Microstepping motor controller with motion engine … · Microstepping motor controller with motion...

73
This is information on a product in full production. March 2015 DocID023768 Rev 6 1/73 L6482 Microstepping motor controller with motion engine and SPI Datasheet - production data Features Operating voltage: 7.5 V - 85 V Dual full bridge gate driver for N-channel MOSFETs Fully programmable gate driving Embedded Miller clamp function Programmable speed profile Up to 1/16 microstepping Advanced current control with auto-adaptive decay mode Integrated voltage regulators SPI interface Low quiescent standby currents Programmable non dissipative overcurrent protection Overtemperature protection Applications Bipolar stepper motor Description The L6482 device, realized in analog mixed signal technology, is an advanced fully integrated solution suitable for driving two-phase bipolar stepper motors with microstepping. It integrates a dual full bridge gate driver for N-channel MOSFET power stages with embedded non dissipative overcurrent protection. Thanks to a new current control, a 1/16 microstepping is achieved through an adaptive decay mode which outperforms traditional implementations. The digital control core can generate user defined motion profiles with acceleration, deceleration, speed or target position easily programmed through a dedicated register set. All application commands and data registers, including those used to set analog values (i.e. current protection trip point, deadtime, PWM frequency, etc.) are sent through a standard 5-Mbit/s SPI. A very rich set of protections (thermal, low bus voltage, overcurrent and motor stall) makes the L6482 device “bullet proof”, as required by the most demanding motor control applications. HTSSOP38 Table 1. Device summary Order code Package Packaging L6482H HTSSOP38 Tube L6482HTR HTSSOP38 Tape and reel www.st.com

Transcript of Microstepping motor controller with motion engine … · Microstepping motor controller with motion...

  • This is information on a product in full production.

    March 2015 DocID023768 Rev 6 1/73

    L6482

    Microstepping motor controller with motion engine and SPI

    Datasheet - production data

    Features Operating voltage: 7.5 V - 85 V Dual full bridge gate driver for N-channel

    MOSFETs Fully programmable gate driving Embedded Miller clamp function Programmable speed profile Up to 1/16 microstepping Advanced current control with auto-adaptive

    decay mode Integrated voltage regulators SPI interface Low quiescent standby currents Programmable non dissipative overcurrent

    protection Overtemperature protection

    Applications Bipolar stepper motor

    DescriptionThe L6482 device, realized in analog mixed signal technology, is an advanced fully integrated solution suitable for driving two-phase bipolar stepper motors with microstepping.

    It integrates a dual full bridge gate driver for N-channel MOSFET power stages with embedded non dissipative overcurrent protection. Thanks to a new current control, a 1/16 microstepping is achieved through an adaptive decay mode which outperforms traditional implementations. The digital control core can generate user defined motion profiles with acceleration, deceleration, speed or target position easily programmed through a dedicated register set. All application commands and data registers, including those used to set analog values (i.e. current protection trip point, deadtime, PWM frequency, etc.) are sent through a standard 5-Mbit/s SPI. A very rich set of protections (thermal, low bus voltage, overcurrent and motor stall) makes the L6482 device bullet proof, as required by the most demanding motor control applications.

    HTSSOP38

    Table 1. Device summaryOrder code Package Packaging

    L6482H HTSSOP38 Tube

    L6482HTR HTSSOP38 Tape and reel

    www.st.com

    http://www.st.com

  • Contents L6482

    2/73 DocID023768 Rev 6

    Contents

    1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    2 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    2.2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    2.3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    4 Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    5 Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    6 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196.1 Device power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    6.2 Logic I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    6.3 Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    6.4 Microstepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Automatic Full-step and Boost modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    6.5 Absolute position counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    6.6 Programmable speed profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    6.7 Motor control commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236.7.1 Constant speed commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    6.7.2 Positioning commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    6.7.3 Motion commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    6.7.4 Stop commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    6.7.5 Step-clock mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    6.7.6 GoUntil and ReleaseSW commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    6.8 Internal oscillator and oscillator driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 266.8.1 Internal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    6.8.2 External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    6.9 Overcurrent detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

  • DocID023768 Rev 6 3/73

    L6482 Contents

    73

    6.10 Undervoltage lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    6.11 VS undervoltage lockout (UVLO_ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    6.12 Thermal warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . 29

    6.13 Reset and standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    6.14 External switch (SW pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    6.15 Programmable gate drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    6.16 Deadtime and blanking time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    6.17 Integrated analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    6.18 Supply management and internal voltage regulators . . . . . . . . . . . . . . . . 33

    6.19 BUSY/SYNC pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    6.20 FLAG pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    7 Phase current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357.1 Predictive current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    7.2 Auto-adjusted decay mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    7.3 Auto-adjusted fast decay during the falling steps . . . . . . . . . . . . . . . . . . . 38

    7.4 Torque regulation (output current amplitude regulation) . . . . . . . . . . . . . . 39

    8 Serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    9 Programming manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439.1 Register and flag description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    9.1.1 ABS_POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    9.1.2 EL_POS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    9.1.3 MARK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    9.1.4 SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    9.1.5 ACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    9.1.6 DEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    9.1.7 MAX_SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    9.1.8 MIN_SPEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    9.1.9 FS_SPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    9.1.10 TVAL_HOLD, TVAL_RUN, TVAL_ACC and TVAL_DEC . . . . . . . . . . . . 47

    9.1.11 T_FAST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    9.1.12 TON_MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    9.1.13 TOFF_MIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

    9.1.14 ADC_OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

  • Contents L6482

    4/73 DocID023768 Rev 6

    9.1.15 OCD_TH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    9.1.16 STEP_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    9.1.17 ALARM_EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    9.1.18 GATECFG1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    9.1.19 GATECFG2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    9.1.20 CONFIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    9.1.21 STATUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    9.2 Application commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609.2.1 Command management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    9.2.2 Nop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    9.2.3 SetParam (PARAM, VALUE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    9.2.4 GetParam (PARAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    9.2.5 Run (DIR, SPD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    9.2.6 StepClock (DIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    9.2.7 Move (DIR, N_STEP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    9.2.8 GoTo (ABS_POS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    9.2.9 GoTo_DIR (DIR, ABS_POS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    9.2.10 GoUntil (ACT, DIR, SPD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

    9.2.11 ReleaseSW (ACT, DIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    9.2.12 GoHome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    9.2.13 GoMark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    9.2.14 ResetPos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    9.2.15 ResetDevice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    9.2.16 SoftStop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    9.2.17 HardStop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

    9.2.18 SoftHiZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

    9.2.19 HardHiZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

    9.2.20 GetStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    10 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70HTSSOP38 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

  • DocID023768 Rev 6 5/73

    L6482 List of tables

    73

    List of tables

    Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Table 2. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Table 3. Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Table 4. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Table 5. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Table 6. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Table 7. Typical application values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Table 8. CL values according to external oscillator frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Table 9. UVLO thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Table 10. Thermal protection summarizing table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Table 11. Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Table 12. EL_POS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Table 13. MIN_SPEED register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Table 14. FS_SPD register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Table 15. Torque regulation by TVAL_HOLD, TVAL_ACC, TVAL_DEC and TVAL_RUN

    registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Table 16. FS_SPD register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Table 17. Maximum fast decay times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Table 18. Minimum on-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Table 19. Minimum off-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Table 20. ADC_OUT value and torque regulation feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Table 21. Overcurrent detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Table 22. STEP_MODE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Table 23. Step mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Table 24. SYNC output frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Table 25. SYNC signal source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Table 26. ALARM_EN register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Table 27. GATECFG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Table 28. IGATE parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Table 29. TCC parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Table 30. TBOOST parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Table 31. GATECFG2 register (voltage mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Table 32. TDT parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Table 33. TBLANK parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Table 34. CONFIG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Table 35. Oscillator management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Table 36. External switch HardStop interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Table 37. Overcurrent event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Table 38. Programmable VCC regulator output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Table 39. Programmable UVLO thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Table 40. External torque regulation enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Table 41. Switching period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57Table 42. Motor supply voltage compensation enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Table 43. STATUS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58Table 44. STATUS register TH_STATUS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Table 45. STATUS register DIR bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Table 46. STATUS register MOT_STATUS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Table 47. Application commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

  • List of tables L6482

    6/73 DocID023768 Rev 6

    Table 48. Nop command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Table 49. SetParam command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Table 50. GetParam command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Table 51. Run command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Table 52. StepClock command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Table 53. Move command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Table 54. GoTo command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Table 55. GoTo_DIR command structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Table 56. GoUntil command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Table 57. ReleaseSW command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Table 58. GoHome command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Table 59. GoMark command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Table 60. ResetPos command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67Table 61. ResetDevice command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67Table 62. SoftStop command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67Table 63. HardStop command structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Table 64. SoftHiZ command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Table 65. HardHiZ command structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Table 66. GetStatus command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Table 67. HTSSOP38 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Table 68. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

  • DocID023768 Rev 6 7/73

    L6482 List of figures

    73

    List of figures

    Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Figure 2. Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 3. Typical application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Figure 4. Charge pump circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Figure 5. Normal mode and microstepping (16 microsteps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Figure 6. Automatic Full-step switching in Normal mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 7. Automatic Full-step switching in Boost mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Figure 8. Constant speed command examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Figure 9. Positioning command examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Figure 10. Motion command examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Figure 11. OSCIN and OSCOUT pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Figure 12. Overcurrent detection - principle scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Figure 13. External switch connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Figure 14. Gate driving currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Figure 15. Device supply pin management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Figure 16. Predictive current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Figure 17. Non-predictive current control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Figure 18. Adaptive decay - fast decay tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Figure 19. Adaptive decay - switch from normal to slow + fast decay mode and vice versa . . . . . . . . 38Figure 20. Fast decay tuning during the falling steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Figure 21. Current sensing and reference voltage generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40Figure 22. SPI timings diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Figure 23. Daisy chain configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Figure 24. Command with 3-byte argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Figure 25. Command with 3-byte response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Figure 26. Command response aborted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Figure 27. HTSSOP38 package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70Figure 28. HTSSOP38 footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

  • Block diagram L6482

    8/73 DocID023768 Rev 6

    1 Block diagram

    Figure 1. Block diagram

    ADC

    Chargepump

    Vdd

    SP

    I

    Currentsensing

    STBY/RESET

    FLAG

    CS

    CK

    SDO

    SDI

    BUSY/SYNC

    SW

    STCK

    DGND

    VDD

    ADCIN

    VCC CP VBOOT

    PGND

    VS

    CORELOGIC

    VCC

    HVGA1

    LVGA1

    HVGA2

    LVGA2

    HVB1

    LVGB1

    OUTA1

    OUTA2

    OUTB1

    HVGB2

    LVGB2

    OUTB2

    Vboot

    Vboot

    Vboot

    Vboot

    VSENSEA

    VSENSEB

    AGND

    VCC

    VCC

    VCC

    Voltage reg. VCC

    VSREG VCC REG

    Ext. Osc. driver&

    Clock gen.

    OSCIN OSCOUT

    16 MHzOscillator

    Temperaturesensing

    VREG

    Voltage reg. VREG

    AM15031v1

  • DocID023768 Rev 6 9/73

    L6482 Electrical data

    73

    2 Electrical data

    2.1 Absolute maximum ratings

    Table 2. Absolute maximum ratings

    Symbol Parameter Test condition Value Unit

    VDD Logic interface supply voltage 5.5 V

    VREG Logic supply voltage 3.6

    VS Motor supply voltage 95 V

    VCC Low-side gate driver supply voltage 18 V

    VBOOT Boot voltage 100 V

    VBOOT High-side gate driver supply voltage (VBOOT - VS) 0 to 20 V

    VSREG Internal VCC regulator supply voltage 95 V

    VCCREG Internal VREG regulator supply voltage 18 V

    VOUT1A VOUT2A VOUT1B VOUT2B

    Full bridge output voltage

    DC -5 to VBOOT V

    AC -15 to VBOOT

    SRout Full bridge output slew rate (10% - 90%) 10 V/ns

    VHVG1A VHVG2A VHVG1B VHVG2B

    High-side output driver voltage VOUT to VBOOT V

    VHVG1A VHVG2A VHVG1B VHVG2B

    High-side output driver to respective bridge output voltage(VHVG - VOUT)

    15 V

    VLVG1A VLVG2A VLVG1B VLVG2B

    Low-side output driver voltage VCC + 0.3 V

    IGATE-CLAMP High-side gate voltage clamp current capability 100 mA

    VADCIN Integrated ADC input voltage range (ADCIN pin) -0.3 to 3.6 V

    Vout_diffDifferential voltage between VBOOT, VS, OUT1A, OUT2A, PGND and VBOOT, VS, OUT1B, OUT2B, PGND pins 100 V

    Vin Logic inputs voltage range -0.3 to 5.5 V

    Ts TOP Storage and operating junction temperature -40 to 150 C

    Ptot Total power dissipation (Tamb = 25 C) (1) 4 W

    1. HTSSOP38 mounted on a four-layer FR4 PCB with a dissipating copper surface of about 30 cm2.

  • Electrical data L6482

    10/73 DocID023768 Rev 6

    2.2 Recommended operating conditions

    2.3 Thermal data

    Table 3. Recommended operating conditionsSymbol Parameter Test condition Min. Typ. Max. Unit

    VDD Logic interface supply voltage3.3 V logic outputs 3.3

    V5 V logic outputs 5

    VREG Logic supply voltage 3.3 V

    VS Motor supply voltage VSREG 85 V

    VSREG Internal VCC voltage regulator VCC voltage internally generated VCC +3 Vs V

    VCC Gate driver supply voltageVCC voltage imposed by external source (VSREG = VCC)

    7.5 15 V

    VCCREGInternal VREG voltage regulator supply voltage VREG voltage internally generated 6.3 VCC V

    VADCIntegrated ADC input voltage (ADCIN pin) 0 VREG V

    Table 4. Thermal dataSymbol Parameter Package Typ. Unit

    Rthj-a Thermal resistance junction to ambient HTSSOP38(1) 31 C/W

    1. HTSSOP38 mounted on a four-layer FR4 PCB with a dissipating copper surface of about 30 cm2.

  • DocID023768 Rev 6 11/73

    L6482 Electrical characteristics

    73

    3 Electrical characteristics

    VS = 48 V; VCC = 7.5 V; Tj = 25 C, unless otherwise specified.

    Table 5. Electrical characteristicsSymbol Parameter Test condition Min. Typ. Max. Unit

    General

    VCCthOn VCC UVLO turn-on thresholdUVLO_VAL set high(1) 9.9 10.4 10.9 V

    UVLO_VAL set low(1) 6.5 6.9 7.3 V

    VCCthOff VCC UVLO turn-off thresholdUVLO_VAL set high(1) 9.5 10 10.5 V

    UVLO_VAL set low(1) 5.9 6.3 6.7 V

    VBOOTthOn VBOOT - VS UVLO turn-on thresholdUVLO_VAL set high(1) 8.6 9.2 9.8 V

    UVLO_VAL set low(1) 5.7 6 6.3 V

    VBOOTthOff VBOOT - VS UVLO turn-off thresholdUVLO_VAL set high(1) 8.2 8.8 9.5 V

    UVLO_VAL set low(1) 5.3 5.5 5.8 V

    VREGthOn VREG turn-on threshold (1) 2.8 3 3.18 V

    VREGthOff VREG turn-off threshold (1) 2.2 2.4 2.5 V

    IVREGquUndervoltage VREG quiescent supply current VCCREG = VREG < 2.2 V 40 A

    IVREGq Quiescent VSREG supply currentVCCREG = VREG = 3.3 V, internal oscillator selected(1)

    3.8 mA

    IVSREGq Quiescent VSREG supply current VCCREG = VREG = 15 V 6.5 mA

    Thermal protection

    Tj(WRN)Set Thermal warning temperature 135 C

    Tj(WRN)Rec Thermal warning recovery temperature 125 C

    Tj(OFF)Set Thermal bridge shutdown temperature 155 C

    Tj(OFF)RecThermal bridge shutdown recovery temperature 145 C

    Tj(SD)Set Thermal device shutdown temperature 170 C

    Tj(SD)RecThermal device shutdown recovery temperature 130 C

    Charge pump

    Vpump Voltage swing for charge pump oscillator VCC V

    fpump,minMinimum charge pump oscillator frequency(2) 660 kHz

    fpump,maxMaximum charge pump oscillator frequency(2) 800 kHz

  • Electrical characteristics L6482

    12/73 DocID023768 Rev 6

    RpumpHS Charge pump high-side RDS(on) resistance 10

    RpumpLS Charge pump low-side RDS(ON) resistance 10

    Iboot Average boot current 2.6 mA

    Gate driver outputs

    IGATE,SinkProgrammable high-side and low-side gate sink current

    VS = 38 VVHVGX - VOUTX > 3 VVLVGX > 3 V

    2.4 4 5.6

    mA

    5.4 8 10.6

    11.3 16 20.7

    17.3 24 30.7

    23.2 32 40.8

    50.2 64 77.8

    81 96 113

    IGATE,SourceProgrammable high-side and low-side gate source current

    VS = 38 VVBOOTX - VHVGX > 3.5 VVCC-VLVGX > 3.5 V

    2.8 4 5.2

    mA

    5.8 8 10.2

    12 16 20

    18 24 30

    24 32 40

    51 64 77

    82 96 112

    IOBHigh-side and low-side turn-off overboost gate current 85 103 117 mA

    RCLAMP(LS)Low-side gate driver Miller clamp resistance 6.5 10

    RCLAMP(HS)High-side gate driver Miller clamp resistance 3 10

    VGATE-CLAMP High-side gate voltage clamp IGATE-CLAMP = 100 mA 16.7 v

    tccProgrammable constant gate current time(2)

    TCC = 00000 125ns

    TCC = 11111 3750

    tOBProgrammable. Turn-off overboost; gate current time(2)

    TBOOST = 001, internal oscillator 62.5 ns

    TBOOST =111 1000

    IDSS Leakage currentOUT = VS 100 A

    OUT = GND -100 A

    tr Rise timeIGATE = 96 mAVCC = 15 VCGATE = 15 nF

    2.5 s

    Table 5. Electrical characteristics (continued)Symbol Parameter Test condition Min. Typ. Max. Unit

  • DocID023768 Rev 6 13/73

    L6482 Electrical characteristics

    73

    tf Fall time IGATE = 96 mAVCC = 15 VCGATE = 15 nF

    2.5 s

    SRgate Gate driver output slew rateIGATE = 96 mAVCC = 15 VCGATE = 15 nF

    6 V/s

    Deadtime and blanking

    tDT Programmable deadtime(2) TDT = '00000' 125

    nsTDT = 11111 4000

    tblank Programmable blanking time(2) TBLANK = '000' 125

    nsTBLANK = 111 1000

    Logic

    VIL Low level logic input voltage 0.8 V

    VIH High level logic input voltage 2 V

    IIH High level logic input current VIN = 5 V, VDDIO = 5 V 1 A

    IIL Low level logic input current VIN = 0 V, VDDIO = 5 V -1 A

    VOL Low level logic output voltage(3)VDD = 3.3 V, IOL = 4 mA 0.3

    VVDD = 5 V, IOL = 4 mA 0.3

    VOH High level logic output voltageVDD = 3.3 V, IOH = 4 mA 2.4

    VVDD = 5 V, IOH = 4 mA 4.7

    RPUCS CS pull-up resistor 430

    kRPDRST STBY/RESET pull-down resistor 450

    RPUSW SW pull-up resistor 80

    thigh,STCK Step-clock input high time 300 ns

    tlow,STCK Step-clock input low time 300 ns

    Internal oscillator and external oscillator driver

    fosc,int Internal oscillator frequency Tj = 25 C -5% 16 +5% MHz

    fosc,extProgrammable external oscillator frequency 8 32 MHz

    VOSCOUTH OSCOUT clock source high level voltage Internal oscillator 2.4 V

    VOSCOUTL OSCOUT clock source low level voltage Internal oscillator 0.3 V

    trOSCOUTtfOSCOUT

    OSCOUT clock source rise and fall time Internal oscillator 10 ns

    thigh OSCOUT clock source high timeInternal oscillator

    31.25 ns

    Table 5. Electrical characteristics (continued)Symbol Parameter Test condition Min. Typ. Max. Unit

  • Electrical characteristics L6482

    14/73 DocID023768 Rev 6

    textoscInternal to external oscillator switching delay 3 ms

    tintoscExternal to internal oscillator switching delay 100 s

    SPI

    fCK,MAX Maximum SPI clock frequency(4) 5 MHz

    trCKtfCK

    SPI clock rise and fall time(4) 1 s

    thCKtlCK

    SPI clock high and low time(4) 90 ns

    tsetCS Chip select setup time(4) 30 ns

    tholCS Chip select hold time (4) 30 ns

    tdisCS Deselect time(4) 625 ns

    tsetSDI Data input setup time(4) 20 ns

    tholSDI Data input hold time(4) 30 ns

    tenSDO Data output enable time(4) 95 ns

    tdisSDO Data output disable time(4) 95 ns

    tvSDO Data output valid time(4) 35 ns

    tholSDO Data output hold time(4) 0 ns

    Current control

    VREF, max Maximum reference voltage 1000 mV

    VREF, min Minimum reference voltage 7.8 mV

    Overcurrent protection

    VOCDProgrammable overcurrent detection voltage VDS threshold

    OCD_TH = 11111 800 1000 1100 mV

    OCD_TH = 00000 27 31 35 mV

    OCD_TH = 01001 270 312.5 344 mV

    OCD_TH = 10011 500 625 688 mV

    tOCD,Comp OCD comparator delay 100 200 ns

    tOCD,Flag OCD to flag signal delay time 230 530 ns

    tOCD,SD OCD to shutdown delay timeOCD_TH = '11111'OCD event to 90% of gate voltage

    400 630 ns

    Table 5. Electrical characteristics (continued)Symbol Parameter Test condition Min. Typ. Max. Unit

  • DocID023768 Rev 6 15/73

    L6482 Electrical characteristics

    73

    Standby

    ISTBYStandby mode supply current (VSREG pin)

    VCC = VCCREG = 7.5 V VSREG = 48 V

    42A

    VCC = VCCREG = 7.5 V VSREG = 18 V

    37.5

    ISTBY,vreg Standby mode supply current (VREG pin) 6 A

    tSTBY,min Minimum standby time 0.5 ms

    tlogicwu Logic power-on and wake-up time 500 s

    tcpwu Charge pump power-on and wake-up timePower bridges disabled,Cp = 10 nF, Cboot = 220 nF, VCC= 15 V

    1 ms

    Internal voltage regulators

    VCCOUTInternal VCC voltage regulator output voltage

    Low (default), ICC = 10 mA 7.3 7.5 V

    High, ICC = 10 mA 4 15

    VCCREG, drop VSREG to VCC dropout voltage ICC = 50 mA 3 V

    PCCInternal VCC voltage regulator power dissipation 2.5 W

    VREGOUTInternal VREG voltage regulator output voltage IREG = 10 mA

    3.135 3.3 V

    VSREG, drop VCCREG to VREG dropout voltage IREG = 50 mA 3 V

    IREGOUTInternal VREG voltage regulator output current

    VREG pin shorted to ground 125 mA

    IREGOUT,STBY

    Internal VREG voltage regulator output standby current

    VREG pin shorted to ground 55 mA

    PREGInternal VREG voltage regulator power dissipation 0.5 W

    Integrated analog-to-digital converter

    NADC Analog-to-digital converter resolution 5 bit

    VADC,refAnalog-to-digital converter reference voltage 3.3 V

    fSAnalog-to-digital converter sampling frequency

    (2) fOSC/512 kHz

    VADC,UVLO ADCIN UVLO threshold 1.05 1.16 1.35 V

    1. Guaranteed in the temperature range -25 to 125 C.2. The value accuracy is dependent on oscillator frequency accuracy (Section 6.8 on page 26).

    3. FLAG and BUSY open drain outputs included.

    4. See Figure 22 on page 41.

    Table 5. Electrical characteristics (continued)Symbol Parameter Test condition Min. Typ. Max. Unit

  • Pin connection L6482

    16/73 DocID023768 Rev 6

    4 Pin connection

    Pin list

    Figure 2. Pin connection (top view)

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    38

    37

    36

    35

    34

    33

    32

    31

    30

    29

    28

    27

    26

    25

    24

    23

    22

    21

    20

    VCCREG

    VCC

    CP

    VBOOT

    PGND

    ADCIN

    NC

    HVGA1

    LVGA1

    OUTA1

    HVGB1

    OUTB1

    LVGB1

    VS

    VSREG

    VREG

    OSCIN

    OSCOUT

    AGND

    VDDIO

    SW

    STCK

    DGND

    SDO

    SDI

    CK

    EPADHVGA2

    SENSEA

    SENSEB

    LVGA2

    OUTA2

    HVGB2

    OUTB2

    LVGB2

    CS

    FLAG

    STBY/RESET

    BUSY/SYNC

    AM15032v1

    Table 6. Pin descriptionNo. Name Type Function

    11 VCCREG Power supply Internal VREG voltage regulator supply voltage

    13 VREG Power supply Logic supply voltage

    27 VDD Power supply Logic interface supply voltage

    12 VSREG Power supply Internal VCC voltage regulator supply voltage

    10 VCC Power supply Gate driver supply voltage

    14 OSCIN Analog input Oscillator pin1. To connect an external oscillator or clock source.

    15 OSCOUT Analog output Oscillator pin2. To connect an external oscillator. When the internal oscillator is used, this pin can supply a 2/4/8/16 MHz clock.

    9 CP Output Charge pump oscillator output

    7 VBOOT Power supply Bootstrap voltage needed for driving the high-side power DMOS of both bridges (A and B).

    5 ADCIN Analog input Internal analog-to-digital converter input

    6 VS Power supply Motor voltage

  • DocID023768 Rev 6 17/73

    L6482 Pin connection

    73

    3 HVGA1 Power output High-side half-bridge A1 gate driver output

    36 HVGA2 Power output High-side half-bridge A2 gate driver output

    17 HVGB1 Power output High-side half-bridge B1 gate driver output

    22 HVGB2 Power output High-side half-bridge B2 gate driver output

    1 LVGA1 Power output Low-side half-bridge A1 gate driver output

    38 LVGA2 Power output Low-side half-bridge A2 gate driver output

    19 LVGB1 Power output Low-side half-bridge B1 gate driver output

    20 LVGB2 Power output Low-side half-bridge B2 gate driver output

    8 PGND Ground Power ground pins. They must be connected to other ground pins

    35 SENSEA Analog input Phase A current sensing input

    23 SENSEB Analog input Phase B current sensing input

    2 OUTA1 Power input Full bridge A output 1

    37 OUTA2 Power input Full bridge A output 2

    18 OUTB1 Power input Full bridge B output 1

    21 OUTB2 Power input Full bridge B output 2

    16 AGND Ground Analog ground. It must be connected to other ground pins

    33 SW Logical input External switch input pin

    29 DGND Ground Digital ground. It must be connected to other ground pins

    28 SDO Logical output Data output pin for serial interface

    26 SDI Logical input Data input pin for serial interface

    25 CK Logical input Serial interface clock

    24 CS Logical input Chip select input pin for serial interface

    30 BUSY/SYNC Open drain output

    By default, the BUSY / SYNC pin is forced low when the device is performing a command.The pin can be programmed in order to generate a synchronization signal.

    31 FLAG Open drain output

    Status flag pin. An internal open drain transistor can pull the pin to GND when a programmed alarm condition occurs (step loss, OCD, thermal pre-warning or shutdown, UVLO, wrong command, non-performable command).

    34STBY

    RESETLogical input

    Standby and reset pin. LOW logic level puts the device in Standby mode and reset logic.If not used, it should be connected to VREG.

    32 STCK Logical input Step-clock input

    EPAD Exposed pad Ground Exposed pad. It must be connected to other ground pins.

    Table 6. Pin description (continued)No. Name Type Function

  • Typical applications L6482

    18/73 DocID023768 Rev 6

    5 Typical applications

    Figure 3. Typical application schematic

    Table 7. Typical application valuesName Value

    CVSPOL 220 F

    CVS 220 nF

    CBOOT 470 nF

    CFLY 47 nF

    CVSREG 100 nF

    CVCC 470 nF

    CVCCREG 100 nF

    CVREG 100 nF

    CVREGPOL 22 F

    CVDD 100 nF

    D1 Charge pump diodes

    Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8 STD25N10F7

    RPU 39 k

    RSENSE 0.2 (maximum phase current 5 A)

    CK

    SDO

    SDI

    SW

    STCK

    DGND

    VDD

    ADCIN

    Analog signal

    VCC CP VBOOT

    PGND

    VS

    STBY/RESET

    FLAG

    CS

    BUSY/SYNCHVGA1

    L VGA1

    LVGA2

    HVGA2

    HVGB1

    LVGB1

    OUTA1

    OUTA2

    OUTB1

    LVGB2

    HVGB2

    SENSEB

    OUTB2

    SENSEA

    AGND

    VSREGVCCREG

    OSCIN

    OSCOUT

    VREG

    L6482

    CFLY

    CVS

    CVCCCVCCREGCVDD

    CVSREG

    CBOOT CVSPOL

    VS

    C VREG

    CVREGPOL

    (10.5V - 85V )

    D1

    Q1 Q2

    Q4Q3

    RSENSE

    RSENSE

    Q5 Q6

    Q8Q7

    Motor

    RPU

    RPU

    HOST

    AM15033v1

  • DocID023768 Rev 6 19/73

    L6482 Functional description

    73

    6 Functional description

    6.1 Device power-upDuring power-up, the device is under reset (all logic IOs disabled and power bridges in high impedance state) until the following conditions are satisfied: VREG is greater than VREGthOn Internal oscillator is operative STBY/RESET input is forced high.

    After power-up, the device state is the following: Parameters are set to default Internal logic is driven by internal oscillator and a 2-MHz clock is provided by the

    OSCOUT pin Bridges are disabled (high impedance). FLAG output is forced low (UVLO failure indication).

    After power-up, a period of tlogicwu must pass before applying a command to allow proper oscillator and logic startup.

    Any movement command makes the device exit from High Z state (HardStop and SoftStop included).

    6.2 Logic I/OPins CS, CK, SDI, STCK, SW and STBY/RESET are TTL/CMOS 3.3 V -5 V compatible logic inputs.

    Pin SDO is a TTL/CMOS compatible logic output. VDD pin voltage imposes a logical output voltage range.

    Pins FLAG and BUSY/SYNC are open drain outputs.

    SW and CS inputs are internally pulled up to VDD and STBY/RESET input is internally pulled down to ground.

    6.3 Charge pumpTo ensure the correct driving of the high-side gate drivers, a voltage higher than the motor power supply voltage needs to be applied to the VBOOT pin. The high-side gate driver supply voltage VBOOT is obtained through an oscillator and a few external components realizing a charge pump (see Figure 4).

  • Functional description L6482

    20/73 DocID023768 Rev 6

    Figure 4. Charge pump circuitry

    6.4 MicrosteppingThe driver is able to divide the single step into up to 16 microsteps. Stepping mode can be programmed by the STEP_SEL parameter in the STEP_MODE register (Table 22 on page 50).

    Step mode can only be changed when bridges are disabled. Every time the step mode is changed, the electrical position (i.e. the point of microstepping sine wave that is generated) is reset to zero and the absolute position counter value (Section 6.5) becomes meaningless.

    Figure 5. Normal mode and microstepping (16 microsteps)

    VS

    VS + VCP D1 D2

    VCP

    fPUMP

    to high-sidegate drivers

    VS + VCP VD1

    CBOOT

    CFLYD1D2

    VBOOT CP

    VDD

    V V

    Charge pump oscillator

    AM15034v1

    step 1 step 1step 2 step 3 step 4 step 1

    Resetposition

    step 1step 2 step 3 step 4

    Normal driving Microstepping

    PHASE A currentPHASE B current

    PHASE A currentPHASE B current

    microsteps

    1616

    microsteps

    16 16

    Resetposition

    microsteps microsteps microsteps

    AM15035v1

  • DocID023768 Rev 6 21/73

    L6482 Functional description

    73

    Automatic Full-step and Boost modesWhen motor speed is greater than a programmable full-step speed threshold, the L6482 device switches automatically to Full-step mode; the driving mode returns to microstepping when motor speed decreases below the full-step speed threshold.

    The switching between the microstepping and Full-step mode and vice versa is always performed at an electrical position multiple of /4 (Figure 6 and Figure 7).

    Full-step speed threshold is set through the related parameter in the FS_SPD register (Section 9.1.9 on page 47).

    When the BOOST_MODE bit of the FS_SPD register is low (default), the amplitude of the voltage squarewave in Full-step mode is equal to the peak of the voltage sine wave multiplied by sine(/4) (Figure 6). This avoids the current drop between the two driving modes.

    When the BOOST_MODE bit of the FS_SPD register is high, the amplitude of the voltage squarewave in Full-step mode is equal to the peak of the voltage sine wave (Figure 7). That improves the output current increasing the maximum motor torque.

    Figure 6. Automatic Full-step switching in Normal mode

    Phase A

    Phase B

    (2N+1) x /4 (2N+1) x /4

    Full-StepMicrostepping Microstepping

    Vpeaksin( /4 )x Vpeak

    AM15036v1

  • Functional description L6482

    22/73 DocID023768 Rev 6

    Figure 7. Automatic Full-step switching in Boost mode

    6.5 Absolute position counterAn internal 22-bit register (ABS_POS) records all the motor motions according to the selected step mode; the stored value unit is equal to the selected step mode (full, half, quarter, etc.). The position range is from -221 to +221-1 steps (see Section 9.1.1 on page 44).

    6.6 Programmable speed profilesThe user can easily program a customized speed profile defining independently acceleration, deceleration, and maximum and minimum speed values by ACC, DEC, MAX_SPEED and MIN_SPEED registers respectively (see Section 9.1.5 on page 45, 9.1.6 on page 45, 9.1.7 on page 46 and 9.1.8 on page 46).

    When a command is sent to the device, the integrated logic generates the microstep frequency profile that performs a motor motion compliant to speed profile boundaries.

    All acceleration parameters are expressed in step/tick2 and all speed parameters are expressed in step/tick; the unit of measurement does not depend on the selected step mode. Acceleration and deceleration parameters range from 2-40 to (212-2) 2-40 step/tick2 (equivalent to 14.55 to 59590 step/s2).

    Minimum speed parameter ranges from 0 to (212-1) 2-24 step/tick (equivalent to 0 to 976.3 step/s).

    Maximum speed parameter ranges from 2-18 to (210-1) 2-18 step/tick (equivalent to 15.25 to 15610 step/s).

    Phase A

    Phase B

    (2N+1) x /4 (2N+1) x /4

    Full-StepMicrostepping Microstepping

    Vpeak

    Vpeak

    AM15037v1

  • DocID023768 Rev 6 23/73

    L6482 Functional description

    73

    6.7 Motor control commandsThe L6482 can accept different types of commands: constant speed commands (Run, GoUntil, ReleaseSW) absolute positioning commands (GoTo, GoTo_DIR, GoHome, GoMark) motion commands (Move) stop commands (SoftStop, HardStop, SoftHiz, HardHiz).

    For detailed command descriptions refer to Section 9.2 on page 60.

    6.7.1 Constant speed commandsA constant speed command produces a motion in order to reach and maintain a user-defined target speed starting from the programmed minimum speed (set in the MIN_SPEED register) and with the programmed acceleration/deceleration value (set in the ACC and DEC registers). A new constant speed command can be requested anytime.

    Figure 8. Constant speed command examples

    6.7.2 Positioning commandsAn absolute positioning command produces a motion in order to reach a user-defined position that is sent to the device together with the command. The position can be reached performing the minimum path (minimum physical distance) or forcing a direction (see Figure 9).

    Performed motor motion is compliant to programmed speed profile boundaries (acceleration, deceleration, minimum and maximum speed).

    Note that with some speed profiles or positioning commands, the deceleration phase can start before the maximum speed is reached.

    AM15039v1

    SPD1

    SPD2

    SPD3

    SPD4

    Run(SPD2,FW)

    time

    Speed(step frequency)

    Run(SPD3,FW)

    Run(SPD1,FW)

    Run(SPD4,BW)

    Minimum speed

    Minimum speed

  • Functional description L6482

    24/73 DocID023768 Rev 6

    Figure 9. Positioning command examples

    6.7.3 Motion commandsMotion commands produce a motion in order to perform a user-defined number of microsteps in a user-defined direction that are sent to the device together with the command (see Figure 10).

    Performed motor motion is compliant to programmed speed profile boundaries (acceleration, deceleration, minimum and maximum speed).

    Note that with some speed profiles or motion commands, the deceleration phase can start before the maximum speed is reached.

    Figure 10. Motion command examples

    AM15040v1

    Forwarddirection

    0

    -2 21 +2 21-1

    0

    -2 21 +2 21-1

    Presentposition

    Targetposition

    Presentposition

    Targetposition

    GoTo(Target pos) GoTo_DIR(Target pos,FW)

    programmedACCELERATION

    SPEED

    programmedmaximum

    speed

    programmedminimum

    speed

    time

    programmedDECELERATION

    programmed number of microsteps

    programmedACCELERATION

    SPEED

    programmedmaximum

    speed

    programmedminimum

    speed

    time

    programmedDECELERATION

    programmed number of microsteps

    Note: with someAcceleration/Decelaration profiles the programmed maximum speed

    is never reached

    AM15041v1

  • DocID023768 Rev 6 25/73

    L6482 Functional description

    73

    6.7.4 Stop commandsA stop command forces the motor to stop. Stop commands can be sent anytime.

    The SoftStop command causes the motor to decelerate with a programmed deceleration value until the MIN_SPEED value is reached and then stops the motor keeping the rotor position (a holding torque is applied).

    The HardStop command stops the motor instantly, ignoring deceleration constraints and keeping the rotor position (a holding torque is applied).

    The SoftHiZ command causes the motor to decelerate with a programmed deceleration value until the MIN_SPEED value is reached and then forces the bridges into high impedance state (no holding torque is present).

    The HardHiZ command instantly forces the bridges into high impedance state (no holding torque is present).

    6.7.5 Step-clock modeIn Step-clock mode the motor motion is defined by the step-clock signal applied to the STCK pin. At each step-clock rising edge, the motor is moved one microstep in the programmed direction and the absolute position is consequently updated.

    When the system is in Step-clock mode, the SCK_MOD flag in the STATUS register is raised, the SPEED register is set to zero and the motor status is considered stopped regardless of the STCK signal frequency (the MOT_STATUS parameter in the STATUS register equal to 00).

    6.7.6 GoUntil and ReleaseSW commandsIn most applications the power-up position of the stepper motor is undefined, so an initialization algorithm driving the motor to a known position is necessary.

    The GoUntil and ReleaseSW commands can be used in combination with external switch input (see Section 6.14 on page 30) to easily initialize the motor position.

    The GoUntil command makes the motor run at target constant speed until the SW input is forced low (falling edge). When this event occurs, one of the following actions can be performed: ABS_POS register is set to zero (home position) and the motor decelerates to zero

    speed (as a SoftStop command) ABS_POS register value is stored in the MARK register and the motor decelerates to

    zero speed (as a SoftStop command).

    If the SW_MODE bit of the CONFIG register is set to 0, the motor does not decelerate but it immediately stops (as a HardStop command).

    The ReleaseSW command makes the motor run at a programmed minimum speed until the SW input is forced high (rising edge). When this event occurs, one of the following actions can be performed: ABS_POS register is set to zero (home position) and the motor immediately stops

    (as a HardStop command) ABS_POS register value is stored in the MARK register and the motor immediately

    stops (as a HardStop command).

    If the programmed minimum speed is less than 5 step/s, the motor is driven at 5 step/s.

  • Functional description L6482

    26/73 DocID023768 Rev 6

    6.8 Internal oscillator and oscillator driverThe control logic clock can be supplied by the internal 16-MHz oscillator, an external oscillator (crystal or ceramic resonator) or a direct clock signal.

    These working modes can be selected by EXT_CLK and OSC_SEL parameters in the CONFIG register (see Table 35 on page 56).

    At power-up the device starts using the internal oscillator and provides a 2-MHz clock signal on the OSCOUT pin.

    Attention: In any case, before changing clock source configuration, a hardware reset is mandatory. Switching to different clock configurations during operation may cause unexpected behavior.

    6.8.1 Internal oscillatorIn this mode the internal oscillator is activated and OSCIN is unused. If the OSCOUT clock source is enabled, the OSCOUT pin provides a 2, 4, 8 or 16-MHz clock signal (according to OSC_SEL value); otherwise it is unused (see Figure 11).

    6.8.2 External clock sourceTwo types of external clock source can be selected: crystal/ceramic resonator or direct clock source. Four programmable clock frequencies are available for each external clock source: 8, 16, 24 and 32-MHz.

    When an external crystal/resonator is selected, the OSCIN and OSCOUT pins are used to drive the crystal/resonator (see Figure 11). The crystal/resonator and load capacitors (CL) must be placed as close as possible to the pins. Refer to Table 8 for the choice of the load capacitor value according to the external oscillator frequency.

    If a direct clock source is used, it must be connected to the OSCIN pin and the OSCOUT pin supplies the inverted OSCIN signal (see Figure 11).

    The L6482 integrates a clock detection system that resets the device in the case of a failure of the external clock source (direct or crystal/resonator). The monitoring of the clock source is disabled by default, it can be enabled setting high the WD_EN bit in the GATECFG1

    Table 8. CL values according to external oscillator frequencyCrystal/resonator frequency (1)

    1. First harmonic resonance frequency.

    CL(2)

    2. Lower ESR value allows greater load capacitors to be driven.

    8 MHz 25 pF (ESRmax = 80 )

    16 MHz 18 pF (ESRmax = 50 )

    24 MHz 15 pF (ESRmax = 40 )

    32 MHz 10 pF (ESRmax = 40 )

  • DocID023768 Rev 6 27/73

    L6482 Functional description

    73

    register (Section 9.1.18 on page 52). When the external clock source is selected, the device continues to work with the integrated oscillator for textosc milliseconds and then the clock management system switches to the OSCIN input.

    Figure 11. OSCIN and OSCOUT pin configuration

    Note: When OSCIN is UNUSED, it should be left floating.When OSCOUT is UNUSED, it should be left floating.

    6.9 Overcurrent detectionThe L6482 measures the load current of each half-bridge sensing the VDS voltage of all the Power MOSFETs (Figure 12). When any of the VDS voltages rise above the programmed threshold, the OCD flag in the STATUS register is forced low until the event expires and a GetStatus command is sent to the device (Section 9.1.21 on page 58 and Section 9.2.20 on page 69). The overcurrent event expires when all the Power MOSFET VDS voltages fall below the programmed threshold.

    The overcurrent threshold can be programmed by the OCD_TH register in one of 32 available values ranging from 31.25 mV to 1 V with steps of 31.25 mV (Table 21 on page 50 and Section 9.1.17 on page 52).

    UNUSED

    OSCIN OSCOUT OSCIN OSCOUT

    OSCIN OSCOUT

    2/4/8/16 MHz

    8/16/24/32 MHz

    8/16/24/32 MHz

    External oscillatorconfiguration

    External clock sourceconfiguration

    Internal oscillatorconfiguration

    with clock generation

    OSCIN OSCOUT

    Internal oscillatorconfiguration

    without clock source

    UNUSED UNUSED

    OSC_SEL = "1xx"

    OSC_SEL = "0xx"

    CL CL

    EXT_CLK = "0" EXT_CLK = "1"

    AM15042v1

  • Functional description L6482

    28/73 DocID023768 Rev 6

    Figure 12. Overcurrent detection - principle scheme

    The overcurrent detection comparators are disabled, in order to avoid wrong voltage measurements, in the following cases: The respective half-bridge is in high impedance state (both MOSFETs forced off) The respective half-bridge is commutating The respective half-bridge is commutated and the programmed blanking time has not

    yet elapsed The respective gate is turned off.

    It is possible to set, if an overcurrent event causes the bridge turn-off or not, through the OC_SD bit in the CONFIG register.

    When the power bridges are turned off by an overcurrent event, they cannot be turned on until the OCD flag is released by a GetStatus command.

    6.10 Undervoltage lockout (UVLO)The L6482 provides a programmable gate driver supply voltage UVLO protection. When one of the supply voltages of the gate driver (VCC for the low sides and VBOOT - VS for the high sides) falls below the respective turn-off threshold, an undervoltage event occurs. In this case, all MOSFETs are immediately turned off and the UVLO flag in the STATUS register is forced low.

    The UVLO flag is forced low and the MOSFETs are kept off until the gate driver supply voltages return to above the respective turn-on threshold; in this case the undervoltage event expires and the UVLO flag can be released through a GetStatus command.

    The UVLO thresholds can be selected between two sets according to the UVLOVAL bit value in the CONFIG register.

    HVGxx

    OUTxx

    LVGxx

    Vs

    GNDx

    +

    -

    +

    -

    BLANKING

    OCD_HSxx

    OCD_LSxx

    CURRENTDACOC

    THRESHOLD

    GND

    Vs

    GND

    LOGIC CORE

    VoltageComparator

    VoltageComparator

    AM15043v1

  • DocID023768 Rev 6 29/73

    L6482 Functional description

    73

    6.11 VS undervoltage lockout (UVLO_ADC)The device provides an undervoltage signal of the integrated ADC input voltage (the UVLO_ADC flag in the STATUS register). When VADCIN falls below the VADC,UVLO value, the UVLO_ADC flag is forced low and it is kept in this state until the ADCIN voltage is greater than VADC,UVLO and a GetStatus command is sent to the device.

    The ADCIN undervoltage event does not turn off the MOSFETs of the power bridges.

    The motor supply voltage undervoltage detection can be performed by means of this feature, connecting the ADCIN pin to VS through a voltage divider.

    6.12 Thermal warning and thermal shutdownAn integrated sensor allows detection of the internal temperature and implementation of a 3-level protection.

    When the Tj(WRN)Set threshold is reached, a warning signal is generated. This is the thermal warning condition and it expires when the temperature falls below the Tj(WRN)Rel threshold.

    When the Tj(OFF)Set threshold is reached, all the MOSFETs are turned off and the gate driving circuitry is disabled (Miller clamps are still operative). This condition expires when the temperature falls below the Tj(OFF)Rel threshold.

    When the Tj(SD)OFF threshold is reached, all the MOSFETs are turned off using Miller clamps, the internal VCC voltage regulator is disabled and the current capability of the internal VREG voltage regulator is reduced (thermal shutdown). In this condition, logic is still active (if supplied). The thermal shutdown condition only expires when the temperature goes below Tj(SD)ON.

    The thermal condition of the device is shown by TH_STATUS bits in the STATUS register (Table 10).

    Table 9. UVLO thresholds

    ParameterUVLOVAL

    0 1

    Low-side gate driver supply turn-off threshold (VCCthOff) 6.3 V 10 V

    Low-side gate driver supply turn-on threshold (VCCthOn) 6.9 V 10.4 V

    High-side gate driver supply turn-off threshold (VBOOTthOff) 5.5 V 8.8 V

    High-side gate driver supply turn-on threshold (VBOOTthOff) 6 V 9.2 V

  • Functional description L6482

    30/73 DocID023768 Rev 6

    6.13 Reset and standbyThe device can be reset and put into Standby mode through the STBY/RESET pin. When it is forced low, all the MOSFETs are turned off (High Z state), the charge pump is stopped, the SPI interface and control logic are disabled and the internal VREG voltage regulator maximum output current is limited; as a result, the L6482 device heavily reduces the power consumption. At the same time the register values are reset to their default and all the protection functions are disabled. The STBY/RESET input must be forced low at least for tSTBY,min in order to ensure the complete switch to Standby mode.

    On exiting Standby mode, as well as for IC power-up, a delay must be given before applying a new command to allow proper oscillator and charge pump startup. Actual delay could vary according to the values of the charge pump external components.

    On exiting Standby mode all the MOSFETs are off and the HiZ flag is high.

    The registers can be reset to the default values without putting the device into Standby mode through the ResetDevice command (Section 9.2.15 on page 67).

    6.14 External switch (SW pin)The SW input is internally pulled up to VDD and detects if the pin is open or connected to ground (see Figure 13).

    The SW_F bit of the STATUS register indicates if the switch is open (0) or closed (1) (Section 9.1.21 on page 58); the bit value is refreshed at every system clock cycle (125 ns). The SW_EVN flag of the STATUS register is raised when a switch turn-on event (SW input falling edge) is detected (Section 9.1.21). A GetStatus command releases the SW_EVN flag (Section 9.2.20 on page 69).

    By default, a switch turn-on event causes a HardStop interrupt (SW_MODE bit of the CONFIG register set to 0). Otherwise (SW_MODE bit of the CONFIG register set to 1), switch input events do not cause interrupts and the switch status information is at the users disposal (Table 36 on page 56 and Section 9.1.20 on page 55).

    Table 10. Thermal protection summarizing tableState Set condition Release condition Description TH_STATUS

    Normal Normal operation state 00

    Warning Tj > Tj(WRN)Set Tj > Tj(WRN)RelTemperature warning: operation is

    not limited 01

    Bridge shutdown Tj > Tj(OFF)Set Tj > Tj(OFF)RelHigh temperature protection: the MOSFETs are turned off and the

    gate drivers are disabled10

    Device shutdown Tj > Tj(SD)Set Tj > Tj(SD)Rel

    Overtemperature protection: the MOSFETs are turned off, the gate drivers are disabled, the internal

    VCC voltage regulator is disabled, the current capability of the

    internal VREG voltage regulator is limited, and the charge pump is

    disabled

    11

  • DocID023768 Rev 6 31/73

    L6482 Functional description

    73

    The switch input can be used by GoUntil and ReleaseSW commands as described in Section 9.2.10 on page 65 and Section 9.2.11 on page 66.

    If the SW input is not used, it should be connected to VDD.

    6.15 Programmable gate driversThe L6482 integrates eight programmable gate drivers that allow the fitting of a wide range of applications.

    The following parameters can be adjusted: gate sink/source current (IGATE) controlled current time (tCC) turn-off overboost time (tOB).

    During turn-on, the gate driver charges the gate forcing an IGATE current for all the controlled current time period. At the end of the controlled current phase the gate of the external MOSFET should be completely charged, otherwise the gate driving circuitry continues to charge it using a holding current.

    This current is equal to IGATE for the low-side gate drivers and 1 mA for the high-side ones.

    During turn-off, the gate driver discharges the gate sinking an IGATE current for all the controlled current time period. At the beginning of turn-off an overboost phase can be added: in this case the gate driver sinks an IOB current for the programmed tOB period in order to rapidly reach the plateau region. At the end of the controlled current time the gate of the external MOSFET should be completely charged, otherwise the gate driving circuitry discharges it using the integrated Miller clamp.

    Figure 13. External switch connection

    AM15044v1

    ExternalSwitch

    SW

    VDD

  • Functional description L6482

    32/73 DocID023768 Rev 6

    The gate current can be set to one of the following values: 4, 8, 16, 24, 32, 64 and 96 mA through the IGATE parameter in the GATECFG1 register (see Section 9.1.18 on page 52).

    Controlled current time can be programmed within range from 125 ns to 3.75 s with a resolution of 125 ns (TCC parameter in the GATECFG1 register) (see Section 9.1.18).

    Turn-off overboost time can be set to one of the following values: 0, 62.5, 125, 250 ns (TBOOST parameter in the GATECFG1 register). The 62.5 ns value is only available when clock frequency is 16 MHz or 32 MHz; when clock frequency is 8 MHz it is changed to 125 ns and when a 24-MHz clock is used it is changed to 83.3 ns. (see Section 9.1.18).

    6.16 Deadtime and blanking timeDuring the bridge commutation, a deadtime is added in order to avoid cross conductions. The deadtime can be programmed within a range from 125 ns to 4 s with a resolution of 125 ns (TDT parameter in the GATECFG2 register) (see Section 9.1.19 on page 54).

    At the end of each commutation the overcurrent and stall detection comparators are disabled (blanking) in order to avoid the respective systems detecting body diode turn-off current peaks.

    The duration of blanking time is programmable through the TBLANK parameter in the GATECFG2 register at one of the following values: 125, 250, 375, 500, 625, 750, 875, 1000 ns (see Section 9.1.19).

    6.17 Integrated analog-to-digital converterThe L6482 integrates an NADC bit ramp-compare analog-to-digital converter with a reference voltage equal to VREG. The analog-to-digital converter input is available through the ADCIN pin and the conversion result is available in the ADC_OUT register (Section 9.1.14 on page 50).

    The ADC_OUT value can be used for torque regulation or can be at the users disposal.

    Figure 14. Gate driving currents

    Gate Current

    Gate turn-on

    Igate Igate

    IOBtCC

    tOBtCCGate charged

    Gate discharged

    Gate turn-offAM15045v1

  • DocID023768 Rev 6 33/73

    L6482 Functional description

    73

    6.18 Supply management and internal voltage regulatorsThe L6482 integrates two linear voltage regulators: the first one can be used to obtain gate driver supply starting from a higher voltage (e.g. the motor supply one). Its output voltage can be set to 7.5 V or 15 V according to the VCCVAL bit value (CONFIG register). The second linear voltage regulator can be used to obtain the 3.3 V logic supply voltage.

    The regulators are designed to supply the internal circuitry of the IC and should not be used to supply external components.

    The input and output voltages of both regulators are connected to external pins and the regulators are totally independent: in this way a very flexible supply management can be performed using external components or external supply voltages (Figure 15).

    Figure 15. Device supply pin management

    If VCC is externally supplied, the VSREG and VCC pins must be shorted (VSREG must be compliant with VCC range).

    If VREG is externally supplied, the VCCREG and VREG pins must be shorted and equal to 3.3 V.

    VSREG must be always less than VBOOT in order to avoid related ESD protection diode turn-on. The device can be protected from this event by adding an external low drop diode between the VSREG and VS pins, charge pump diodes should be low drop too.

    VCCREG must be always less than VCC in order to avoid ESD protection diode turn-on. The device can be protected from this event by adding an external low drop diode between the VCCREG and VSREG pins.

    Both regulators provide a short-circuit protection limiting the load current within the respective maximum ratings.

    VBOOT

    CP

    VS

    VSREG

    VCC

    VCCREG

    VREG

    7V5 - 15V

    3V3

    VBOOT

    CP

    VS

    VSREG

    VCC

    VCCREG

    VREG

    7V5 - 15V

    3V3

    VBUS

    Using external components (zener diodes, resistors, ...) it is possible to reduce internal power dissipation constrains.

    VBUS

    VCC

    3.3 V

    All voltages are internally generated All voltages are externally supplied

    AM15046v1

  • Functional description L6482

    34/73 DocID023768 Rev 6

    6.19 BUSY/SYNC pinThis pin is an open drain output which can be used as busy flag or synchronization signal according to the SYNC_EN bit value (STEP_MODE register) (see Section 9.1.17 on page 52).

    6.20 FLAG pinBy default, an internal open drain transistor pulls the FLAG pin to ground when at least one of the following conditions occurs: Power-up or standby/reset exit Overcurrent detection Thermal warning Thermal shutdown UVLO UVLO on ADC input Switch turn-on event Command error.

    It is possible to mask one or more alarm conditions by programming the ALARM_EN register (see Section 9.1.17 and Table 26 on page 52). If the corresponding bit of the ALARM_EN register is low, the alarm condition is masked and it does not cause a FLAG pin transition; all other actions imposed by alarm conditions are performed anyway. In case of daisy chain configuration, FLAG pins of different ICs can be OR-wired to save host controller GPIOs.

  • DocID023768 Rev 6 35/73

    L6482 Phase current control

    73

    7 Phase current control

    The L6482 performs a new current control technique, named predictive current control, allowing the device to obtain the target average phase current. This method is described in detail in Section 7.1. Furthermore, the L6482 automatically selects the better decay mode in order to follow the current profile.

    Current control algorithm parameters can be programmed by T_FAST, TON_MIN, TOFF_MIN and CONFIG registers (see Section 9.1.11 on page 48, 9.1.12 on page 48, 9.1.13 on page 49 and 9.1.20 on page 55 for details).

    Different current amplitude can be set for acceleration, deceleration and constant speed phases and when the motor is stopped through TVAL_ACC, TVAL_DEC, TVAL_RUN and TVAL_HOLD registers (see Section 9.1.10 on page 47). The output current amplitude can also be regulated by the ADCIN voltage value (see Section 7.4 on page 39).

    Each bridge is driven by an independent control system that shares with the other bridge the control parameters only.

    7.1 Predictive current controlUnlike classical peak current control systems, that make the phase current decay when the target value is reached, this new method keeps the power bridge ON for an extra time after reaching the current threshold.

    At each cycle the system measures the time required to reach the target current (tSENSE). After that the power stage is kept in a predictive ON state (tPRED) for a time equal to the mean value of tSENSE in the last two control cycles (actual one and previous one), as shown in Figure 16.

    Figure 16. Predictive current control

    At the end of the predictive ON state the power stage is set in OFF state for a fixed time, as in a constant tOFF current control. During the OFF state both slow and fast decay can be

    predictive ONstate

    OFFstate

    tSENSE (n-1) tOFFtOFF

    tPRED(n) =tSENSE (n-1) + tSENSE(n)

    2

    Iref

    Iout

    tPRED

    (n-1) tSENSE (n)

    tPRED(n)

    AM15048v1

  • Phase current control L6482

    36/73 DocID023768 Rev 6

    performed; the better decay combination is automatically selected by the L6482 device, as described in Section 7.2.

    As shown in Figure 16, the system is able to center the triangular wave on the desired reference value, improving dramatically the accuracy of the current control system: in fact the average value of a triangular wave is exactly equal to the middle point of each of its segment and at steady-state the predictive current control tends to equalize the duration of the tSENSE and the tPRED time.

    Furthermore, the tOFF value is recalculated each time a new current value is requested (microstep change) in order to keep the PWM frequency as near as possible to the programmed one (TSW parameter in the CONFIG register).

    The device can be forced to work using classic peak current control setting low the PRED_EN bit in the CONFIG register (default condition). In this case, after the sense phase (tSENSE) the power stage is set in OFF state, as shown in Figure 17.

    Figure 17. Non-predictive current control

    7.2 Auto-adjusted decay modeDuring the current control, the device automatically selects the better decay mode in order to follow the current profile reducing the current ripple.

    At reset, the off-time is performed turning on both the low-side MOS of the power stage and the current recirculates in the lower half of the bridge (slow decay).

    If, during a PWM cycle, the target current threshold is reached in a time shorter than the TON_MIN value, a fast decay of TOFF_FAST/8 (T_FAST register) is immediately performed turning on the opposite MOS of both half-bridges and the current recirculates back to the supply bus.

    After this time, the bridge returns to ON state: if the time needed to reach the target current value is still less than TON_MIN, a new fast decay is performed with a period twice the previous one. Otherwise, the normal control sequence is followed as described in Section 7.1. The maximum fast decay duration is set by the TOFF_FAST value.

    sense ONstate

    OFFstate

    tOFFtOFF

    Iref

    Iout

    AM15049v1

  • DocID023768 Rev 6 37/73

    L6482 Phase current control

    73

    Figure 18. Adaptive decay - fast decay tuning

    When two or more fast decays are performed with the present target current, the control system adds a fast decay at the end of every off-time keeping the OFF state duration constant (tOFF is split into tOFF,SLOW and tOFF,FAST). When the current threshold is increased by a microstep change (rising step), the system returns to normal decay mode (slow decay only) and the tFAST value is halved.

    Stopping the motor or reaching the current sine wave zero crossing causes the current control system to return to the reset state.

  • Phase current control L6482

    38/73 DocID023768 Rev 6

    7.3 Auto-adjusted fast decay during the falling stepsWhen the target current is decreased by a microstep change (falling step), the device performs a fast decay in order to reach the new value as fast as possible. However, exceeding the fast duration could cause a strong ripple on the step change. The L6482 device automatically adjusts these fast decays reducing the current ripple.

    At reset the fast decay value (tFALL) is set to FALL_STEP/4 (T_FAST register). The tFALL value is doubled every time, within the same falling step, an extra fast decay is necessary to obtain an on-time greater than TON_MIN (see Section 9.1.12 on page 48). The maximum tFALL value is equal to FALL_STEP.

    At the next falling step, the system uses the last tFALL value of the previous falling step.

    Stopping the motor or reaching the current sine wave zero crossing causes the current control system to return to the reset state.

    Figure 19. Adaptive decay - switch from normal to slow + fast decay mode and vice versa

    Time

    Time

    reference current

    1st fast decay

    Target current is increased (raising step)

    2nd fast decay

    system returns to slow decay mode and tFAST vaule is halved

    switch to fast + slow decay mode

    tFASTtOFF,FAST

    tOFF,SLOW

    tOFF tOFF

    reference current

    AM15051v1

  • DocID023768 Rev 6 39/73

    L6482 Phase current control

    73

    Figure 20. Fast decay tuning during the falling steps

    7.4 Torque regulation (output current amplitude regulation)The phase currents are monitored through two shunt resistors (one for each power bridge) connected to the respective sense pin (see Figure 21). The integrated comparator compares the sense resistor voltage with the internal reference generated using the peak value, which is proportional to the output current amplitude, and the microstepping code. The comparison result is provided to the logic in order to implement the current control algorithm as described in previous sections.

    The peak reference voltage can be regulated in two ways: writing TVAL_ACC, TVAL_DEC, TVAL_RUN and TVAL_HOLD registers or varying the ADCIN voltage value.

    The EN_TQREG bit (CONFIG register) sets the torque regulation method. If this bit is high, ADC_OUT prevalue is used to regulate output current amplitude (see Table 20 on page 50 and Section 9.1.14 on page 50). Otherwise the internal analog-to-digital converter is at the users disposal and the output current amplitude is managed by TVAL_HOLD, TVAL_RUN, TVAL_ACC and TVAL_DEC registers (see Table 14 on page 47 and Section 9.1.10 on page 47).

    The voltage applied to the ADCIN pin is sampled at fS frequency and converted in an NADC bit digital signal. The analog-to-digital conversion result is available in the ADC_OUT register.

    Falling step1st fast decay:t FALL = FALL_STEP/4

    Falling step1st fast decay:tFALL = FALL_STEP/2

    2nd fast decay:tFALL = FALL_STEP/2

    Time

    reference current

    AM15052v1

  • Phase current control L6482

    40/73 DocID023768 Rev 6

    Figure 21. Current sensing and reference voltage generation

    Load

    Rsense

    To gate drivers

    To current control logic

    Peak reference DAC

    TVAL_X or ADCIN

    MicrostepMicrostepping DAC

    To gate drivers

    To gate drivers

    To gate drivers

    SENSEX

    Vref

    AM15047v1

  • DocID023768 Rev 6 41/73

    L6482 Serial interface

    73

    8 Serial interface

    The integrated 8-bit serial peripheral interface (SPI) is used for a synchronous serial communication between the host microprocessor (always master) and the L6482 (always slave).

    The SPI uses chip select (CS), serial clock (CK), serial data input (SDI) and serial data output (SDO) pins. When CS is high the device is unselected and the SDO line is inactive (high impedance).

    The communication starts when CS is forced low. The CK line is used for synchronization of data communication.

    All commands and data bytes are shifted into the device through the SDI input, most significant bit first. The SDI is sampled on the rising edges of the CK.

    All output data bytes are shifted out of the device through the SDO output, most significant bit first. The SDO is latched on the falling edges of the CK. When a return value from the device is not available, an all zero byte is sent.

    After each byte transmission the CS input must be raised and be kept high for at least tdisCS in order to allow the device to decode the received command and put the return value into the shift register.

    All timing requirements are shown in Figure 22 (see Section 3 on page 11 for values).

    Multiple devices can be connected in daisy chain configuration, as shown in Figure 23.

    Figure 22. SPI timings diagram

    AM15053v1

    CK

    SDI

    SDO

    CS

    MSB LSB

    LSB

    N-1 N-2

    MSBHiZ

    N-1 N-2

    tsetCS

    tenSDOtsetSDI tholSDI

    tvSDOtholSDO

    trCK tfCKthCK tlCK

    tdisSDOtholCS

    tdisCS

    MSB

  • Serial interface L6482

    42/73 DocID023768 Rev 6

    Figure 23. Daisy chain configuration

  • DocID023768 Rev 6 43/73

    L6482 Programming manual

    73

    9 Programming manual

    9.1 Register and flag descriptionTable 11 shows the user registers available (a detailed description can be found in the respective paragraphs from Section 9.1.1 on page 44 to Section 9.1.21 on page 58):

    Table 11. Register mapAddress

    [Hex]Register

    name Register functionLen.[bit]

    Reset[Hex]

    Resetvalue

    Remarks(1)

    h01 ABS_POS Current position 22 000000 0 R, WS

    h02 EL_POS Electrical position 9 000 0 R, WS

    h03 MARK Mark position 22 000000 0 R, WR

    h04 SPEED Current speed 20 00000 0 step/tick (0 step/s) R

    h05 ACC Acceleration 12 08A 125.5e-12 step/tick2 (2008 step/s2) R, WS

    h06 DEC Deceleration 12 08A 125.5e-12 step/tick2 (2008 step/s2) R, WS

    h07 MAX_SPEED Maximum speed 10 041 248e-6 step/tick (991.8 step/s) R, WR

    h08 MIN_SPEED Minimum speed 12 000 0 step/tick (0 step/s) R, WS

    h15 FS_SPD Full-step speed 11 027 150.7e-6 step/tick (602.7 step/s) R, WR

    h09 TVAL_HOLD Holding reference voltage 7 29 328 mV R, WR

    h0A TVAL_RUN Constant speed reference voltage 7 29 328 mV R, WR

    h0B TVAL_ACC Acceleration starting reference voltage 7 29 328 mV R, WR

    h0C TVAL_DEC Deceleration starting reference voltage 7 29 328 mV R, WR

    h0D RESERVED - 16 - - -

    h0E T_FAST Fast decay settings 8 19 1 s / 5 s R, WH

    h0F TON_MIN Minimum on-time 8 29 20.5 s R, WH

    h10 TOFF_MIN Minimum off-time 8 29 20.5 s R, WH

    h11 RESERVED - 8 - - -

    h12 ADC_OUT ADC output 5 XX(2) 0 R

    h13 OCD_TH OCD threshold 5 8 281.25 mV R, WR

    h14 RESERVED - 8 - - -

    h16 STEP_MODE Step mode 8 7 16 steps, SYNC mode disabled R, WH

    h17 ALARM_EN Alarms enabled 8 FF All alarms enabled R, WS

    h18 GATECFG1 Gate driver configuration 11 0Igate = 4 mA, tCC = 125 ns, no

    boost R, WH

  • Programming manual L6482

    44/73 DocID023768 Rev 6

    9.1.1 ABS_POSThe ABS_POS register contains the current motor absolute position in agreement with the selected step mode; the stored value unit is equal to the selected step mode (full, half, quarter, etc.). The value is in 2's complement format and it ranges from -221 to +221-1.

    At power-on the register is initialized to 0 (HOME position).

    Any attempt to write the register when the motor is running causes the command to be ignored and the CMD_ERROR flag to rise (Section 9.1.21 on page 58).

    9.1.2 EL_POSThe EL_POS register contains the current electrical position of the motor. The two MSbits indicate the current step and the other bits indicate the current microstep (expressed in step/16) within the step.

    When the EL_POS register is written by the user, the new electrical position is instantly imposed. When the EL_POS register is written, its value must be masked in order to match with the step mode selected in the STEP_MODE register in order to avoid a wrong microstep value generation (Section 9.1.17 on page 52); otherwise the resulting microstep sequence is incorrect.

    Any attempt to write the register when the motor is running causes the command to be ignored and the CMD_ERROR flag to rise (Section 9.1.21).

    h19 GATECFG2 Gate driver configuration 8 0 tBLANK = 125 ns, tDT = 125 ns R, WH

    h1A CONFIG IC configuration 16 2C88

    Internal 16 MHz oscillator (OSCOUT at 2 MHz),

    SW event causes HardStop,motor supply voltage

    compensation disabled, overcurrent shutdown,

    VCC = 7.5 V, UVLO threshold low,tSW = 44 s

    R, WH

    h1B STATUS Status 16 XXXX(2)High impedance state,

    motor stopped, reverse direction,all fault flags released UVLO/Reset

    flag set

    R

    1. R: readable, WH: writable, only when outputs are in high impedance, WS: writable only when motor is stopped, WR: always writable.

    2. According to startup conditions.

    Table 11. Register map (continued)Address

    [Hex]Register

    name Register functionLen.[bit]

    Reset[Hex]

    Resetvalue

    Remarks(1)

    Table 12. EL_POS registerBit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

    STEP MICROSTEP 0 0 0

  • DocID023768 Rev 6 45/73

    L6482 Programming manual

    73

    9.1.3 MARKThe MARK register contains an absolute position called MARK, according to the selected step mode; the stored value unit is equal to the selected step mode (full, half, quarter, etc.). It is in 2's complement format and it ranges from -221 to +221-1.

    9.1.4 SPEEDThe SPEED register contains the current motor speed, expressed in step/tick (format unsigned fixed point 0.28).

    In order to convert the SPEED value in step/s, the following formula can be used:

    Equation 1

    where SPEED is the integer number stored in the register and tick is 250 ns.

    The available range is from 0 to 15625 step/s with a resolution of 0.015 step/s.

    Note: The range effectively available to the user is limited by the MAX_SPEED parameter.

    Any attempt to write the register causes the command to be ignored and the CMD_ERROR flag to rise (Section 9.1.21 on page 58).

    9.1.5 ACCThe ACC register contains the speed profile acceleration expressed in step/tick2 (format unsigned fixed point 0.40).

    In order to convert the ACC value in step/s2, the following formula can be used:

    Equation 2

    where ACC is the integer number stored in the register and tick is 250 ns.

    The available range is from 14.55 to 59590 step/s2 with a resolution of 14.55 step/s2.

    The 0xFFF value of the register is reserved and it should never be used.

    Any attempt to write to the register when the motor is running causes the command to be ignored and the CMD_ERROR flag to rise (Section 9.1.21).

    9.1.6 DECThe DEC register contains the speed profile deceleration expressed in step/tick2 (format unsigned fixed point 0.40).

    step/s SPEED 228

    tick-------------------------------------=

    step/s2 ACC 240

    tick2-----------------------------=

  • Programming manual L6482

    46/73 DocID023768 Rev 6

    In order to convert the DEC value in step/s2, the following formula can be used:

    Equation 3

    where DEC is the integer number stored in the register and tick is 250 ns.

    The available range is from 14.55 to 59590 step/s2 with a resolution of 14.55 step/s2.

    Any attempt to write the register when the motor is running causes the command to be ignored and the CMD_ERROR flag to rise (Section 9.1.21 on page 58).

    9.1.7 MAX_SPEEDThe MAX_SPEED register contains the speed profile maximum speed expressed in step/tick (format unsigned fixed point 0.18).

    In order to convert it in step/s, the following formula can be used:

    Equation 4

    where MAX_SPEED is the integer number stored in the register and tick is 250 ns.

    The available range is from 15.25 to 15610 step/s with a resolution of 15.25 step/s.

    9.1.8 M