MetOp A and MatOp B AVHRR visible and near IR channel ...

20
MetOp MetOpA and A and MatOp MatOpB AVHRR B AVHRR visible and near visible and nearIR channel IR channel inter intercomparison with BRDF consideration. comparison with BRDF consideration. Tiejun Tiejun Chang Chang 1 , Fred Fred Wu Wu 2 , and and Fuzhong Fuzhong Weng Weng 2 1 ERT Inc., 6100 Frost Place, Suite A, Laurel, MD 20707, USA 2 NOAA/NESDIS/STAR, College Park, MD 20740, USA GSICS Meeting, March, 4, 2013 1 Acknowledgements Thanks Wei Guo and Felix Kogan for their contribution.

Transcript of MetOp A and MatOp B AVHRR visible and near IR channel ...

Page 1: MetOp A and MatOp B AVHRR visible and near IR channel ...

MetOpMetOp‐‐A and A and MatOpMatOp‐‐B AVHRR B AVHRR visible and nearvisible and near‐‐IR channelIR channel

interinter‐‐comparison with BRDF consideration.comparison with BRDF consideration.

TiejunTiejun ChangChang 1, , Fred Fred WuWu 2, , and and FuzhongFuzhong WengWeng 2

1 ERT Inc., 6100 Frost Place, Suite A, Laurel, MD 20707, USA2 NOAA/NESDIS/STAR, College Park, MD 20740, USA 

GSICS Meeting, March, 4, 2013

1

AcknowledgementsThanks Wei Guo and Felix Kogan for their contribution.

Page 2: MetOp A and MatOp B AVHRR visible and near IR channel ...

MetOp‐A and MatOp‐B AVHRR visible and near‐IR channel

inter‐comparison with BRDF consideration.

• Introduction• MetOp‐A and MetOP‐B inter‐comparison• BRDF effect and modeling• Libyan Desert reflectance seasonal oscillation• MetOp‐B seasonal oscillation curve regression• MatOp‐B visible and near‐IR channel calibration update

• Summary

2

Page 3: MetOp A and MatOp B AVHRR visible and near IR channel ...

MetOp‐B 

D al MetOp Constellation

MetOp-B: Launched September 17, 2012

Dual MetOp Constellation Same Orbital Track Separated by ½ Orbit (180 degrees) Orbital Sensing difference ~50 minsO i P i d th th i S dOne is Primary and the other is Secondary

AVHRRAVHRR

3

Page 4: MetOp A and MatOp B AVHRR visible and near IR channel ...

MetOp-A and MetOp-B AVHRR inter-comparison

4

Page 5: MetOp A and MatOp B AVHRR visible and near IR channel ...

Libyan Desert for inter-comparison and vicarious calibration

Location of Libyan Desert for AVHRR visible channel calibration

MetOp‐B AVHRR images5

Page 6: MetOp A and MatOp B AVHRR visible and near IR channel ...

MetOp-A and MetOp-B inter-comparison at Libyan Desert

Ch 1 Ch 2

l Same location Same Sensor  zenith angle

50min apartOff‐Nadir

Different instrument zenith angle and Solar zenith angle6

Page 7: MetOp A and MatOp B AVHRR visible and near IR channel ...

MetOp-A and MetOp-B inter-comparison at Libyan Desert

MetOp‐A/B Libyan Desert comparison

B/A) 

Ch 1

flectance (B

Ch 2

Ratio

 of ref

R

Ch 3A

Day of 20127

Page 8: MetOp A and MatOp B AVHRR visible and near IR channel ...

MetOp-A and MetOp-B inter-comparisonBRDF effect

Sensor zenith angle consideration +50min

Not scaled for illustration

(B/A) 

refle

ctance 

Ch 1

Ratio

 of r

Ch 2

Sensor zenith angle difference (B‐A) 

Ch 2

8

Page 9: MetOp A and MatOp B AVHRR visible and near IR channel ...

MetOp-A and MetOp-B inter-comparisonBRDF effect

MetOp‐B MetOp‐AMetOp‐A MetOp‐B

+50min +50min

Same location Different time

Not scaled for illustration

ce (B

/A) 

f reflectanc

Ch 1

Ratio

 of

Ch 2

Solar zenith angle difference (B‐A)  9

Page 10: MetOp A and MatOp B AVHRR visible and near IR channel ...

MetOp-A and MetOp-B inter-comparisonBRDF effect modeling

Modeling for comparison with zenith angle dependency

zenithSolarzenithsensorsensor qpR __

AzenithSolarzenithA

BzenithSolarzenithBB

A

B

qpqp

RR

___

___

AzenithSolarzenithA

B

BzenithSolar

B

zenithB

B

qp

qp ___

1

1

AzenithSolarBzenithSolarzenithAzenithBBB

AzenithSolarzenithA

qpRR

qp

______

___

''

1

AR

111 xforx

111

xforxxApproximation: 1.

2. secondary order effect ignored 10

Page 11: MetOp A and MatOp B AVHRR visible and near IR channel ...

MetOp-A and MetOp-B inter-comparisonwith BRDF consideration

Zenith angles consideration 

AzenithSolarBzenithSolarzenithAzenithBB

A

B qpRR

______ ''

Sensor zenith B~ASolar zenith B>A

Ch 1

A

ectance (B

/A) 

ectance (B

/A) 

Solar zenith B<A

Ratio of refle

Ratio of refle ± 2

Ch 2

h l d ff ( ) Solar zenith angle difference (B‐A) Sensor zenith angle difference (B‐A) 

11

Page 12: MetOp A and MatOp B AVHRR visible and near IR channel ...

MetOp-A and MetOp-B inter-comparisonwith BRDF consideration

AzenithSolarBzenithSolarB

zenithAzenithBA

B qpRR

______ ''

 

Solar zenith B>A

Solar zenith B<A

ce (B

/A)  Ch 1

e (B/A) 

tan

Ch 2

refle

ctan

ceRa

tio of 

Ch 3ACh 3A

Solar zenith angle difference (B‐A)  12Sensor zenith angle difference (B‐A) 11/15/2012 results using 1 month data

Page 13: MetOp A and MatOp B AVHRR visible and near IR channel ...

MetOp-A and MetOp-B inter-comparisonBRDF modeling results

Ch 1 (1.37, 0.0027, 0.012)

AzenithSolarBzenithSolarzenithAzenithBB

A

B qpRR

______ ''

men

t

Ch 2 (0.91, 0.0016, 0.007)

Mea

sure

m

Ch3A (0.81, 0.0011, 0.003)

13 AzenithSolarBzenithSolarzenithAzenithBB qp ______ ''

Mode02/26/2012 results using 4 month data

Page 14: MetOp A and MatOp B AVHRR visible and near IR channel ...

AVHRR visible channel calibration using seasonal oscillation

The modeling of the seasonal oscillation requires data points in certain length of time

The information from previous AVHRR measurements can be used to predict the p pseasonal oscillation for MetOp‐B AVHRR.

Assumptions and approaches: The seasonal oscillation phase and amplitude are the same as MetOp‐A AVHRR.

Ch 1Ch 1

NOAA18 dataOscillation derived from NOAA15, 16, 17, 18, 19, and MetOp‐A

Ch 1

Ch 2Ch 2

14

Page 15: MetOp A and MatOp B AVHRR visible and near IR channel ...

AVHRR visible channel calibration using seasonal oscillation

Ch1

Apply to

MetOp BCh2

MetOp-B

Ch3A

(Left) The seasonal oscillation (red curve) from MetOp-A. The symbols are MetOp-A data corrected by the degradation(Right) Calibration of MetOp-B with seasonal variation consideration. The red curve is the reference reflectance with seasonal oscillation. The symbols are MetOp-B data 15

Page 16: MetOp A and MatOp B AVHRR visible and near IR channel ...

AVHRR visible channel calibration

Ch1Update coefficient Ch 1 Ch 2 Ch3A

Calibration updates for channel 1, 2, and 3A.

Method 1 0.951 1.085 1.205

Method 2 0.961 1.087 1.220

Average 0 956 1 086 1 212

After the update coefficients derived, The response function (count to albedo

i ) b d d

Ch2

Average 0.956 1.086 1.212

conversion) can be updated.

The black lines from pre‐launch calibration. The red lines are the update. 

The accuracy increases with number of the data point.

Th d d ti h ld b id d if th

Ch3A

The degradation should be considered if the duration of the data is sufficient long. The visible and near-infrared channel response before and after the

calibration update. The black lines are from pre-launch calibration and the red lines are on-orbit updated response. 16

Page 17: MetOp A and MatOp B AVHRR visible and near IR channel ...

AVHRR visible channel calibration and consistencyNDVI verification

f d f l b d

Verification of the calibration update using weekly NDVI comparison of MetOp-A and MetOp-B.

Weekly NDVI from MetOp‐A/B Before and after MetOp‐B calibration update

17

Page 18: MetOp A and MatOp B AVHRR visible and near IR channel ...

MetOp-A AVHRR Libyan desert seasonal oscillationusing curve regression

Ch1

Apply to

MetOp BCh2

MetOp-B

Ch3A

On 02/26/2013, more than 4 month data are used for the calibration update. The seasonal oscillation curve should be considered.An improvement is applied using the regression of the oscillation curve.

18

Page 19: MetOp A and MatOp B AVHRR visible and near IR channel ...

Summary

Calibration update calculated 11/15/2012 Calibration update calculated 02/26/2013(Seasonal oscillation curve regression applied)

Update coefficient Ch 1 Ch 2 Ch3A

Method 1 0.951 1.085 1.205

M h d 2 0 961 1 087 1 220

Update coefficient Ch 1 Ch 2 Ch3A

Method 1 0.9634 1.0929 1.2400

M th d 2 0 9647 1 0939 1 2333

( g pp )

Method 2 0.961 1.087 1.220

Average 0.956 1.086 1.212

Method 2 0.9647 1.0939 1.2333

Average 0.964 1.0934 1.2366

Method 1: seasonal oscillation Method 2: BRDF modeling 19

Degradation is observed from these two delivery. The degradation in the update is the averaged value over the period of the comparison data used. 

With curve regression of the seasonal oscillation, the results of these two methods are closer.  

Page 20: MetOp A and MatOp B AVHRR visible and near IR channel ...

Summary

MetOp‐A and MetOp‐B inter‐comparison is performed. The BRDF effect has been modeled and has been considered in the comparison.p

The seasonal oscillation derived from MetOp‐A is applied to MetOp‐B for calibration update. Applied the curve regression for seasonal oscillation modeling.  

MetOp B AVHRR visible and near IR channel calibration update is deriveredMetOp‐B AVHRR visible and near‐IR channel calibration update is deriveredusing these two methods and the calibration update has been verified using NDVI

The first update was delivered January 2013, and the update now becomes monthly routine taskmonthly  routine task.

The degradation will be considered in the modeling as longer period of data used. A model will be developed for operational calibration update and for research.research.

20