Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

36
Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory AAAI’07 Talk July 25, 2007 Learning to Sing Like a Bird: The Self-Supervised Acquisition of Birdsong &

description

Learning to Sing Like a Bird: The Self-Supervised Acquisition of Birdsong. Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory. AAAI’07 Talk July 25, 2007. &. Introduction. Background. Zebra Finches. Sensorimotor Learning. Discussion. Outline. - PowerPoint PPT Presentation

Transcript of Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

Page 1: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

Michael H. CoenMIT Computer Science and

Artificial Intelligence Laboratory

AAAI’07 TalkJuly 25, 2007

Learning to Sing Like a Bird: The Self-Supervised Acquisition of Birdsong

&

Page 2: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

Outline Why do this research?

Background: Cross-Modal Clustering (+ demo) A biologically-inspired algorithm for machine learning

(Coen 2005, 2006a, 2006b, Coen et al. 2007)

A brief introduction to the zebra finch

An architecture for sensorimotor learning (+ demo) A simple, recursive application of cross-modal clustering Views motor control as perception backwards

Discussion

Introduction Background Zebra Finches Sensorimotor Learning Discussion

(Taeniopygia guttata)

Page 3: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

In the grand scheme of things…

Statistical NLPDeep Blue/Chinook

DARPA Grand Challenge

OptimizationOperations Research

Statistical Machine Learning

PhysiologyNeuroscience

Cognitive Science

Introduction Background Zebra Finches Sensorimotor Learning Discussion

Page 4: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

A fundamental question

Animals solve extremely difficult non-parametric and distribution free learning problems during development.

How?

Introduction Background Zebra Finches Sensorimotor Learning Discussion

Belief: Answering this lets us:1)Better understand learning in animals2)Build new types of machine learning systems

Page 5: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

Cross-modal clustering briefly…

Use multiple viewpoints (or datasets) describing the same events makes learning easier

Biological motivation: Perceptual systems share information constantly during “ordinary”

perception (Stein and Meredith 1993, Shimojo and Shams 2001, Calvert et al. 2004, Spence and Driver 2004)

Introduction Background Zebra Finches Sensorimotor Learning Discussion

In a nutshell, CMC exploits redundancy within correlated datasets to discover unknown categories

Page 6: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

How does it work? A simple example

Assume two events in the world: red and blue

Events in the world:

Introduction Background Zebra Finches Sensorimotor Learning Discussion

Page 7: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

How does it work? A simple example

Assume two events in the world: red and blue Assume two datasets: Mode A and Mode B

Events in the world:

Mode A Mode BThought experiment

creature:

Introduction Background Zebra Finches Sensorimotor Learning Discussion

Page 8: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

The view from the inside the creature…

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mode A Mode B

Can we learn the red and blue events by

sharing internal perspectives?

Introduction Background Zebra Finches Sensorimotor Learning Discussion

Note: We will call these datasets slices

Page 9: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

Recovering the categories

1) Iteratively project regions in each dataset onto the other dataset.

2) Merge regions in each dataset whose projections are the closest.

3) Continue…

To play with online, Google:MIT Artificial Intelligence Demonstrations

http://ai6034.mit.edu/fall06/index.php?title=Demonstrations

Introduction Background Zebra Finches Sensorimotor Learning Discussion

Mode A Mode B

Page 10: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

Acquire language

Understand fMRI data

Learn to singSensorimotor learning

What can you learn

when you knownothing?

Page 11: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

Acquire language

Understand fMRI data

What can you learn

when you knownothing?

Learn to singSensorimotor learning

Page 12: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

The zebra finch

Small, unusually social oscine songbird

Perhaps the most studied bird in

neuroscience

Complex vocal harmonics People often mistake spectrograms for human speech

Almost identical FoxP2 gene with humans Governs vocal generation

(Taeniopygia guttata)

Introduction Background Zebra Finches Sensorimotor Learning Discussion

Page 13: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

Introduction Background Zebra Finches Sensorimotor Learning Discussion

Page 14: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

Dynamics of song acquisition

Day 1:Fledgling is born!

First month:Father sings to

his children

~Day 20:Males begin singing

to themselves

Day 90:Song crystallizesat sexual maturity

Introduction Background Zebra Finches Sensorimotor Learning Discussion

Page 15: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

An Architecture for Sensorimotor Learning

Sensory Cortex Motor Cortex

Perceptual Processing

Perceptual Slices

MotorControl

InnateExploratory

Motor Behaviors

Sensory Organs

Muscles/Effectors

Aff

eren

t P

roce

ssin

gE

fferent Processing

External World

Perceptual Slices

Events in the worldIntroduction Background Zebra Finches Sensorimotor Learning Discussion

Cross-Modal Clustering

happens here!

Page 16: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

Sensory Cortex Motor Cortex

Perceptual Processing

Perceptual Slices

MotorControl

InnateExploratory

Motor Behaviors

Sensory Organs

Muscles/Effectors

MotorSlices

InternalPerception

(Cartesian Theater)

Aff

eren

t P

roce

ssin

gE

fferent Processing

An Architecture for Sensorimotor Learning

External World

MotorSlices

InnateExploratory

Motor Behaviors

Cross-Modal Clustering now happens here!

Page 17: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

Sensory Cortex Motor Cortex

Perceptual Processing

Perceptual Slices

MotorSlices

MotorControl

Sensory Organs

Muscles/Effectors

InternalPerception

(Cartesian Theater)

Aff

eren

t P

roce

ssin

gE

fferent Processing

An Architecture for Sensorimotor Learning

External World

InnateExploratory

Motor Behaviors

Page 18: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

Parental training: a simple example

Introduction Background Zebra Finches Sensorimotor Learning Discussion

Page 19: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

Self-observation of innate activity

Internal self-observation(Cartesian Theater)

Introduction Background Zebra Finches Sensorimotor Learning Discussion

External self-observation(Perceptual channels)

Page 20: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

A) Perceptual Groundingfrom Parent

C) Internal SelfObservation

B) External SelfObseration

Innate Motor Activity

Recursive cross-modal clustering

Page 21: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

Acquired intentional motor control

Sensory Map Motor Map

Effector SystemExternal World

Introduction Background Zebra Finches Sensorimotor Learning Discussion

Page 22: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

Sensory Cortex Motor Cortex

Perceptual Processing

Perceptual Slices

MotorControl

Sensory Organs

Muscles/Effectors

Aff

eren

t P

roce

ssin

gE

fferent Processing

An Architecture for Sensorimotor Learning

External World

InnateExploratory

Motor Behaviors

MotorSlices

InternalPerception

(Cartesian Theater)

ArticulatorySynthesizer

Perceptual Slices

Page 23: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

Sensory Cortex Motor Cortex

Perceptual Processing

Perceptual Slices

MotorControl

Sensory Organs

Muscles/Effectors

Aff

eren

t P

roce

ssin

gE

fferent Processing

An Architecture for Sensorimotor Learning

External World

InnateExploratory

Motor Behaviors

ArticulatorySynthesizer

InternalPerception

(Cartesian Theater)

MotorSlices

Page 24: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

Sensory Cortex Motor Cortex

Perceptual Processing

Perceptual Slices

MotorControl

Sensory Organs

Muscles/Effectors

Aff

eren

t P

roce

ssin

gE

fferent Processing

An Architecture for Sensorimotor Learning

External World

InnateExploratory

Motor Behaviors

ArticulatorySynthesizer

InternalPerception

(Cartesian Theater)

MotorSlices

Page 25: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

0 200 400 600 800 1000 1200 1400 1600

2

4

6

8

10

0 200 400 600 800 1000 1200 1400 1600

2

4

6

8

10

0 200 400 600 800 1000 1200 1400 1600

2

4

6

8

10

0 200 400 600 800 1000 1200 1400 1600

2

4

6

8

10

0 200 400 600 800 1000 1200 1400 1600

2

4

6

8

10

0 200 400 600 800 1000 1200 1400 1600

2

4

6

8

10

0 200 400 600 800 1000 1200 1400 1600

2

4

6

8

10

0 200 400 600 800 1000 1200 1400 1600

2

4

6

8

10

AM

FM

Entropy

Amplitude

Mean Frequency

Pitch Goodness

Pitch

Pitch Weight

Time

Fre

quency

Zebra Finch

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

0.5

1

1.5

2

x 104

Page 26: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

0 200 400 600 800 1000 1200 1400 1600

2

4

6

8

10

0 200 400 600 800 1000 1200 1400 1600

2

4

6

8

10

0 200 400 600 800 1000 1200 1400 1600

2

4

6

8

10

0 200 400 600 800 1000 1200 1400 1600

2

4

6

8

10

0 200 400 600 800 1000 1200 1400 1600

2

4

6

8

10

0 200 400 600 800 1000 1200 1400 1600

2

4

6

8

10

0 200 400 600 800 1000 1200 1400 1600

2

4

6

8

10

0 200 400 600 800 1000 1200 1400 1600

2

4

6

8

10

AM

FM

Entropy

Amplitude

Mean Frequency

Pitch Goodness

Pitch

Pitch Weight

Time

Fre

quency

Zebra Finch

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.60

0.5

1

1.5

2

x 104

550 600 650 700 750 800 850

2

4

6

8

10

550 600 650 700 750 800 850

2

4

6

8

10

msec

msec

kHz

kHz

Defining Songemes

Page 27: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

A learner for birdsong

Lower level features

Higher level features

Introduction Background Zebra Finches Sensorimotor Learning Discussion

A 15 dimension, highly compact manifold

Page 28: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

Some zebra finch slices

Goodnessof pitch

Pitch

Mea

nfr

eque

ncy

Wie

ner

Ent

rop

yIntroduction Background Zebra Finches Sensorimotor Learning Discussion

Page 29: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

Early “bird” babbling

Time

Fre

quency

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.5

1

1.5

2

x 104

Time

Fre

quency

0 0.1 0.2 0.3 0.4 0.5 0.60

0.5

1

1.5

2

x 104

Introduction Background Zebra Finches Sensorimotor Learning Discussion

Page 30: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

Time

Fre

quen

cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.5

1

1.5

2

x 104

Time

Fre

quen

cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

0.5

1

1.5

2

x 104

Samba

“Samba’s son”

Birdsong mimicry

Introduction Background Zebra Finches Sensorimotor Learning Discussion

A word about evaluating empirical experiments…

Page 31: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

Contributions A new architecture for sensorimotor learning Entirely self-supervised Biologically inspired Extremely simple, dimensionally compact

Wide range of applications Robotics Sensor arrays Computational learning Dynamic control systems Skill acquisition based on observation

Introduction Background Zebra Finches Sensorimotor Learning Discussion

Page 32: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

Acknowledgments

Ofer Tchernichovski

Whitman Richards

Rodney Brooks

Howard Shrobe

Patrick Winston

Robert Berwick

Gerald Sussman

Adam Kraft

Kobi Gal

Krzysztof Gajos

To play with online, Google:MIT Artificial Intelligence Demonstrations

http://ai6034.mit.edu/fall06/index.php?title=Demonstrations

Introduction Background Zebra Finches Sensorimotor Learning Discussion

Page 33: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

Extra slides follow

Page 34: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

Acquisition of harmonic complexity

100 200 300 400 500 600 700

2

4

6

8

10

100 200 300 400 500 600 700

2

4

6

8

10

0 100 200 300 400 500 600

2

4

6

8

10

0 100 200 300 400 500 600 700 800 900 1000

2

4

6

8

10

0 200 400 600 800 1000 1200

2

4

6

8

10

Introduction Background Zebra Finches Sensorimotor Learning Discussion

Page 35: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

Related workUnsupervised clustering:

Language de Marcken (1996) de Sa and Ballard (1997) Lin (2004)

Vision Bartlett (2001) Stauffer (2002)

Statistical clustering Dempster et al. (1977) Smyth (1999)

Blind signal separation Hyvärinen (2001)

Neuroscience Becker and Hinton (1995), Becker (2005) Granger (2003)

Auditory scene analysis Slaney et al. (2001)

Minimal supervision Blum and Mitchell (1998)

Co-Clustering (Bi-Clustering, Block Clustering) Friedman, Mosenzon, Slonim, and Tishby

(2001) Taskar, Segal, and Koller (2001) Madeira and Oliveira (2004)

Analysis of animal vocalizations: Birds (finches and buntings) Kogan and Margoliash (1997)

Bowhead Whales Mellinger and Clark (1993)

African elephants Clemins and Johnson (2003)

Humans Guenther and Perkell (2004)

Primary distinctions of our approach:

1. Fully unsupervised 2. Non-parametric:

Distribution free Unknown number of clusters

3. Presumes no domain knowledge4. Neurologically motivated

Introduction Background Zebra Finches Sensorimotor Learning Discussion

Page 36: Michael H. Coen MIT Computer Science and Artificial Intelligence Laboratory

AAAI’07 Talk M.H. Coen

Current and future work Human protolinguistic babbling

Proficiency of an eight month old child Entire phonetic structure of English

Building an atlas of modular brain function From human and rat fMRI data New approaches to clinical treatments for autism

Theoretical investigations Convergence properties

Introduction Background Zebra Finches Sensorimotor Learning Discussion