MIT AI [email protected] Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial...

99
MIT AI Lab [email protected] Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory http://www.ai.mit.edu/~tkapur

Transcript of MIT AI [email protected] Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial...

Page 1: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Knowledge Based 3D Medical Image Segmentation

Tina KapurMIT Artificial Intelligence Laboratory

http://www.ai.mit.edu/~tkapur

Page 2: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Outline

• Goal of Segmentation

• Applications

• Why is segmentation difficult?

• My method for segmentation of MRI

• Future Work

Page 3: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

The Goal of Segmentation

Page 4: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

The Goal of Segmentation

Page 5: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Applications of Segmentation

• Image Guided Surgery

Page 6: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Applications of Segmentation

• Image Guided Surgery

Page 7: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Applications of Segmentation

• Image Guided Surgery

• Surgical Simulation

Page 8: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Applications of Segmentation

• Image Guided Surgery

• Surgical Simulation

Page 9: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Applications of Segmentation

• Image Guided Surgery

• Surgical Simulation

• Neuroscience Studies

• Therapy Evaluation

Page 10: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Limitations of Manual Segmentation

• slow (up to 60 hours per scan)

• variable (up to 15% between experts)

[Warfield 95, Kaus98]

Page 11: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

The Automatic Segmentation Challenge

An automated segmentation method needs to reconcile– Gray-level appearance of tissue– Characteristics of imaging modality– Geometry of anatomy

Page 12: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

How to Segment? i.e. Issues in Segmentation of Anatomy

Page 13: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

How to Segment? i.e. Issues in Segmentation of Anatomy

• Tissue Intensity Models

Page 14: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

How to Segment? i.e. Issues in Segmentation of Anatomy

• Tissue Intensity Models– Parametric [Vannier]– Non-Parametric [Gerig]– Point distribution Models [Cootes]– Texture [Mumford]

Page 15: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

How to Segment? i.e. Issues in Segmentation of Anatomy

• Tissue Intensity Models

• Imaging Modality Models

Page 16: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

How to Segment? i.e. Issues in Segmentation of Anatomy

• Tissue Intensity Models

• Imaging Modality Models– MRI inhomogeneity [Wells]

Page 17: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

How to Segment? i.e. Issues in Segmentation of Anatomy

• Tissue Intensity Models

• Imaging Modality Models

• Anatomy Models: Shape, Geometric/Spatial

Page 18: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

How to Segment? i.e. Issues in Segmentation of Anatomy

• Tissue Intensity Models

• Imaging Modality Models

• Anatomy Models: Shape, Geometric/Spatial– PCA [Cootes and Taylor, Gerig, Duncan, Martin]– Landmark Based [Evans]– Atlas [Warfield]

Page 19: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Typical Pipeline for Segmentation of Brain MRI

pre-processing (noise removal)

Page 20: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Typical Pipeline for Segmentation of Brain MRI

pre-processing (noise removal)

intensity-based classification

Page 21: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Typical Pipeline for Segmentation of Brain MRI

pre-processing (noise removal)

post-processing (morphology/other)

intensity-based classification

Page 22: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Contributions of Thesis

• Developed an integrated Bayesian Segmentation Method for MRI that incorporates de-noising and global geometric knowledge using priors into EM-Segmentation

• Applied integrated Bayesian method to segmentation of Brain and Knee MRI.

Page 23: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Contributions of Thesis

• The Priors– de-noising: novel use of a Mean-Field

Approximation to a Gibbs random field in conjunction with EM-Segmentation (EM-MF)

– geometric: novel statistical description of global spatial relationships between structures, used as a spatially varying prior in EM-Segmentation

Page 24: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Background to My Work

• Expectation-Maximization Algorithm

• EM-Segmentation

Page 25: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Expectation-Maximization

• Relevant Literature:– [Dempster, Laird, Rubin 1977]– [Neal 1998]

Page 26: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Expectation-Maximization (what?)

• Search Algorithm

• for Parameters of a Model

• to Maximize Likelihood of Data

• Data: some observed, some unobserved

Page 27: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Expectation-Maximization (how?)

• Initial Guess of Model Parameters

• Re-estimate Model Parameters:– E Step: compute PDF for hidden variables,

given observations and current model parameters

– M Step: compute ML model parameters assuming pdf for hidden variables is correct

Page 28: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

• Notation– Observed Variables:– Hidden Variables :– Model Parameters:

Expectation-Maximization (how exactly?)

HV

Page 29: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

• Initial Guess:

• Successive Estimation of

– E Step:

– M Step:

Expectation-Maximization (how exactly?)

)0(,..., )1()0(

),|()(~ )1()( tt VHPHP

)]'|,([logmaxarg )(~'

)(

VHPE tP

t

Page 30: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Expectation-Maximization

• Summary/Intuition:– If we had complete data, maximize likelihood– Since some data is missing, approximate

likelihood with its expectation– Converges to local maximum of likelihood

Page 31: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

EM-Segmentation [Wells 1994]

• Observed Signal is modeled as a product of the true signal and a corrupting gain field due to the imaging equipment

• Expectation-Maximization is used on log-transformed observations for iterative estimation of – tissue classification – corrupting bias field (inhomogeneity correction)

Page 32: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

M-Step

E-Step

EM-Segmentation [Wells 1994]

Page 33: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Estimate intensity correctionusing residuals based on current posteriors.

Compute tissue posteriors using current intensity correction.

M-Step

E-Step

EM-Segmentation [Wells 1994]

Page 34: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

• Observed Variables– log transformed intensities in image

• Hidden Variables– indicator variables for classification

• Model Parameters – the slowly varying corrupting bias field

( refer to variables at voxel s in image)

Y

W

sss WY ,,

EM-Segmentation [Wells 1994]

Page 35: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

• Initial Guess:

• Successive Estimation of

– E Step:

– M Step:

)0(,..., )1()0(

),|()(~ )1()( tt YWPWP

)],|'([logmaxarg )(~'

)( YWPE tP

t

EM-Segmentation [Wells 1994]

Page 36: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

• Initial Guess:

• Successive Estimation of

– E Step:

– M Step:

)0(,..., )1()0(

),|()(~ )1()( tt YWPWP

)],|'([logmaxarg )(~'

)( YWPE tP

t

EM-Segmentation [Wells 1994]

Page 37: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Situating My Work

• Prior in EM-Segmentation:– Independent and Spatially Stationary

• My contribution is addition of two priors:– a spatially stationary Gibbs prior to model local

interactions between neighbors (thermal noise)– spatially varying prior to model global

relationships between geometry of structures

Page 38: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

The Gibbs Prior

• Gibbs Random Field (GRF)

– natural way to model piecewise homogeneous phenomena

– used in image restoration [Geman&Geman 84]

– Probability Model on a lattice– Partially Relaxes independence assumption to

allow interactions between neighbors

Page 39: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

EM-MF Segmentation: EM + Gibbs Prior

• We model tissue classification W as a Gibbs random field:

Page 40: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

• We model tissue classification W as a Gibbs random field:

Model Gibbs with associatedenergy

parameter etemperatur

))'(1

(exp

))(1

(exp1

)(

'

P

WP

P

E

T

WET

Z

WETZ

WP

EM-MF Segmentation: Gibbs Prior on Classification

Page 41: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

• To fully specify the Gibbs model:– define neighborhood system as a first

order neighborhood system i.e. 6 closest voxels– use to define

N

PE

stat

ss

Tr

s Nr

Tsp

pf

J

WfWJWWEs

log

matrixn interactio class-tissue

21

)(

N

EM-MF Segmentation: Gibbs Prior on Classification

Page 42: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

EM-MF Segmentation: Gibbs form of Posterior

• Gibbs prior and Gaussian Measurement Models lead to Gibbs form for Posterior:

))(1

(exp1

),|( WETZ

YWP t

Page 43: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

• Gibbs prior and Gaussian Measurement Models lead to Gibbs form for Posterior:

),|(log

21

),|(log)()(

))'(1

exp( where

)(

)(

'

tsissisi

ss

Tr

s Nr

Ts

tp

W

eWYpfg

WgJWW

WYPWEWE

WET

Z

s

))(1

(exp1

),|( WETZ

YWP t

EM-MF Segmentation: Gibbs form of Posterior

Page 44: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

EM-MF Segmentation

• For E-Step: Need values for ),|( YWP

Page 45: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

EM-MF Segmentation

• For E-Step: Need values for

• Cannot compute directly from Gibbs form

),|( YWP

Page 46: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

EM-MF Segmentation

• For E-Step: Need values for

• Cannot compute directly from Gibbs form

• Note

),|( YWP

],|[),|( YWEYWP

Page 47: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

EM-MF Segmentation• For E-Step: Need values for

• Cannot compute directly from Gibbs form

• Note

• Can approximate – Mean-Field Approximation to GRF

),|( YWP

],|[),|( YWEYWP

WYWE ],|[ W

Page 48: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Mean-Field Approximation• Deterministic Approximation to GRF [Parisi84]

– the mean/expected value of a GRF is obtained as a solution to a set of consistency equations

• Update Equation is obtained using derivative of partition function with respect to the external field g. [Elfadel 93]

• Used in image reconstruction [Geiger, Yuille, Girosi 91]

Page 49: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Mean-Field Approximation to Posterior GRF

M

i Ns

M

ksikski

Ns

M

ksiksik

si

s

s

gWJ

gWJW

1' ' 1'''

' 1'

)(exp

)(exp

Intuition:•denominator is normalizer•numerator captures:

•effect of labels at neighbors•measurement at voxel itself

Page 50: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Summary of EM-MF Segmentation

• Modeled piecewise homogeneity of tissue using a Gibbs prior on classification

• Lead to Gibbs form for Posteriors

• Posterior Probabilities in E-Step are approximated as a Mean-Field solution

Page 51: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

EM-MF Results

• Application: Brain MRI – white matter, gray matter, fluid/air, skin/scalp

• Results

• Comparison with Manual Segmentation

Page 52: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Some ResultsEM EM-MF

Page 53: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Some ResultsEM EM-MF

Page 54: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

More Results

Noisy MRI EM Segmentation EM-MF Segmentation

Page 55: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Posterior Probabilities (EM)

Whitematter

Graymatter

Page 56: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Posterior Probabilities (EM-MF)

Whitematter

Graymatter

Page 57: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Results

Noise =10 Noise =20

EM EMMF % + EM EMMF %+1 90% 92% 2% 84% 91% 7%2 86% 91% 5% 80% 87% 7%3 87% 90% 3% 82% 89% 7%

4 88% 92% 4% 83% 90% 7%

5 87% 91% 4% 81% 89% 8%

Page 58: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Modeling Global Geometric Relationships between Structures

Page 59: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

• Relative Geometry Models

• Motivate Using Knee MRI

• Brain MRI Example

Modeling Global Geometric Relationships between Structures

Page 60: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Segmented Knee MRI

Femur

Tibia

Femoral Cartilage

Tibial Cartilage

MERL, SPL, MIT, CMUSurgical Simulation(Sarah Gibson, PI)

Page 61: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Motivation

• Primary Structures– image well– easy to segment

• Secondary Structures– image poorly– relative to primary

Tibial Cartilage

Femoral Cartilage

Tibia

Femur

Page 62: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Relative Geometric Prior Approach

• Select primary/secondary structures• Measure geometric relation between primary

and secondary structures from training data • Given novel image

– segment primary structures

– use geometric relation as prior on secondary structure in EM-MF Segmentation

Page 63: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Segment Primary Structures: Femur, Tibia

Seed Region Growing Boundary Localization

Page 64: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Status

• Have Bone

• Want Cartilage

Page 65: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Measure Geometric Relationship between Primary and Secondary

Structures Femur

Tibia

Femoral Cartilage

Tibial Cartilage

• Using primitives such as– distances between surfaces– local normals of primary structures– local curvature of primary structures– etc.

Page 66: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Femur

Tibia

Femoral Cartilage

Tibial Cartilage

Measure Geometric Relationship between Primary and Secondary

Structures

Ze)P(CartilagCartilage)x|nP(

)Bone|CartilageP(x

pointclosest at (femur) bone tonormal n

(femur) boneon point closest todistance

sss

s

s

s

,

Page 67: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Estimate of Cartilage)x|nP( sss ,

Cartilage) Fem.x|nP( sss , Cartilage) Tib.x|nP( sss ,

Page 68: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Status

• Have Bone

• Have spatial relation between Bone and Cartilage

• Need Cartilage

Page 69: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Use Relative Geometric Prior in EM Segmentation

Replace stationary prior with relative geometric prior:

)Bone|CartilageP(xe)P(Cartilag i

Page 70: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Results: Segmentation ofFemoral & Tibial Cartilage

MRI Image Model-BasedSegmentation

Manual Segmentation

Page 71: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Relative Geometric Priors for Brain Tissue

• Prior Estimation– Select primary structures (boundary of skin,

ventricles)

– Estimate

• Using Prior in Segmentation– Segment primary structures: skin, ventricles

– Use as geometric prior

Tissue)Brain x|P( s21 ,

)|TissueBrain xP( 21s ,

Page 72: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

White Matter Gray Matter

Estimate

distance to Ventricles dist

ance

to S

kin

Tissue)Brain x|P( s21 ,

Page 73: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Resultant Segmentation

MRI EM SegmentationEM-MF

withGeometric Prior

Page 74: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Posterior Probabilities

Gray Matter

White Matter

EM-MF+Geometric PriorEM

Page 75: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

In Summary

• Incorporated robustness to thermal noise by using Mean-Field Approximation to Gibbs model in conjunction with EM Segmentation. Applied to Brain MRI.

• Introduced Relative-Geometry Models and applied to Brain and Knee MRI.

Page 76: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Future Work

• Further development of Relative-Geometry Models:– Automatic selection of primary/secondary

structures – Additional primitives for Spatial Relationships

Page 77: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

STOP

Page 78: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

d1 (distance to Ventricles)

d2 (

dist

ance

to S

kin)

White Matter

Grey Matter

FluidAir

Left Caudate

Right Caudate

Class Conditional Density

Page 79: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Unified Bayesian Segmentation Method

Simultaneous•noise reduction•intensity-based classification•use of geometric information

for segmentation.

Page 80: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Rest of Talk:

1.The Unified Segmentation Method

2.Two Priors

3.Results on Brain, Knee Segmentation

4.Conclusions

Page 81: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

The Gibbs Prior• To fully specify the Gibbs model:

– define neighborhood system as a first order neighborhood system i.e. 6 closest voxels

– use to define

N

PE

stat

ss

Tr

s Nr

Tsp

pf

J

WfWJWWEs

log

matrixn interactio class-tissue

21

)(

N

Page 82: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Components of EM Framework

• Measurement models for tissue

• Prior models for tissue

• Model for bias field– piecewise smooth

Page 83: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Addition of Two Priors

• Gibbs prior on tissue appearance– models tissue as piecewise constant

• Geometric Prior to encode spatial relations – gray matter is outside ventricles and inside

skull

Page 84: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Gibbs Model

Page 85: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Gibbs Model

• probability model on a lattice

• independence assumption is partially relaxed

• spatial range of interaction is local neighborhood

Page 86: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Page 87: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Gibbs Model

• probability model on a lattice

• independence assumption is partially relaxed

• spatial range of interaction is local neighborhood

Mean-Field ApproximationApproximates neighboring random variables with theirmean values:

- algebraic and computational simplicity

Page 88: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Contributions of Thesis

MRI+Noise EM SegmentationEM-MF

withGeometric Prior

Page 89: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Proposed MRI Segmentation Method

• Bayesian Statistical Classification Scheme that uses Expectation-Maximization

• Replaces pipeline with Priors on intensity and geometry

Page 90: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Proposed MRI Segmentation Method

• Previous Work [Wells 1994, 1996]– derived as a special case– spatially stationary, independent priors– piecewise smooth inhomogeneity model

• This Work:– locally interacting prior for intensity– spatially varying prior for geometry

Page 91: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Next

• Background on Expectation-Maximization

Page 92: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

1. Use Bayes’ rule, and independence between and to write:

2. Specify Measurement Models as Gaussian

'

)(

)()(

)'(),'|(

)(),|(),|(

W

t

tt

WPWYP

WPWYPYWP

),|()(~ )1()( tt YWPWP Computation of

W

),|( )(tWYP

Page 93: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

3. Specify Prior on Classification as a Gibbs Random Field.

4. Gibbs Prior + Gaussian Measurement Model imply is also a GRF.

5. Approximate using Mean-Field Solution for the GRF.

),|()(~ )1()( tt YWPWP Computation of )(WP

)(,| tYW

),|( )(tYWP

Page 94: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

Recap: 1. Bayes’ Rule to rewrite …

2. Gaussian Measurement Models

3. Gibbs form of Prior

4. Gibbs form of Posterior

5. Mean-Field Approximation to Gibbs form

),|()(~ )1()( tt YWPWP Computation of

Page 95: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

The Gibbs Prior• Tissue-class interaction Matrix

• Stationary Prior

data gin trainin occurs #data gin trainin next to occurs#

logk

lkJ kl

data gin trainin voxels#data gin trainin occurs#

loglogi

pf statii

Page 96: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

The Mean-Field Solution• Gibbs models can be solved using

– [Metropolis 1953], [Geman and Geman 1984], [Besag 1986] etc.

• We use Mean-Field Approximation to estimate the expected value of the posterior GRF as a solution to a set of consistency equations.

Page 97: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

The Mean-Field Approximation• Deterministic Approximation

• Update Equation is obtained using derivative of partition function with respect to the external field g.

Page 98: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

The Mean-Field Solution

M

i Ns

M

ksikski

Ns

M

ksiksik

si

s

s

gWJ

gWJW

1' ' 1'''

' 1'

)(exp

)(exp

Intuition:•denominator is normalizer•numerator captures:

•effect of labels at neighbors•measurement at voxel itself

Page 99: MIT AI Labtkapur@ai.mit.edu Knowledge Based 3D Medical Image Segmentation Tina Kapur MIT Artificial Intelligence Laboratory tkapur.

MIT AI Lab [email protected]

• Initial Guess:

• Successive Estimation of

– E Step: Estimate as• Mean-Field Solution to a Gibbs Random Field

– M Step: Compute same as [Wells 1996]

EM-MF Summary

)0(,..., )1()0(

),|( )1( tYWP

)(t

W