Micromegas Bulk Results of a R&D

18
Micromegas Bulk Results of a R&D Results of a R&D S. Aune a , M. Boyer a , A. Delbart a , R. De Oliveira b , A. Giganon a , Y. Giomataris a A CEA / DAPNIA, Centre d' Études de Saclay, Gif sur Yvette Cedex 91191, France B CERN, CH-1211 Geneva 23, Switzerland Introduction Bulk fabrication Results Conclusion

description

Micromegas Bulk Results of a R&D. S. Aune a , M. Boyer a , A. Delbart a , R. De Oliveira b , A. Giganon a , Y. Giomataris a A CEA / DAPNIA, Centre d' É tudes de Saclay, Gif sur Yvette Cedex 91191, France B CERN, CH-1211 Geneva 23, Switzerland Introduction Bulk fabrication Results - PowerPoint PPT Presentation

Transcript of Micromegas Bulk Results of a R&D

Page 1: Micromegas Bulk Results of a R&D

Micromegas BulkResults of a R&DResults of a R&D

Micromegas BulkResults of a R&DResults of a R&D

S. Aunea, M. Boyera , A. Delbarta, R. De Oliveirab, A. Giganona, Y. Giomatarisa

A CEA / DAPNIA, Centre d' Études de Saclay, Gif sur Yvette Cedex 91191, FranceB CERN, CH-1211 Geneva 23, Switzerland

Introduction Bulk fabrication Results Conclusion

Page 2: Micromegas Bulk Results of a R&D

2PSD 7 – Liverpool [email protected]

Micromegas principle

Gaz (Ar + 5% isobutane)

Drift ~ 1000 V

Strips readout

Strips

Ionizing particle

Mesh ~ 500 V

e-

Conversion gap~ 3 to 20 mm

Amplificationgap

~ 100 m

Page 3: Micromegas Bulk Results of a R&D

3PSD 7 – Liverpool [email protected]

Micromegas mesh assembly

Micromegas is used in several detectors (COMPASS, CAST, KABES, …) with a mesh mounted on a frame.

To obtain the amplification gap pillars are mounted either on the PCB or the mesh.

The pillars are generally made of Kapton or photoresist (Solder Mask).

The tricky thing is to mount correctly the mesh frame on the PCB. CAST mesh frame: “ploté”

pillar

Page 4: Micromegas Bulk Results of a R&D

4PSD 7 – Liverpool [email protected]

Bulk fabrication concept

PCB

Photoresist 1

Photoresist 2Mesh

UV

1) PCB cleaned (strips, pixels,…)

2) Photoresist lamination (50 to 100 micron )

3) Mesh laid down (19 micron weave stainless steel, 500 LPI)

4) Photoresist lamination (50 to 100 micron)

5) UV insulation trough a mask

6) Development (Sodium carbonate solution)

7) Cure (UV and backing)

Mask2 to 4 mm 50 to 100 m

Pillars: 200 to 400 micron

Down to 4 mm

Page 5: Micromegas Bulk Results of a R&D

5PSD 7 – Liverpool [email protected]

Lamination, first layer

T = 100°CF = 100 N

T = 100°C

Photoresist roll

Goal: a sandwich with a mesh between photoresist on a PCB

1. Laminate the 1st layer of photoresist on the PCB.

PCB

Page 6: Micromegas Bulk Results of a R&D

6PSD 7 – Liverpool [email protected]

Lamination, second layer

T = 100°CF = 100 N

T = 100°C

Photoresist roll

Goal: a sandwich with a mesh between photoresist on a PCB

1. Laminate the 1st layer of photoresist on the PCB.

2. deposit of the mesh. (with a transfer frame)

3. Laminate the 2nd layer of photoresist the mesh

Page 7: Micromegas Bulk Results of a R&D

7PSD 7 – Liverpool [email protected]

Lamination, pictures

Goal: a sandwich with a mesh between photoresist on a PCB1. Laminate the 1st layer of photoresist on the PCB.2. deposit of the mesh. (with a transfer frame)3. Laminate the 2nd layer of photoresist the mesh

laminator 1st layer output

Page 8: Micromegas Bulk Results of a R&D

8PSD 7 – Liverpool [email protected]

Insulation

Goal: polymerization of the photoresist with the pattern done in a insulator with UV through a mask (border, pillars, …)(Vacrel data: = 350 to 450 nm, 0.2 J/cm2 on 30 s)

lack of power: Insulation between lamination: good idea !

Insulator unit Photoresist sandwich with mask

Page 9: Micromegas Bulk Results of a R&D

9PSD 7 – Liverpool [email protected]

Development and cure

Goal: remove the none-polymerized photoresist done in a developer filled with 1 % Sodium carbonate(T = 40 °C, solution applied by jet)

Cure: complete the polymerization (Oven baking: 1 hour at 150 °C, UV cure: 5 J/cm2 )

Developer unit PCB sandwich inside

Page 10: Micromegas Bulk Results of a R&D

10PSD 7 – Liverpool [email protected]

Results, picture

Bulk with central anode, equipped with a resistive layer

Page 11: Micromegas Bulk Results of a R&D

11PSD 7 – Liverpool [email protected]

Results, bulk on striped Mylar

10 x 10 cm2 flexible bulk with steel mesh on 30 micron thick Mylar.Not tested under gas, but infinite resistance between strips and mesh even when bended.

Page 12: Micromegas Bulk Results of a R&D

12PSD 7 – Liverpool [email protected]

Results, detector gain

Bulk n°28

1,E+02

1,E+03

1,E+04

1,E+05

1,E+06

300 350 400 450V mesh (V)

Gai

n

Ar + 5 % Iso

Ar + 10 % Iso

Ar + 15 % Iso

Bulk n°28. 10 x 10 cm2, unique central anode equipped with 19 micron woven steel mesh.

le 07/04/05bulk S28 mesh inox ép: 19 microns (tissée)V drift:500Vgap mesh anode:100 micronsgap drift mesh: 7mmpre-ampli: ORTEC 142B(blindé n°460)Ampli ORTEC 472ACoarse gain: mini (5)Fine gain: mini (0,5)Shaping time: 1 microns secondesB de F:10mVinput: positiveoutput:bipolarsource: 55 Fe 20276gaz: Ar+15% C4H10mesh sans plots sup. (bordure Vacrel)diamètre plots 100 microns

Page 13: Micromegas Bulk Results of a R&D

13PSD 7 – Liverpool [email protected]

Result energy resolution

Bulk n°28. 10 x 10 cm2, unique central anode equipped with 19 micron woven steel mesh. (same parameter than for gain curve)

Page 14: Micromegas Bulk Results of a R&D

14PSD 7 – Liverpool [email protected]

Result T2K

Prototype T2k#1 (made at CERN)

T2K: competition between GEM and micromegas

30 cm

Page 15: Micromegas Bulk Results of a R&D

15PSD 7 – Liverpool [email protected]

Result T2K, gain

Page 16: Micromegas Bulk Results of a R&D

16PSD 7 – Liverpool [email protected]

Result T2K, energy resolution

Page 17: Micromegas Bulk Results of a R&D

17PSD 7 – Liverpool [email protected]

Result, DEMIN

Pulse shape

n / discrimination

Bulk made at CERN

Micromegas neutron detector with 2 mm polypropylene converter

Page 18: Micromegas Bulk Results of a R&D

18PSD 7 – Liverpool [email protected]

Bulk Upgrade application

Mesh Use of thinner mesh (5 mm Cu) not woven

Photoresist Try other photoresist (liquid ?)

Insulation Use of a laser for polymerization

Integrate resistive layer on top of the anode

Mesh splitting (mechanical : 50 m, laser: 10 m) Less spark energy Mesh readout

I have a Dream… Bulk with drift integrated Flexible bulk with drift and gas

Laser shoot