MGCC: Mytilus galloprovincialis carrying capacity model POC, Ammonia NAMEMG-IBM (M....

5
MGCC: Mytilus galloprovincialis carrying capacity model POC, Ammonia NAME NAME MG-IBM MG-IBM ( M. galloprovincialis M. galloprovincialis growth model) growth model) HYDRODYNAMIC HYDRODYNAMIC MODEL OF MODEL OF THE ADRIATIC SEA THE ADRIATIC SEA Water temperature Chl-a POC STATE VAR. STATE VAR. Nitrate Nitrate Ammonia Ammonia Silicate Silicate Phosphate Phosphate DOC DOC POC POC Phytoplankton Phytoplankton Zooplankton Zooplankton Current velocities Local, scale A regional, scale B Solar radiation STATE VAR. STATE VAR. Somatic Somatic and gonadic and gonadic dry weight dry weight CURRENT METER CURRENT METER DATA DATA NAME NAME TRANSP TRANSP (transport sub-model) (transport sub-model) + PELADRI PELADRI (reaction sub-model) (reaction sub-model) ** Model development in collaboration with the University of Hamburg (D) and IIASA (A). Model testing in collaboration with ICRAM-Chioggia and NIB (partner 4).

Transcript of MGCC: Mytilus galloprovincialis carrying capacity model POC, Ammonia NAMEMG-IBM (M....

Page 1: MGCC: Mytilus galloprovincialis carrying capacity model POC, Ammonia NAMEMG-IBM (M. galloprovincialis (M. galloprovincialis growth model) HYDRODYNAMIC.

MGCC: Mytilus galloprovincialis carrying capacity model

POC, Ammonia

NAMENAME

MG-IBMMG-IBM ((M. galloprovincialisM. galloprovincialis

growth model)growth model)

HYDRODYNAMIC HYDRODYNAMIC MODEL OFMODEL OF

THE ADRIATIC SEATHE ADRIATIC SEA

Water temperature

Chl-aPOC

STATE VAR.STATE VAR.NitrateNitrate

AmmoniaAmmoniaSilicateSilicate

PhosphatePhosphateDOCDOCPOCPOC

PhytoplanktonPhytoplanktonZooplanktonZooplankton

Current velocities

Local, scale A regional, scale B

Solar radiation

STATE VAR.STATE VAR.Somatic Somatic

and gonadicand gonadicdry weight dry weight

CURRENT METER CURRENT METER DATADATA

NAMENAME

TRANSP TRANSP (transport sub-model)(transport sub-model)

++PELADRI PELADRI

(reaction sub-model)(reaction sub-model)

** Model development in collaboration with the University of Hamburg (D) and IIASA (A). Model testing in collaboration with ICRAM-Chioggia and NIB (partner 4).

Page 2: MGCC: Mytilus galloprovincialis carrying capacity model POC, Ammonia NAMEMG-IBM (M. galloprovincialis (M. galloprovincialis growth model) HYDRODYNAMIC.

0 0.07 0.140.035Decimal Degrees

­

VISMAmussel farm

Venice

Chioggia

Mussellines

~ 2 km

~ 2

km

0 0.07 0.140.035Decimal Degrees

­

VISMAmussel farm

Venice

Chioggia

Mussellines

~ 2 km

~ 2

km

2. Mussel growth: trajectories atdifferent locations within the mussel farm

MGCC: preliminary run at scale A1. Study site: DCF-UNIVE WP5 site Adriatic sea 12 months simulation

3. Mussel dry weight [g] at six different locations within the mussel farm (after 1 yr of cultivation)

4. phytoplankton density [mg C L-1] at the farm site – local depletion

0 41 83 125 166 208 250 291 333

days from seed ing

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

g d

ry weig

ht

d ry we ight loca tion 1 dry we ight loca tion 2 dry we ight loca tion 3 dry we ight loca tion 4 dry we ight loca tion 5 dry we ight loca tion 6

1

2

3

4

65

Page 3: MGCC: Mytilus galloprovincialis carrying capacity model POC, Ammonia NAMEMG-IBM (M. galloprovincialis (M. galloprovincialis growth model) HYDRODYNAMIC.

WATERCOLUMN

EDM: Early diagenesis modelEDM: Early diagenesis model(developed under BRNS(developed under BRNSTMTM))

Sedimenttemperature

SEDIMENT

Deposition model(DEPOMODTM)

Faeces production

Organic carbon flux

MG-IBM: MG-IBM: Mytilus galloprovincialisMytilus galloprovincialis growth modelgrowth model

Nutrient fluxes, N, P

DEPOMOD + EDM (Early Diagenesis) modelsLocal, scale A

Current velocities

HYDRODYNAMIC HYDRODYNAMIC MODEL OFMODEL OF

THE ADRIATIC SEATHE ADRIATIC SEA

CURRENT METER CURRENT METER DATADATA

** Model development in collaboration with partner 1, SAMS, and the University of Utrecht (NL).

Page 4: MGCC: Mytilus galloprovincialis carrying capacity model POC, Ammonia NAMEMG-IBM (M. galloprovincialis (M. galloprovincialis growth model) HYDRODYNAMIC.

3. Diagenetic model output: profiles of the state variables in the sediment. __ reference simulation, _ _ impact scenario

10 14 18 22

S O 4 [m m ol L -1]

0

5

10

depth [cm]

0 4 8

NO 3 [m ol L -1]

0

1

2

3

4

5d

ep

th [cm

]0 400 800

NH+4 [m ol L -1]

0

5

10

de

pth

[cm]

0 400 800

F e 2+ [m ol L -1]

0

5

10

depth [cm]

0 40 80

M n2+ [m ol L -1]

0

5

10

depth [cm]

0.0 0.4 0.8

H2S [mmol L -1]

0

5

10

depth [cm]

-0.002 0.001 0.004

mol N O 3- Lpw

-1 yr-1

1

2

3

4

5

depth [cm]

ne t NO 3- ra te (impact scenario)

ne t NO 3- ra te (re ference simulation)

0 40 80 120 160 200

O 2 [m ol L -1]

0

0.5

1depth [cm

]0.0 0.4 0.8 1.2 1.6 2.0

O C [% ]

0

5

10

depth [cm]

a

2. Results of the MERAMOD particle tracking model: predicted OC flux at the sediment-water interface.

500 1000 1500 2000 2500 3000 3500

easting [m ]

500

1000

1500

2000

2500

3000

3500

nort

hing

[m]

Faeces flux [g C m -2 yr-1]

0

10

25

50

DEPOMOD + EDM: application to longline mussel farm

1. Study site: DCF UNIVE WP5 site

(Adriatic sea)

long-term impact simulation (15 yr)

0 0.07 0.140.035Decimal Degrees

­

VISMAmussel farm

Venice

Chioggia

Mussellines

~ 2 km

~ 2

km

0 0.07 0.140.035Decimal Degrees

­

VISMAmussel farm

Venice

Chioggia

Mussellines

~ 2 km

~ 2

km

Page 5: MGCC: Mytilus galloprovincialis carrying capacity model POC, Ammonia NAMEMG-IBM (M. galloprovincialis (M. galloprovincialis growth model) HYDRODYNAMIC.

2. EDM model calibration: profiles of the state variables in the sediment at the reference station (BRef). __ model . data

3. Results of the DEPOMOD particle tracking / resuspension model: predicted OC flux at the sediment-water interface.

DEPOMOD + EDM: application to salmon cages

1. Study site: SAMS WP5 site (Loch

Creran)

short-term impact simulation (6 months)

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

E astin g (m )

1 0 0

2 0 0

3 0 0

4 0 0

Nor

thin

g (m

)

EW

0

EW

25

EW

50

EW

75

ES

E25

ES

E50

BW

10

BW

40

1 0 0

5 0 0

2 5 0 0

1 0 0 0 0

3 0 0 0 0

g m y r-2 -1

0 40 80 120 160 200

F e 2+ [m ol L -1]

0

5

10

depth [cm]

b

0 400 800

NH+4 [mol L -1]

0

5

10depth [cm

]

d

0 40 80

HP O 42-

[m ol L -1]

0

5

10

depth [cm]

f

4. Model validation:profiles of the state variables in the sediment at the impacted station (BW10). __ model . data

0 1000 2000 3000 4000

NH+4 [mol L -1]

0

5

10

depth [cm]

d

0 200 400 600

HP O 42-

[m ol L -1]

0

5

10

depth [cm]

f

0 40 80

Fe 2+ [mol L -1]

0

5

10

depth [cm]

b

** In collaboration with partner 1, SAMS and COBO EU project