
Yrjö H. Roos Microstructural Aspects of Glass Formation in Food Freezing and Dehydration Yrjö H. Roos Food Technology ESPCA/São Paulo School of Advanced Science Advances in Molecular Structuring of Food Materials 4 April 2013 Faculty of Animal Science and Food Engineering (FZEA-USP) April 1st to 5th, 2013

Transcript of Microstructural Aspects of Glass Formation in Food Freezing and...

  • Yrjö H. Roos

    Microstructural Aspects of Glass Formation in

    Food Freezing and Dehydration

    Yrjö H. Roos

    Food Technology

    ESPCA/São Paulo School of Advanced Science

    Advances in Molecular Structuring of Food Materials

    4 April 2013

    Faculty of Animal Science and Food Engineering (FZEA-USP)

    April 1st to 5th, 2013

  • Yrjö H. Roos Food Technology

    Contents

    • Materials Science Approach – The glass transition

    • The Freezing Process – Ice formation and microstructure

    – Cryoprotection

    • Dehydration and Encapsulation – Structural relaxation times

    – Fluidness of food solids

    – Particles and microencapsulation

    • Melt Extrusion

  • Yrjö H. Roos Food Technology

    Materials Science Approach

    Process

    Product

    Performance

    Structure Microstructure (nanostructure) - Noncrystalline phases Fluidness - Heterogeneity - Water plasticisation Dynamics and kinetics

    Structure formation - Component assembly Solids flow - Viscosity Dynamics and kinetics - Temperature and water

    Processability - Stickiness, flow Stabilisation - Bioactives, flavor End use - Hydration, nutrient delivery

    Physicochemical properties - Particle size, porosity, density… Organoleptic properties - Appearance, flavour, taste… Stability and shelf life - Component miscibility. - Hygroscopicity and aw.

  • Yrjö H. Roos Food Technology

    The Glass Transition

    • Differential scanning calorimetry

    • Spectroscopic methods

    • Dynamic mechanical analysis

    • Dielectric analysis

    TEMPERATURE

    T g

    Storage modulus

    Loss modulus or

    dielectric loss

    a b relaxation

    relaxation

    ME

    CH

    AN

    ICA

    L O

    R D

    IEL

    EC

    TR

    IC P

    RO

    PE

    RT

    Y

    Increasing frequency

    Glass Transition Structural Relaxation Times

  • Yrjö H. Roos Food Technology

    Practical Applications

    RE

    LA

    XA

    TIO

    N T

    IME

    TEMPERATURE, WATER ACTIVITY OR WATER CONTENT

    Glassy State Glass Transition Years

    Months

    Days

    Hours

    Minutes

    Seconds

    Flow

    EX

    TE

    NT

    OF

    CH

    AN

    GE

    IN P

    RO

    PE

    RT

    Y

    Hard

    enin

    g, C

    rackin

    g

    Crispness

    Stability Zone Critical Zone Mobility Zone

    Str

    uctu

    ral T

    ransfo

    rmations

    Incre

    asin

    g D

    iffu

    sio

    n

    ‘Solid’ ‘Highly time-dependent’ ‘Instant changes’

    SOLID

    CRITICAL ZONE

    VISCOUS FLOW

    LIQUID

    Food processing Food stabilization and storage

  • Yrjö H. Roos Food Technology

    The Freezing Process

    Freezing

    Melting

    Condensation

    Evaporation

    Triple point (0.0099°C, 6.104 mbar)

    Condensation

    Sublimation

    PR

    ES

    SU

    RE

    (m

    ba

    r)

    TEMPERATURE (°C)

    SOLID

    (ICE)

    GASEOUS

    (VAPOUR)

    LIQUID

    AIR AND VACUUM DEHYDRATION

    FREEZE-DRYING

    GASEOUS

    (VAPOUR)

    Vapour pressure of

    Water in Food

  • Yrjö H. Roos Food Technology

    Pressure in Freezing

    Nucleation is the key in the control

    of microstructure of frozen materials.

    Bar 200 mm

    Fernández et al Food Hydrocoll 20 510-522 (2006)

  • Yrjö H. Roos Food Technology

    Ice Formation

    TEMPERATURE

    EN

    DO

    TH

    ER

    MA

    L H

    EA

    T F

    LO

    W

    Glass transition of unfrozen solute phase

    Devitrification (ice formation exotherm)

    Ice melting endotherm

    (often accompanied by

    an endothermal step

    change)

    Differential Scanning Calorimetry (DSC) in heating of rapidly cooled solutions

    Tg

    Td

    Tm

    Mobility for crystallization above the Tg

  • Yrjö H. Roos Food Technology

    Time-dependent Freezing

    Initial T of a nonannealed solution g

    T'

    T'

    g

    m

    EN

    DO

    TH

    ER

    MA

    L H

    EA

    T F

    LO

    W

    t

    t

    t

    t

    0

    1

    2

    3

    Annealing temperature

    TEMPERATURE

    T m

    g T after annealing time, t 1

    g T after annealing time, t 2

  • Yrjö H. Roos Food Technology

    Recrystallization above Tm’

    Trehalose solution (20% w/w) freezing at -18.6ºC Trehalose solution at -19.1ºC subsequent to

    11 cycles of temperature fluctuations to -5°C

  • Yrjö H. Roos Food Technology

    Recrystallization in Frozen Desserts

  • Yrjö H. Roos Food Technology

    Freezing of Water with Solutes

    Ice Crystal Size

    T

  • Yrjö H. Roos Food Technology

    Freezing T and Microstructure

    0

    5

    10

    15

    20

    25

    30

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 50 100 150 200 250 300 350 400

    Wa

    ll T

    hic

    kne

    ss (

    mm

    )

    log

    N

    Pore Diameter (mm)

    M040

    M100

    M250

    M100-Glucose

    M100-Fructose

    M100-Sucrose

    -20°C -80°C

    Number of Pores

    Wall Thickness Freezing T

    -40°C

    Low Mw High Mw

    Harnkarnsujarit et al, Carbohydr Polym 88 734-742 (2012)

    Freeze-concentration

    occurs to 80% solids

    in unfrozen water

    Hig

    h F

    ree V

    olu

    me in A

    morp

    hous W

    alls

    !

    Ice Crystals

    Pores

    Unfrozen Water

    Free Volume

  • Yrjö H. Roos Food Technology

    Effects of Solute on Ice Formation

    Tn Tg Tg

    RA

    TE

    OF

    NU

    CLE

    AT

    ION

    SIZ

    E

    NU

    MB

    ER

    NUCLEATION

    B A CRYSTAL SIZE

    OR NUMBER

    A

    B

    (B) (A) Tm (A) Tm (B)< Tm’(A)

    Tn Tm Tg [A]

    RA

    TE

    OF

    NU

    CLE

    AT

    ION

    NU

    MB

    ER

    AN

    D S

    IZE

    NUCLEATION

    [A’]

    [A]

    CRYSTAL SIZE OR NUMBER

    [A]

    [A’]

    [A] Tm [A’] Tg [A’]

    One solute – different concentrations – A higher concentration [A’] shows higher

    initial Tg and a lower Tm.

    – Ice crystals formed at the same nucleation

    temperature, Tn, are smaller for [A’].

    – Rate of nucleation and crystal growth are

    reduced by viscosity and diffusion.

    Two solutes – different molecular size – A higher Tg of A gives a higher rate of

    nucleation.

    – Ice crystals formed at the same nucleation

    temperature, Tn, are smaller for A.

    Roos YH, Materials science of freezing and frozen foods, In Food Materials

    Science and Engineering, B Bhandari and Roos YH (eds), Springer (2012).

  • Yrjö H. Roos Food Technology

    Cryoprotectant Systems

  • Yrjö H. Roos Food Technology

    Stability of LGG in Cryoprotectants

    Pehkonen et al, J Appl Microbiol 104, 1732-743 (2008)

  • Yrjö H. Roos Food Technology

    Dehydration and Encapsulation

    • Flavor

    • Colour

    • Stability

    • Flow

    • Rehydration

  • Yrjö H. Roos Food Technology

    Relaxation Times in Dehydration

    Stickiness in spray drying

    Collapse in Freeze-Drying

    Slow process

    Rapid process

    Experimental vs. WLF data.

    1 ms

    1 µs

    τ T - Tg

    20°C

    43°C

    Bellows and King, AIChE Symp. Ser.

    69 (132), 33-41 (1973)

    Downton et al. Ind. Eng. Chem. Fundam. 21: 447-451 (1982)

    Sucrose: Fructose 3:1

    25°C 0.2 ms

    15°C 0.01 s

    T - Tg ! τ !

    Contact Time

    1 to 10 s

    2

    4

    6

    8

    10

    12

    14

    16

    -8

    -6

    -4

    -2

    0

    2

    4

    6

    0 10 20 30 40 50 T - Tg (°C)

    log V

    iscosity (

    Pa

    s)

    log

    t (

    s) Contact Time

    Relaxation Time Viscosity

    ∼10 s

    ∼1 s

    Viscous Flow and Collapse

  • Yrjö H. Roos Food Technology

    Enthalpy Relaxation

    Haque et al, Carbohydr Res 341, 1884-1889 (2006)

    60 70 80 90 100 110 120 130 140

    Temperature (°C)

    Heat

    Flo

    w (

    W/g

    )

    Aging at 90°C

    Unaged

    Aging at 25°C

    Aging at 60°C

    Aging at 75°C

    En

    do

    the

    rmic

    ΔHrelax

    Tg (onset)= 102°C

    Aging time-24h

    Lactose

  • Yrjö H. Roos Food Technology

    Modeling Relaxation Times

    Angell Chem Rev 102 2627-2650 (2002)

  • Yrjö H. Roos Food Technology

    a-relaxation by DEA and DMA

    -4

    -2

    0

    2

    4

    6

    8

    0.00350 0.00355 0.00360 0.00365 0.00370 0.00375 0.00380

    Temperature (1/K)

    lnf

    DMA

    DEA

    0.08Hz

    T g by DSC

    0.05Hz

    A

    Structural Relaxation Times vs. DSC Tg for Xylitol

  • Yrjö H. Roos Food Technology

    The WLF Relationship

    0

    2

    4

    6

    8

    10

    12

    0 20 40 60 80 100

    A

    T – Tg (K)

    log

    Vis

    co

    sity (

    Pa s

    )

    S ckyPointViscosityCollapseViscosity

    loga = logt

    t g= log

    h

    hg=

    -C1 T -Tg( )C2 + T -Tg( )

    - 10

    - 8

    - 6

    - 4

    - 2

    0

    2

    0 20 40 60 80 100

    B

    T – Tg (K) lo

    g R

    ela

    xa

    tio

    n T

    ime (

    s)

    S" cky&&Point&τ&

    Collapse&τ&

    The onset temperature of the calorimetric glass transition taken as the Tg

    Significant viscous flow

    and microstructural

    transformations

  • Yrjö H. Roos Food Technology

    “Fragility” by Angell

    h = h0exp

    DT0

    T -T0

    æ

    èçç

    ö

    ø÷÷

    Trehalose

    Glucose

    Glycerol

    Water

    384 K

    304 K

    191 K

    138 K

    Tg

    0

    2

    4

    6

    8

    10

    12

    log

    η P

    a s

    -2

    -4

    -6 0 0.2 0.4 0.6 0.8 1.0

    Tg/T

    SiO2 1473 K

    (2Tg/T½)-1 A

    0 0.2 0.4 0.6 0.8 1

    log

    τ (

    s)

    Tg/T

    - 12

    - 10

    - 8

    - 6

    - 4

    - 2

    0

    2

    - 14

    - 16

    FWLF

    Trehalose

    Fructose

    Glycerol

    Propanol

    384 K

    278 K

    191 K

    98 K

    Tg

    SiO2 1473 K

    B

    100 s

    1 ms

    WLF model with universal constants: ➩ The same temperature dependence. ➩ Significantly different fragilities.

    VTF (Fragility) D (fragility parameter) can be defined only at T = Tg Limited value only when Tg values are the

    same (Arrhenius reference is global T = 0 K).

  • Yrjö H. Roos Food Technology

    WLF vs. VTF

    - 4

    - 2

    0

    2

    4

    6

    8

    10

    12

    0 0.2 0.4 0.6 0.8 1

    SiO2

    Glycerol

    WLF

    Glucose

    Water

    log V

    ISC

    OS

    ITY

    (P

    a s

    )

    1/(T – Tg) (1/K)

    - 4

    - 2

    0

    2

    4

    6

    8

    10

    0 0.01 0.02 0.03 0.04 0.05

    SiO2

    Glycerol

    Glucose

    Water lo

    g V

    ISC

    OS

    ITY

    (P

    a s

    )

    1/(T – Tg) (1/K)

    Collapse Zone

    Stickiness Zone

    STRONG

    FRAGILE

    h =h0 expB

    T -T0

    æ

    èç

    ö

    ø÷

    Glass transition

    Viscous flow

    Liquid flow

    WLF

    T – Tg (°C) 2 5 10

    T – Tg (°C) 25 50 100 20

  • Yrjö H. Roos Food Technology

    The Fluidness Concept

    Maltodextrins (DE10 – DE25) with 5% Glucose at aw 0.23 – 0.76

    -5

    -4

    -3

    -2

    -1

    0

    1

    2

    0 20 40 60 80 100 120

    log

    t

    T - Tg

    Fructose

    Glucose

    WLF

    “universal”

    DMA (dynamic loss modulus)

    DEA (isothermal dielectric loss)

    C1 = 8; C2 = 25

    C1 = 8; C2 = 20 Fluidness - WLF constants

    - Solids composition

    - Water plasticization

    loga = logt

    t g= log

    h

    hg=

    -C1 T -Tg( )C2 + T -Tg( )

    Note: C1 is number of log

    decades for the change in t C2 is measure of steepness

  • Yrjö H. Roos Food Technology

    Fluidness in Dehydration

    -8

    -7

    -6

    -5

    -4

    -3

    -2

    -1

    0

    1

    2

    0 10 20 30 40 50

    log

    t (

    s)

    T – Tg (K)

    WLF equation:

    Universal values: C1=17.44

    C2=51.6

    Lactose

    Lactose – MD23 (70:30)

    Lactose – MD9 (70:30)

    Glucose

    (viscosity)

    DMA

    DEA

    Tg Tg+10 K Tg+15 K

    logt

    t s=

    -C1 T - Ts( )C2 + T - Ts( )

    Lo

    ss M

    odu

    lus (

    x1

    08 P

    a)

    Die

    lectr

    ic L

    oss

    DMA

    DEA

    Potes&et#al.&Carbohydr.&Polym.&89,&105071059&(2012)&&

    A metal pocket

    Parallel plate capacitors

  • Yrjö H. Roos Food Technology

    Microstructural Diversity

    CFLM Cryo-SEM

    Some parameters:

    - Inlet/Outlet air T

    - Atomizer - Feed T

    - Feed solids

    - Glass former

    - Particle size

    - Composition

    - Viscosity

  • Yrjö H. Roos Food Technology

    Microstructure by Freezing

    Volatiles entrapment and retention in microregions formed during freezing in

    freeze-dried materials. Flink JM and Karel M, J Agric Food Chem 18, 295-297 (1970)

    • Microstructure formation in freezing.

    • Explains volatiles and flavor retention in freeze-drying. – Freeze-dried berries, fruits, etc.

    – Freeze-dried coffee.

    Pores Microregions of encapsulated volatiles

    Sugar glass

    Microencapsulation in freeze-drying

    Freeze-drying

  • Yrjö H. Roos Food Technology

    Microencapsulation

    • Volatiles retention in liquid particles by selective diffusion.

    – Thijssen HAC, J Appl Chem 21, 372–377 (1971)

    • Volatiles microencapsulation in microregions during vitrification of glass forming encapsulant matrix.

    – Flink JM and Karel M, J Agric Food Chem 18, 295-297 (1970)

    • Encapsulation of dispersed particles in emulsions.

    Particle Temperature

    Glassy Lactose (Glassy Skim Milk)

    Lactose Syrup

    Stickiness and Caking Zone

    Surface properties of particles are strongly dependent on composition

    and state of solids

    0 5 10 15 20 25 -50

    0

    50

    100

    Gla

    ss T

    ran

    sitio

    n (

    °C)

    Water Content (%, w/w)

    Concentrate Volatiles retention (Selective diffusion)

    Powder

    Volatiles retention (Microencapsulation)

    Spray drying

    Several mechanisms:

  • Yrjö H. Roos Food Technology

    Spray Dried Materials

    S-D Lactose S-D Lactose/Na-Caseinate (3-1)

  • Yrjö H. Roos Food Technology

    Microencapsulation in Spray Drying

    Preferential migration of proteins

    to air-liquid interphase Adhikari et al J Food Eng 94 144-153 (2009)

    Encapsulation of

    dispersed particles

    Microencapsulation of

    dispersed particles

    (S. Drusch 2013) Voids

    Protein on particles reduce stickiness and improve powder recovery.

    Drusch S (2013)

  • Yrjö H. Roos Food Technology

    Emulsion Destabilization

    Mun et al, J Food Eng 86, 508–518 (2008)

    • Primary and secondary emulsions were unstable in freezing and freeze-drying.

    • Maltodextrin (glass former) was required to stabilize emulsions.

  • Yrjö H. Roos Food Technology

    Surface Characteristics and Stability

    Zinoviadou et al, Food Funct 3, 312-319(2012)

    Sodium stearoyl lactylate (SSL)

    Chitosan (CH) Surface tension

    Particle shape Serfert et al, J Microencapsul, Early Online (2012)

    Drusch and Berg, Food Chem 109, 17–24 (2008)

  • Yrjö H. Roos Food Technology

    Colloids and Dispersions

    <1nm <1μm >1μm

    Gasmix(air)

    Aerosol(fog)

    Aerosol(rain)

    Solidaerosol(smoke)

    Par culate(dust)

    Solu on(CO2so drinks)

    Foam(cappucinofoam)

    Foam(breadcrumb)

    Solu on(ethanolinwater)

    Emulsion(homogenizedmilk)

    Emulsion(cream)

    Solu on(polymerinliquid)

    Sol(caseinmicellesinliquid)

    Suspension(fruitpulp)

    Solu on(dissolvedgasincandy)

    SolidFoam(airinmilkpowderpar cles)

    SolidFoam(meringue)

    Solu on(dissolvedflavorincandy)

    Gel(fruitjelly)

    Solidemulsion(bu er)

    Solu on(alloys)

    Solidsol(milkfatinicecream)

    Solidsuspension(icecrystalsinicecream)

    Gas

    G

    L

    S

    Liquid

    Solid

    G

    L

    S

    G

    L

    S

    Bubblesingas

    DISPERSIONS COLLOIDSGas

    Liquid

    Solid

    COARSEDISPERSIONS

    Freeze-dried and spray

    dried structures with

    microencapsulated and

    encapsulated

    components. – Gas (air) in voids.

    – Volatiles in microregions.

    – Encapsulated dispersed

    particles (oil droplets).

    – Dissolved, miscible

    components in glass formers.

    – Phase separated

    components (proteins and

    sugars)

  • Yrjö H. Roos Food Technology

    Oxidation and Microstructure

    Shchukina and Shchukin, Curr Opin Coll Interface Sci 17, 281–289 (2012)

    Serfert et al, Food Hydrocoll 31, 438-445 (2013)

  • Yrjö H. Roos Food Technology

    Melt Extrusion

    Sucrose-gum arabic-gelatin (1:1:1) film

    Trehalose-Na caseinate (1:1) film

  • Yrjö H. Roos Food Technology

    Summary

    • Materials science has advanced understanding of food systems in freezing and dehydration.

    • Knowledge of freezing and frozen state microstructure is not well developed.

    • Glass formers are of crucial importance to microstructure formation in freezing, extrusion and dehydration.

    • Interface engineering coupled with fluidness characterization can be used to improve processability, storage stability and nutrient delivery.