Mehanika nekovinskih gradiv

75
1 Center for Experimental Mechanics, University of Ljubljana, Slovenia Mehanika nekovinskih gradivi Center for Experimental Mechanics, Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia , and Institute for Sustainable Innovative Technologies, Ljubljana, Slovenia Lecture Notes Konstrukcijski polimeri in kompoziti Center for Experimental Mechanics, University of Ljubljana, Slovenia 2 Institute for Sustainable Innovative Technologies iSiT iSIT building, October 2008 Contacts: Center for Experimental Mechanics Faculty of Mechanical Engineering, University of Ljubljana Pot za Brdom 104, SI1125, Ljubljana SLOVENIA Telephone: (+3861) 6207 100 Fax: (+3861) 6207 110 Email: [email protected]lj.si Center for Experimental Mechanics, University of Ljubljana, Slovenia 3 States of matter There are several different types of states of matter: Gasses, Liquids, and Solids that are examples of physical states, which can be treated separately from: Electrical states, Magnetic states and Optical states. A given substance will have a physical state, a magnetic state, electrical and optical properties. Source: http://en.wikipedia.org/wiki/State_of_matter#Crystalline_vs._glassy Physical States of matter:

Transcript of Mehanika nekovinskih gradiv

Page 1: Mehanika nekovinskih gradiv

1

Center for Experimental Mechanics, University of Ljubljana, Slovenia

Mehanika nekovinskih gradivi 

Center for Experimental Mechanics, Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia , and

Institute for Sustainable Innovative Technologies, Ljubljana, Slovenia

Lecture NotesKonstrukcijski polimeri in kompoziti

Center for Experimental Mechanics, University of Ljubljana, Slovenia2

Institute for Sustainable Innovative Technologies ‐ iSiT

iSIT building, October 2008

Contacts:Center for Experimental MechanicsFaculty of Mechanical Engineering, University of LjubljanaPot za Brdom 104, SI‐1125, LjubljanaSLOVENIA

Telephone: (+386‐1) 6207 100Fax: (+386‐1) 6207 110E‐mail:  [email protected]‐lj.si

Center for Experimental Mechanics, University of Ljubljana, Slovenia3

States of matter

There are several different types of states of matter:

Gasses, Liquids, and Solids

that are examples of physical states,which can be treated separately from:

Electrical states, Magnetic states and Optical states.

A given substance will have a physical state, a magnetic state, electrical and optical properties.

Source: http://en.wikipedia.org/wiki/State_of_matter#Crystalline_vs._glassy

Physical States of matter:

Page 2: Mehanika nekovinskih gradiv

2

Center for Experimental Mechanics, University of Ljubljana, Slovenia4

Classification of polymeric materials

Natural origin Synthetic origin (plastics)

PolisacaridesLatex

ProteinesElastomers Thermoplastics Thermosets

POLYMERS

Thermoplastic Elastomers

Center for Experimental Mechanics, University of Ljubljana, Slovenia5

Types of Thermoplastic Polymers (WAK)

Engineering

Special, High Performance

General use

Source: http://wak.mv.uni‐kl.de/

Center for Experimental Mechanics, University of Ljubljana, Slovenia6

New Polymer Characterization 

Standards

Page 3: Mehanika nekovinskih gradiv

3

Center for Experimental Mechanics, University of Ljubljana, Slovenia7

New standards for  Testing of Polymers ‐ 1

Standards for polymers testingHow to observe time-dependency?

To observe time-dependent properties of polymers new standards will include tests on

RELAXATION and CREEP

Alternative techniques for determination of time-dependent behavior of polymers

creeprelaxation

Center for Experimental Mechanics, University of Ljubljana, Slovenia8

New standards for  Testing of Polymers ‐ 2

VDI – Richtlinie VDI 3880: Werkstoff- und Bauteildämpfung, 2005Blatt 1: Einteilung und ÜbersichtBlatt 2: Dämpfung in festen WerkstoffenBlatt 3: Dämpfung von BaugruppenBlatt 4: Modelle für gedämpfte StruktureBlatt 5: Berechnungen für Maschinensätz

ASTM – Springer Handbook of Experimental Solid Mechanics, 2008, (http://refworks.springer.com/)

Center for Experimental Mechanics, University of Ljubljana, Slovenia9

Definition of Strain and Stress

Page 4: Mehanika nekovinskih gradiv

4

Center for Experimental Mechanics, University of Ljubljana, Slovenia10

1-2 plane

0,iL

1,iL

0,1

0,11,1

11 L

LL

x

u

1

23

12

0,2

0,21,2

22 L

LL

x

v

0,3

0,31,3

33 L

LL

x

w

Thermo‐mechanical (rheological) properties of materialsDefinition of Normal Strain

Center for Experimental Mechanics, University of Ljubljana, Slovenia11

23

2-3 plane

23

1

23

232

232

1212 x

v

x

u

2323 x

w

x

v

1313 x

w

x

u

Thermo‐mechanical (rheological) properties of materialsDefinition of Normal Strain

Center for Experimental Mechanics, University of Ljubljana, Slovenia12

3

3

3

2

2

3

3

1

1

3

2

3

3

2

2

2

2

1

1

2

1

3

3

1

1

2

2

1

1

1

333231

232221

131211

,,

)(2

1)(

2

1

)(2

1)(

2

1

)(2

1)(

2

1

)(2

1

x

u

x

u

x

u

x

u

x

ux

u

x

u

x

u

x

u

x

ux

u

x

u

x

u

x

u

x

u

uu

zzzyzx

yzyyyx

xzxyxx

ijjiij

Plain strain:

000

0)(2

1

0)(2

1

000

0

0

000

0

0

)(2

1

2

2

2

1

1

2

1

2

2

1

1

1

2221

1211

,, x

u

x

u

x

ux

u

x

u

x

u

uu yyyx

xyxx

ijjiij

Thermo‐mechanical (rheological) properties of materialsStrain Tensor

Page 5: Mehanika nekovinskih gradiv

5

Center for Experimental Mechanics, University of Ljubljana, Slovenia13

S2x

33

3S

1x

31

32

3x

A

A

T

dA

dTS

)( 3eT

3e

),,( 321 eeen

),,( )()()( 321 eee TTTF

Thermo‐mechanical (rheological) properties of materialsDefinition of Stress

Center for Experimental Mechanics, University of Ljubljana, Slovenia14

zzyzx

yzyyx

xzxyx

zzzyzx

yzyyyx

xzxyxx

ij

333231

232221

131211

Plain stress:

z

yyx

xyx

zz

yyyx

xyxx

ij

00

0

0

00

0

0

00

0

0

33

2221

1211

Thermo‐mechanical (rheological) properties of materialsStress Tensor

Center for Experimental Mechanics, University of Ljubljana, Slovenia15

Thermo‐mechanical (rheological) properties of materialsClasical Mechanics

In classical mechanics, the properties of elastic solids can be described by Hooke’s law, that states that when a tensile stress, , is applied to a material, it undergoes a elongation per unit length, named strain, , proportional to that stress, such as:

= Ein which E is the Young’s modulus, and the stress is independent of the rate of elongation.

The properties of liquids, on the other hand, are described by Newton’s law, in which the tension is independent of the strain but proportional to the rate at which the rate is applied, i.e., the strain rate, as:

where is a measure of the fluid’s resistance to deformation called the viscosity.

dt

d

Page 6: Mehanika nekovinskih gradiv

6

Center for Experimental Mechanics, University of Ljubljana, Slovenia16

FLUID TYPICAL VISCOSITY (Pa.s)

Solid glass >1020

Liquid glass (500 ºC) ~1012

Solid bitumen 106 – 108

Molten polymers (150-350 ºC) 102 – 106

Caramel syrup 101 – 102

Honey 100 – 101

Glicerol ~100

Olive oil ~10-1

Lubricating oil 10-2 – 10-1

Water 10-3

Air < 10-5

Thermo‐mechanical (rheological) properties of materialsViscosity

Center for Experimental Mechanics, University of Ljubljana, Slovenia17

Material Functions

Center for Experimental Mechanics, University of Ljubljana, Slovenia18

Tensile Experiment

Stress response is rate dependent

Definition of the modulus in a classical sense fails

Time-dependent materials are rate dependent: l

1 1 2

2

t

l

l0

v = const.

Page 7: Mehanika nekovinskih gradiv

7

Center for Experimental Mechanics, University of Ljubljana, Slovenia19

What is Time‐Dependency?

Materilas which mechanical properties, under constant thermo-mechanical loading, are changing with time we will call TIME-DEPENDENT MATERILAS.

0.0001

0.001

0.01

0.1

1

1 10 100 1000 10000 100000 1000000 1E+07 1E+08 1E+09 1E+10

t [sec]

J(t

) [m

m2 /N

]

100

10-1

10-2

10-3

10-4

100 102 104 106 108 1010

master curves:different Tdifferent cw

( , , , , , , , , )J J t T P T P

Def

orm

acija

Čas

Def

orm

acija

ČasTime

Def

orm

atio

n

Center for Experimental Mechanics, University of Ljubljana, Slovenia20

dV

( )T t

What is time dependency?

( )ij t

Res

pons

e

Time

( )P t

( )ij t ( )ij tRelaxation

( )ij tPhysical aging

( )ij tCreep

( )ij tPhysical aging

Time

Load

Center for Experimental Mechanics, University of Ljubljana, Slovenia21

Material Functions ‐ Transfer Functions

BOUNDARY CONDITIONS

Temp.T

Press.p

Env.c

Theory of elasticity: H(s)

THERMODYNAMICSYSTEM

H(s)

CAUSE

STRESSij

STRAINij

RESPONSE

STRAINij

STRESSij

E = const.

1/E = const.

Theory of viscoelasticity: H(s)E(t, T, p, c)

D(t, T, p, c)

Page 8: Mehanika nekovinskih gradiv

8

Center for Experimental Mechanics, University of Ljubljana, Slovenia22

Material Functions – General Concepts

Material Function Process

Spatial Orientation of Loading Type of Loading

CreepRelaxation

DynamicStaticUniaxial Volumetric

Shear / Torsion

Response to the excitation

Center for Experimental Mechanics, University of Ljubljana, Slovenia23

Basic material functions:

in shear: G(t), J(t), G’(), G”(), J’(), J”()in bulk: K(t), B(t), K’(), K”(), B’(), B”()in extension: E(t), D(t), E’(), E”(), D’(), D”()Poisson’s ratio: (t) '(), "()

Material functions

Fundamental material functions:

G(t) ... Change of shape K(t).... Change of volume

Center for Experimental Mechanics, University of Ljubljana, Slovenia24

Material functions

Shear Bulk Uniaxial Extension

Relaxation ( )G t ( )K t ( )E t

Creep ( )J t ( )M t ( )D t

Storage ( )G t ( )K t ( )E t

Strain prescribed Loss ( )G t ( )K t ( )E t

Storage ( )J t ( )M t ( )D t

Harmoni c

Stress prescribed Loss ( )J t ( )M t ( )D t

Type of Loading

Mode

Har

mon

icQ

uasi

stat

ic

Page 9: Mehanika nekovinskih gradiv

9

Center for Experimental Mechanics, University of Ljubljana, Slovenia25

Relaxation(excitation is deformation)

G(t), G*(), G’(), G”()K(t), K*(), K’(), K”()E(t), E*(), E’(), E”()(t), *(), ’(), ”()

Dynamic measurementsG*(), G’(), G”()K*(), K’(), K”()E*(), E’(), E”()*(), ’(), ”()

Static

G(t), K(t), E(t), (t)

In phase (storage modulus)

G’(), K’(), E’(), ‘()

Out of phase(loss modulus)

G”(), K”(), E”(), ”()

Creep(excitation is stress)

J(t), J*(), J’(), J”()B(t), B*(), B’(), B”()D(t), D*(), D’(), D”()(t), *(), ’(), ”()

Dynamic measurementsJ*(), J’(), J”()B*(), B’(), B”()D*(), D’(), D”() *(), ’(), ”()

Static

J(t), B(t), D(t), (t)

In phase (storage modulus)J’(), B’(), D’(), ’()

Out of phase(loss modulus)

J”(), B”(),D”(),”()

Static and dynamic material functions

Center for Experimental Mechanics, University of Ljubljana, Slovenia26

Creep

Center for Experimental Mechanics, University of Ljubljana, Slovenia27

Creep Experiment

Specimen is exposed to an instant stressIncreasing strain is measured as function of time;Experiment is performed at constant temperature, pressure, and moisture conditions.

t t

0

)()( 0 thtstep

dtJt

t

0

)()()(

0)()( tJtstep 0

)()(

t

tJ step

dtJtt

ramp 0

)()( tdt

dttramp

)( ?

t0t0 - Rise time

t1t1 - Beginning of measurement

Exp. Window

t1= f(t0)

Page 10: Mehanika nekovinskih gradiv

10

Center for Experimental Mechanics, University of Ljubljana, Slovenia28

Ramp loading in creep measurements

QUESTION: When the measured values are valid?

t1 = ?

t

0

t0 t1

t

t0 - Rise time t1 - Beginning of measurement

Transient Phenomena

CVELBAR, Robert, EMRI, Igor. Analysis of Transient Phenomenon in Creep Compliance Measurements of Viscoelastic Materials. V: 1994 SEM Spring Conference, Baltimore, Maryland, USA, Jun. 6-8, 1994, pp: 663-668CVELBAR, Robert, EMRI, Igor. Transient Phenomena in Torsional Creep Experiments. V: Ed.: Hatuo Nakamura. International Conference on Materials and Mechanics'97, Ed.: Hatuo Nakamura, Japan Society of Mechanical Engineers, Tokyo International Forum, Tokyo, Japan, 20-22 jul., 1997, pp: 483-485, Invited Keynote LEcture.

Center for Experimental Mechanics, University of Ljubljana, Slovenia29

0

5

10

15

20

25

30

35

0.0001 0.001 0.01 0.1 1 10 100 1000 10000

t, [s]

Err

, [%

]

t0=0.001s t0=0.01st0=0.1s

t0=1s

t0=10s

Measurements error after the loading

ErrorJ t J t

J tramp

( ) ( )

( )[%]100

Transient Phenomena

CVELBAR, Robert, EMRI, Igor. Analysis of Transient Phenomenon in Creep Compliance Measurements of Viscoelastic Materials. V: 1994 SEM Spring Conference, Baltimore, Maryland, USA, Jun. 6-8, 1994, pp: 663-668CVELBAR, Robert, EMRI, Igor. Transient Phenomena in Torsional Creep Experiments. V: Ed.: Hatuo Nakamura. International Conference on Materials and Mechanics'97, Ed.: Hatuo Nakamura, Japan Society of Mechanical Engineers, Tokyo International Forum, Tokyo, Japan, 20-22 jul., 1997, pp: 483-485, Vabljeno predavanje..

Center for Experimental Mechanics, University of Ljubljana, Slovenia30

Transient Phenomena Resonance of the measurinf system when    t0 0

0

0

Response to step loadingResponse to ramp loading

CVELBAR, Robert, EMRI, Igor. Analysis of Transient Phenomenon in Creep Compliance Measurements of Viscoelastic Materials. V: 1994 SEM Spring Conference, Baltimore, Maryland, USA, Jun. 6-8, 1994, pp: 663-668CVELBAR, Robert, EMRI, Igor. Transient Phenomena in Torsional Creep Experiments. V: Ed.: Hatuo Nakamura. International Conference on Materials and Mechanics'97, Ed.: Hatuo Nakamura, Japan Society of Mechanical Engineers, Tokyo International Forum, Tokyo, Japan, 20-22 jul., 1997, pp: 483-485, Vabljeno predavanje..

Page 11: Mehanika nekovinskih gradiv

11

Center for Experimental Mechanics, University of Ljubljana, Slovenia31

Creep experiment

1 2

1 2

( )( ) ( )( ) n

n

tt tD t

t

rheodictic

arrheodictic

D(t)

De

Dg

t

rheodictic

arrheodictic

D(t)

De

Dg

log t

log D(t)rheodictic

arrheodictic

Log Dg

Log De

Center for Experimental Mechanics, University of Ljubljana, Slovenia32

Shear Creep Testing – CEM Torziometer

Metlikovič P., Emri I., Journal of Mechanical Engineering, Vol. 35, /7-9/, 1989, pp. 102-108Metlikovič P., Emri I., Journal of Mechanical Engineering, Vol. 35, /4-6/, 1989, pp. 56-58

Center for Experimental Mechanics, University of Ljubljana, Slovenia33

Physical background

0

ttJ

4 ( )( )

32

d tJ t

mglR

0t

p

M r

I

4

32p

dI

2d r

Page 12: Mehanika nekovinskih gradiv

12

Center for Experimental Mechanics, University of Ljubljana, Slovenia34

The Creep ExperimentPhysical background

The temperature and mechanical profile of loading in theshear-creep measurement of the extruded LDPE specimens.

0

ttJ

4 ( )( )

32

d tJ t

mglR

0t

p

M r

I

4

32p

dI

2d r

Center for Experimental Mechanics, University of Ljubljana, Slovenia35

Shear Creep Testing – CEM Torziometer

Cylindrical rods:diameter = 6 mmlength = 40 mm

40 mm

Shear Creep Torziometer (SCT‐CEM) -3.3

-3.1

-2.9

-2.7

-2.5

-2.3

-2.1

-1.9

0 2 4 6 8 10 12 14 16log t [s]

log

J( t

) [1

/MP

a]

Tref = 30°C

PA6

time‐temperature superposition principle

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

0 1 2 3 4 5log t [s]

log

J [

1/M

Pa]

33.7°C38.9°C48.6°C58.1°C67.1°C76.7°C

LDPE_263_37

Center for Experimental Mechanics, University of Ljubljana, Slovenia36

Creep experiment

0,0

0,0

0,0

0,1

1,0

1 10 100 1000 10000

t [ sec]

J(t

) [m

m2/N

]

T[oC]

35.8

34.4

32.3

30.628.426.420.0

100 5 101 5 102 5 103 5 104

100

10-1

10-2

10-3

10-4

Creep measurements on PVAc:

Emri I., Pavšek V., On the Influence of Moisture on the Mechanical Properties of Polymers, Materials Forum, No. 16, 1992, pp. 123-131.

Page 13: Mehanika nekovinskih gradiv

13

Center for Experimental Mechanics, University of Ljubljana, Slovenia37

Relaxation

Center for Experimental Mechanics, University of Ljubljana, Slovenia38

Relaxation experiment: Torsion

Specimen is exposed to an instant deformation;Decreasing stress is measured by a torque cell;Experiment is performed at constant temperature, pressure, and moisture conditions

)()( 0 thtstep

dtGt

t

0

)()()(

0)()( tGtstep 0

)()(

t

tG step

dtGtt

ramp 0

)()( tdt

dttramp

)( ?

stre

ss

1t0t

Exp.Window

0t

Response0t

Load

Center for Experimental Mechanics, University of Ljubljana, Slovenia39

Relaxation Experiment

1 2

1 2

( )( ) ( )( ) n

n

tt tE t

arrheodictic

rheodictic

gE

eE

)(tE

t

arrheodictic

rheodictic

gElog

eElog

)(log tE

tlog

Page 14: Mehanika nekovinskih gradiv

14

Center for Experimental Mechanics, University of Ljubljana, Slovenia40

Relaxation ExperimentCharacteristic regions of teh relaxation process

log

G(t

)

Complete characterization of the polymeric material requires measurements ower several decades of time

Impossible to measure in one experiment!

Tschoegl, N.W., Knauss, W.G., and Emri, I, The effect of temperature and pressure on the mechanical properties of thermo- and/or piezorheologically simple polymeric materials in thermodynamic equilibrium - a critical review. Mech. time-depend. mater., 6, 53-99, (2002)

Center for Experimental Mechanics, University of Ljubljana, Slovenia41

Measurement conditions:

• pressure up to 600 MPa (6000bar), ±0.1 MPa

• temperature from –30°C to +120°C, ±0.01°C

CEM Relaxation apparatus

Kralj, A., Prodan T., and Emri, I., J. Rheol., 45, 929-943, (2001).Emri, I., and Prodan, T., Experimental Mechanics, 46, 429-439, (2006)

data acquisition

circulator

measuring inserts

thermal bath

pressurizing system

pressure vessel

carrier amplifier

electromagnet

magnet and motor charger

Center for Experimental Mechanics, University of Ljubljana, Slovenia42

280

mm

loading device

load cell

specimen

slidermechanism

triggeringmechanism

electric motor

(a)

Relaxometer

Kralj, A., Prodan T., and Emri, I., J. Rheol., 45, 929-943, (2001).Emri, I., and Prodan, T., Experimental Mechanics, 46, 429-439, (2006)

Load

Response

Page 15: Mehanika nekovinskih gradiv

15

Center for Experimental Mechanics, University of Ljubljana, Slovenia43

Assumptions:

• homogeneous, isotropic specimen

• (volume) = 3 (lenght)

260

mm

LVDT

LVDT rod

specimen

Measurement Principle

P, T

Dilatometer

Kralj, A., Prodan T., and Emri, I., J. Rheol., 45, 929-943, (2001).Emri, I., and Prodan, T., Experimental Mechanics, 46, 429-439, (2006)

Center for Experimental Mechanics, University of Ljubljana, Slovenia44

Specimens for the Dilatometer and the Relaxometer

specimen for the relaxometer

specimen for the dilatometer

stainless steel sheet

specimen holder

Center for Experimental Mechanics, University of Ljubljana, Slovenia45

Measuring Capabilities of the CEM Apparatus

Physical Properties Symbols

Shear moment ( ), ( ), ( )M t M T M P or ( , , )M t T P

Me

as

-ure

d

Specimen length ( ), ( ), ( )L t L T L P or ( , , )L t T P

Shear relaxation modulus ( ), ( ), ( )G t G T G P or ( , , )G t T P

Specific volume ( ), ( ), ( )v t v T v P or ( , , )v t T P

Linear thermal expansion coeff. ( ), ( )T P , or ( , )T P

Volumetric thermal expansion coeff. ( ), ( ), , ,g e fT P , or , , ( , )g e f T PBulk creep compliance ( ), ( ), ( )B t B T B P or ( , , )B t T P

Ca

lcu

late

d f

rom

d

efin

itio

ns

Bulk modulus ( ), ( )K T K P or ( , )K T P

WLF constants 1 2, c c

WLF material parameters 0, f f

FMT constants 1 2 3 4 5 6, , , , , c c c c c c

Ca

lcu

late

d

fro

m m

od

els

FMT material parameters *0( ), ( ), , , , , f e eP f P B K k K k

Page 16: Mehanika nekovinskih gradiv

16

Center for Experimental Mechanics, University of Ljubljana, Slovenia46

G (t) fo r P V A c a t p = 0 .1 M P a (ra w d a ta )

1

1 0

1 0 0

1 0 0 0

1 E -1 1 E + 0 1 E + 1 1 E + 2 1 E + 3

t [s ]

G(t

) [M

Pa

]

T = 4 0 °C

T = 3 2 °C

T = 3 0 °C

T = 2 6 °C

T = 2 0 °C

Relaxation experiment: Torsion

Measurements of G(t) on PVAc:

Response

Load

Emri, I., and Prodan, T., Experimental Mechanics, (2005), In print

Center for Experimental Mechanics, University of Ljubljana, Slovenia47

Boltzman Superposition and Rheological Models

Center for Experimental Mechanics, University of Ljubljana, Slovenia48

Boltzmann Superposition Principle‐I

Any linearity of operation, or relation between an effect and its cause, requires satisfaction of:

Postulate (a): Proportionality with respect to amplitude, and

Postulate (b): Additivity of effects independent of the time sequence, when the corresponding causes are added, regardless of the respective application times.

Basic Postulates:

Page 17: Mehanika nekovinskih gradiv

17

Center for Experimental Mechanics, University of Ljubljana, Slovenia49

Boltzmann Superposition Principle‐II

1 1 1 1( ) ( ) ( ) ( )t h t t t D t t

1 1 2 2( ) ( ) ( )t h t t h t t

1

t

2

1

1 1 2 2( ) ( ) ( ) ( )N Nt D t t D t t D t t

1 1

( ) ( ) ( )i

i N i N

i i ii i t

t D t t D t t tt

1 00

( ) lim ( ) ( )i

ti N

iNi tt

dt D t t t D t d

t d

0

( ) ( )t d

t D t dd

0

( ) ( )t d

t E t dd

Center for Experimental Mechanics, University of Ljubljana, Slovenia50

Linear Modeling of Forces

1F k x

2F k x

3F k x

i) Forces proportional to the displacement:

ii) Forces proportional to the velocity:

iii) Forces proportional to the acceleration:.

E

( ) ( )t E t

( ) ( )t t

F m a

F

Force is a secondary physical quantity. It is a result of the interaction between space and energy . Definitions of forces are intuitive and are based on the macro scale observations:

Observed ProcessX(t) y(t)

; ;y k x y k x y k x

i iF Q x

Center for Experimental Mechanics, University of Ljubljana, Slovenia51

Basic rheological elements

E

( ) ( )t E t ( ) ( )t t

a) Hookean spring b) Newtonian dashpot.

Page 18: Mehanika nekovinskih gradiv

18

Center for Experimental Mechanics, University of Ljubljana, Slovenia52

Maxwell Model

( ) ( )( )

t tt

E

Constitutive equation for the Maxwell model:

( ) ( ) ( )d st t t

( ) ( ) ( )d st t t

E

( )t

( ) ( )s st E t ( ) ( )d dt t

( ) ( ) ( )d st t t

( )( ) d

d

tt

( )( ) s

s

tt

E

Center for Experimental Mechanics, University of Ljubljana, Slovenia53

Maxwell Model Stress relaxation

E

( ) ( )( )

t tt

E

0( ) ( )t h t

1 ( ) ( ),

d t t

E dt

Stress Relaxation:

0( ) exp( / )Mt E t

0

( )t

M t0

0 / e

00.631

00.369

0

( )t

M t0

0 / e

00.631

00.369

0 0E

/M E

0

( )( ) exp( / )M

tE t E t

Since ( 0) 0, we findt

( 0)gE E t E

( )H

loglog M

E

Rheodictic material with a single spectrum line

Center for Experimental Mechanics, University of Ljubljana, Slovenia54

Maxwell Model Creep process

Since ( 0) 0, we findt

E

( ) ( )( )

t tt

E

Creep:

0

( )t

t0

0tan / 0

( )t

t0

0tan / 0( ) ( )t h t

0d dt

00( ) .t t

0

( ) 1( )

t tD t D t

E

0 ( 0)D D t D

Material exhibits elastic-viscous behavior

Page 19: Mehanika nekovinskih gradiv

19

Center for Experimental Mechanics, University of Ljubljana, Slovenia55

Voigt Model

E

( )t

( ) ( )s st E t

( ) ( )d dt t

Constitutive equation for the Voigt model:

( ) ( ) ( )d st t t

( ) ( ) ( )d st t t

( ) ( ) ( )t t E t

( ) ( ) ( )d st t t

Center for Experimental Mechanics, University of Ljubljana, Slovenia56

Voigt ModelStress relaxation

0( ) ( )t h t

( )E t const

( ) ( ) ( )t t E t

Stress Relaxation:

0( )t E

0

( )t

t0

0

( )t

t0

E

For t > 0 Material exhibits elastic behavior0Since ( 0) ,and ( 0) 0, we findt t

Center for Experimental Mechanics, University of Ljubljana, Slovenia57

Voigt Model Creep process

E

( ) ( ) ( )t t E t

Creep:

0( ) ( )t h t

( )t

V t0

(1 1/ e)

0.631

0.369

( )t

V t0

(1 1/ e)

0.631

0.369

0( ) [1 exp( / )]p Vt tE

( ) [1 exp( / )]VD t D t

/V E

( )D t D

0Since ( 0) , we havet

( ) , andh pt ( )L

loglog V

D

Arheodictic material with a single retardation spectrum line

Page 20: Mehanika nekovinskih gradiv

20

Center for Experimental Mechanics, University of Ljubljana, Slovenia58

Maxwell and Voigt Modells Summary

0

( ) 1( )

t tD t

E

0

( )( ) exp( / )M

tE t E t

/M E

When elements are added in parallel relaxation modulus may be added

When elements are added in series then compliances may be added

E

0

( )( ) [1 exp( / )]V

tD t D t

/V E

( ) ( ) ( )d st t t

( ) ( ) ( )d st t t

0

( )( )

tE t E

E

Center for Experimental Mechanics, University of Ljubljana, Slovenia59

Standard Linear SolidStress relaxation

Ee

E1

( ) ( ) ( )S Mt t t

0( ) ( ) ( ) ( )S Mt t t h t

0 1 1( ) exp( / );M t E t

0s eE 1 1/ E

0 1 1( ) exp( / )et E E t

1 1( ) exp( / )eE t E E t

Maxwell element:

Spring:

Elements are added in parallel, i.e., relaxation modulus may be added:

log ( )E t

log t1log

log gE

log eE

( )H

log1log

1E

Arheodictic material with a single spectrum line

1( 0)g eE E t E E

00

( )( ) ( ) ( )

tt E t E t

Center for Experimental Mechanics, University of Ljubljana, Slovenia60

Standard Linear Solid Creep process

0( ) [1 exp( / )];V t tE

E

Eg

E

Eg

( ) ( ) ( )S Vt t t

0( ) ( ) ( ) ( )S Vt t t h t

0 /s gE

/ E Voigt element:

Spring:

Elements are added in series, i.e., compliances may be added:

0

1 1( ) [1 exp( / )]

g

t tE E

( ) [1 exp( / )]gD t D D t

log ( )D t

log tlog

log eD

log gD

( )e gD D t D D

( )L

loglog

D

Arheodictic material with a single retardation spectrum line

00

( )( ) ( ) ( )

tt D t D t

Page 21: Mehanika nekovinskih gradiv

21

Center for Experimental Mechanics, University of Ljubljana, Slovenia61

Standard Linear Liquid Stress relaxation

0 1( ) ( ) ( )M Mt t t

0 1 0( ) ( ) ( ) ( )M Mt t t h t

0 0 0 0( ) exp( / );M t E t 0 0 0/ E Maxwell element 0:

Maxwell element 1:

Elements are added in parallel, i.e.,relaxation modulus may be added:

E0

E1

1 0 1 1( ) exp( / );M t E t 1 1 1/ E

0 0 1 1( ) exp( / ) exp( / )E t E t E t

0 1

( )t

t0

0 1( 0)gE E t E E

( )H

log1log

1E

Rheodictic material with two spectrum lines

0log

0E

Center for Experimental Mechanics, University of Ljubljana, Slovenia62

Standard Linear Liquid Creep process

0( ) [1 exp( / )];V t tE

( ) ( ) ( ) ( )S V Dt t t t

0( ) ( ) ( ) ( ) ( )S V Dt t t t h t

0 /s gE

/ E Voigt element:

Spring:

Elements are added in series, i.e., compliances may be added:

f

E

Eg

1 1( ) [1 exp( / )] [1 exp( / )]g f

g f

tD t t D D t t

E E

Dashpot: 0( ) .Df

t t

oe

( )t

t0

0

( )t

0( )t t

( )L

loglog

D

Rheodictic material with a single retardation spectrum line

( 0)g gD D t D

oe gD D D

( ) is a steady-state complianceoe gD D t D D

Center for Experimental Mechanics, University of Ljubljana, Slovenia63

Wiechert ModelGeneralized Maxwell Model

eE 1E 2E 3E NE

1 2 3 N

Elements are added in parallel, i.e.,relaxation modulus may be added

1

i N

g e ii

E E E

1 1

( ) exp( / ) 1 exp( / )i N i N

e i i g i ii i

E t E E t E E t

The set of relaxation times i , and corresponding iE , , ; 1, 2, ,i iE i N we will call the

discrete relaxation spectrum, which we commonly denote as ( )iH .

/i i iE

Page 22: Mehanika nekovinskih gradiv

22

Center for Experimental Mechanics, University of Ljubljana, Slovenia64

Kelvin Model Generalized Voigt Model

1E 2E 3E NE

1 2 3 N

fgE

1

i N

e g ii

D D D

o

1

lim ( )i N

e f g it

i

D D t t D D

o

1 1

( ) exp( / ) { } [1 exp( / ] { }i N i N

e i i f g i i fi i

D t D D t t D D t t

The set of retardation times i , and corresponding iD , i.e. , ; 1, 2, ,i iD i N , we will call

the discrete retardation spectrum, denoted as ( )iL .

Elements are in series, i.e.,compliances may be added

1/g gD E1/i iD E /i i iE 1/f f

,

,

Center for Experimental Mechanics, University of Ljubljana, Slovenia65

Relaxation and Retardation Spectra

( ) ( ) exp( / ) lneE t E H t d

From Generalized Maxwell and Voigt Model we can obtain:

( ) ( )[1 exp( / )] lngD t D L t d

( ) [1 exp( / )]g j jj

D t D L t ( ) exp( / )e j jj

E t E H t

Center for Experimental Mechanics, University of Ljubljana, Slovenia66

Rheological ModelsHomework ‐ 1

Determine Creep and Relaxation functions for the shown models:

1 21E 2E 1E

2E

1

2

1E

1

2E 23E 3

1 21E 2E 1E

2E

1

2

1E

1

2E 23E 3

1E

1

2E 23E 3

Page 23: Mehanika nekovinskih gradiv

23

Center for Experimental Mechanics, University of Ljubljana, Slovenia67

Experiments in Uniaxial Extension 

Center for Experimental Mechanics, University of Ljubljana, Slovenia68

New standards for  Testing of Polymers

Standards for polymers testingHow to observe time-dependency?

To observe time-dependent properties ofpolymers new standards will include testson RELAXATION and CREEP.

Alternative technique for determinationof time-dependent behavior of thepolymeric material from short (2-3 min)tensile experiments

creeprelaxation

What are the time-dependent properties of material?

Why we want to use tensile experiment?

Equipment for such characterization are notwidely spread and very expensive

Complete characterization takes 2-3 days

Center for Experimental Mechanics, University of Ljubljana, Slovenia69

The UNIAXIAL TENSION of polymeric materials is one of the most important type of theirdeformation. Extension dominates in production of fibers, films and foils

Tensile machines are widely used and relatively cheap in comparison with apparatuses intendedfor creep and relaxation measurements

Many research groups are developing equipment to observe the behavior of polymers underuniaxial tension. Group of Prof. Maia: extensional rheometer for high viscosity systems

Plenty of tensile experimental data are already available. CAMPUS® (Computer Aided MaterialPreselection by Uniform Standards) is the only plastics database which offers truly comparablematerial data measured according to binding international standards (BASF)

Tensile Experiment. Reasons

Rupture fragile Rupture ductileSchematics of rheometer

Page 24: Mehanika nekovinskih gradiv

24

Center for Experimental Mechanics, University of Ljubljana, Slovenia70

Physical Background. Time‐Dependent Properties (1/5)

What do we understand under the time-dependency of mechanical properties?

Mechanical properties vary with timeMolecular rearrangements inside the material as a response on applied excitation could be

Infinitely longPurely elastic material

InstantlyPure viscous material

Comparable with the time of experiment

Viscoelastic material

Viscoelastic behavior of polymers is characterized by MATERIAL FUNCTIONS of time, or frequencyExample of molecular rearrangements

in tensile experiment

Center for Experimental Mechanics, University of Ljubljana, Slovenia71

Time-independent part(material constant)

Physical Background. Time‐Dependent Properties (2/5)

, lnRR t C F k t d

stat

icdy

nam

ic

G t K t E t t

J t B t D t

G K E

G K E

J B D

J B D

Mathematical representation of materialresponse to the applied excitation –

MATERIAL (RESPONSE) FUNCTIONTime-dependent part

Table 1: Material function of viscoelastic materials Interconversion between relaxation and retardation material functions

Spectral function Kernel function

Center for Experimental Mechanics, University of Ljubljana, Slovenia72

EXCITATION RESPONSE

Physical Background. Time‐Dependent Properties (3/5)

t t E tTRANSFER FUNCTION

System, Process

0

tE t

0

t

t E t s dss

Impossible to achieve in reality

Constitutive Equation of Linear Theory of Viscoelasticity (CE LVE)

Step function

Finding E(t) form CE LVE isINVERSE PROBLEM

Standard excitation

Application of nonstandardexcitations

Material

Page 25: Mehanika nekovinskih gradiv

25

Center for Experimental Mechanics, University of Ljubljana, Slovenia73

Physical Background. Time‐Dependent Properties (4/5)

Schematics of polymer structureEach color corresponds to certain length of

molecule

Response times

Distribution of response times referred to as SPECTRAL FUNCTION (SPECTRUM)

Mechanical spectrum represents the time-dependentpart of the experimental response function

According to mode of loading it can be relaxation,H(), or retardation, L()

Mechanical spectrum determines all mechanicalproperties of polymeric material

Mechanical spectrum can not be measured directlyfrom the experiment

F(

)

Center for Experimental Mechanics, University of Ljubljana, Slovenia74

Physical Background. Time‐Dependent Properties (5/5)

/

1

( ) i

Mt

e g e ii

E t E E E h e

1

1M

ii

h

/

0

( ) lnte g eE t E E E H e d

Continuous Form

(Fredholm integral equation of the first kind)

Discrete Form(more suitable for numerical analysis)

Ee – equilibrium modulusE(t) = Ee, when t ∞

Eg – glassy (instantaneous) modulusE(t) = Eg, when t 0

Finding H() form equations above isINVERSE PROBLEM

Representation of Material Function in terms of Mechanical Spectrum:

log

E(t

), [

Pa

]

Center for Experimental Mechanics, University of Ljubljana, Slovenia75

Problem Statement

Str

ess

, [

Pa

]

We want to characterize time-dependent propertiesof polymeric material starting from stress-strainexperimental data obtained from tensile experiment

OUTPUT

F(t)

(t) =L0

L

(t) = R·t

F(t)

A0

A0

Page 26: Mehanika nekovinskih gradiv

26

Center for Experimental Mechanics, University of Ljubljana, Slovenia76

Direct problems

(determination of effects of given cause)

Inverse problems

(determination of causes from the effects)Ill-posed problems (OR):

1. don’t have any solution2. don’t have unique solution3. solution is sensitive to error in input data

Problem Statement. Mathematical Background

,i it ,i it

0

( )( ) ( )

t st E t s ds

s

/

1

( ) i

Mt

e g e ii

E t E E E h e

( )E t , 1,ih i Mexperimental data

1st inverse problem 2nd inverse problem

Relaxation modulus Mechanical spectrum

Center for Experimental Mechanics, University of Ljubljana, Slovenia77

Structure of the Approach

Str

ess

, [P

a]

log

E(t

), [P

a]lo

g E

(t),

[Pa]

H, [

-]

Algorithm 1

Algorithm 3

Algorithm 2

0

( )( ) ( )

t st E t s ds

s

/

1

( ) i

Mt

e g e ii

E t E E E h e

Time-TemperatureSuperposition Principle

Center for Experimental Mechanics, University of Ljubljana, Slovenia78

Simultaneous measurements of two materila functions:

Uniaxial relaxation modulus and Poisson coefficient

Relaxation experiment in uniaxial extensionUniaxial extension and Poissins Coefficient

TSCHOEGL, Nicholas W., KNAUSS, Wolfgang G., EMRI, Igor. Poisson's ratio in linear viscoelasticity - a critical review. Mech. time-depend. mater., 2002, vol. 6, no. 1, 3-51.

Page 27: Mehanika nekovinskih gradiv

27

Center for Experimental Mechanics, University of Ljubljana, Slovenia79

Relaxation ExperimentUniaxial extension  and Poissons coefficient

M. Samarin: Naprava za merjenje enoosne relaksacije viskoelastičnih materialov, Magistrska naloga, Fakulteta za strojništvo, Ljubljana, 1999

SKITEK, Tanja, EMRI, Igor, TSCHOEGL, N. W.. An Apparatus for Measuring a Time-Dependent Poisson Ratio. V: 1996 VIII International Congress on Experimental Mechanics, Nashville, Tennessee, USA, Jun. 10-1, 1996, pp: 226-22.EMRI, Igor, SAMARIN, Matjaž, TSCHOEGL, N. W.. The Time-Dependent Poisson's Ratio. An Overview. V: Advanced Technology in Experimental Mechanics, The Japan Society of Mechanical Engineers, Wakayama, Japan, 25-26 jul., 1997, pp: 481-486, Vabljeno predavanje, CEM-97-32

Center for Experimental Mechanics, University of Ljubljana, Slovenia80

HAAKE C40

ME NU E

45.35ºC

INT-TEMP

08.09.1995 14:30:15

EN TER

2 0

50

1 0015 0

2 00

2 70

HAAKE F6

Borescope

CCD Camera

Heating/Cooling Circulator

Heating / CoolingCylinder

Specimen

Load Cell

Servo Motor

Silicon Oil

Environmental Chamber

Stretching Device

Relaxation experiment in uniaxial extensionCEM Apparatus

Center for Experimental Mechanics, University of Ljubljana, Slovenia81

The measuring setup

Specimen

Force senzor

Force senzor

M. Samarin: Naprava za merjenje enoosne relaksacije viskoelastičnih materialov, Magistrska naloga, Fakulteta za strojništvo, Ljubljana, 1999SKITEK, Tanja, EMRI, Igor, TSCHOEGL, N. W.. An Apparatus for Measuring a Time-Dependent Poisson Ratio. V: 1996 VIII International Congress on Experimental Mechanics, Nashville, Tennessee, USA, Jun. 10-1, 1996, pp: 226-22.EMRI, Igor, SAMARIN, Matjaž, TSCHOEGL, N. W.. The Time-Dependent Poisson's Ratio. An Overview. V: Advanced Technology in Experimental Mechanics, The Japan Society of Mechanical Engineers, Wakayama, Japan, 25-26 jul., 1997, pp: 481-486, Vabljeno predavanje, CEM-97-32

Relaxation experiment in uniaxial extensionCEM Apparatus

Page 28: Mehanika nekovinskih gradiv

28

Center for Experimental Mechanics, University of Ljubljana, Slovenia82

The loading frame The step motor

M. Samarin: Naprava za merjenje enoosne relaksacije viskoelastičnih materialov, Magistrska naloga, Fakulteta za strojništvo, Ljubljana, 1999

SKITEK, Tanja, EMRI, Igor, TSCHOEGL, N. W.. An Apparatus for Measuring a Time-Dependent Poisson Ratio. V: 1996 VIII International Congress on Experimental Mechanics, Nashville, Tennessee, USA, Jun. 10-1, 1996, pp: 226-22.EMRI, Igor, SAMARIN, Matjaž, TSCHOEGL, N. W.. The Time-Dependent Poisson's Ratio. An Overview. V: Advanced Technology in Experimental Mechanics, The Japan Society of Mechanical Engineers, Wakayama, Japan, 25-26 jul., 1997, pp: 481-486, Vabljeno predavanje, CEM-97-32

Relaxation experiment in uniaxial extensionCEM Apparatus

Center for Experimental Mechanics, University of Ljubljana, Slovenia83

Measuring setup Mesh

Frequency domain

2D FFT

Relaxation ExperimentUniaxial extension  and Poissons coefficient

M. Samarin: Naprava za merjenje enoosne relaksacije viskoelastičnih materialov, Magistrska naloga, Fakulteta za strojništvo, Ljubljana, 1999

Center for Experimental Mechanics, University of Ljubljana, Slovenia84

Effect of Temperature and 

Pressure

Page 29: Mehanika nekovinskih gradiv

29

Center for Experimental Mechanics, University of Ljubljana, Slovenia85

Motivation

Shrinkage of the interior trim:

Physical aging

Structural failure due to shrinkage:

Center for Experimental Mechanics, University of Ljubljana, Slovenia86

Motivation

-1

0

1

2

3

4

-10 -8 -6 -4 -2 0 2 4

log t [s]

log

G [

MP

a]

P0 = 200 Mpa

T0 = 5oC

SBR

NR

-60

-40

-20

0

20

40

60

0 2 4 6 8 10 12 14

Tooth No.

F[N

]

Center for Experimental Mechanics, University of Ljubljana, Slovenia87

Motivation

The key issue in the field of structural polymers is their durability (long-term stability).

Page 30: Mehanika nekovinskih gradiv

30

Center for Experimental Mechanics, University of Ljubljana, Slovenia88

Motivation

Δl

glassy

transition

rubbery

Time

log

()

Gt

plateauflow

T = const.

P = const.

Gg

GrSea

ling

forc

e

tcritical

Center for Experimental Mechanics, University of Ljubljana, Slovenia89

Effect of TemperatureThermal Volume Expansion

Center for Experimental Mechanics, University of Ljubljana, Slovenia90

Materials and their transitionsGlass transition, melting, crystallization

amorphous material

Semicrystalline material

crystalline material

Tg, Tm, Tc

glass transition (Tg) melting (Tm), crystallization (Tc)

crystal regionamorphous

region

Polymer structure

Page 31: Mehanika nekovinskih gradiv

31

Center for Experimental Mechanics, University of Ljubljana, Slovenia91

Materials and their transitionsGlass transition, melting, crystallization

100% amorphous semicrystalline100% crystalline

Tm, Tc Tg Tg, Tm, Tc

spe

cific

vol

ume

temperature

spec

ific

volu

me

Vo

Tg

glass

rubber

Property of the crystalline region

Below Tm: Ordered crystalline solid

Above Tm: Disordered melt

A first-order transition

Property of the amorphous region

Below Tg: Disordered amorphous solid with immobile molecules

Above Tg: Disordered amorphous solid in which portions of molecules can wiggle around

A second order transition

Center for Experimental Mechanics, University of Ljubljana, Slovenia92

First‐ and Second‐Order Transitions

Thermodynamic transitions are classified as being first- or second-order. In a first-order transition there is a transfer of heat between system and surroundings and the system undergoes an abrupt volume change.

In a second-order transition, there is no transfer of heat, but the heat capacity does change.

The volume changes to accommodate the increased motion of the wiggling chains, but it does not change discontinuously..

fFirst order transition

Second order transition

Center for Experimental Mechanics, University of Ljubljana, Slovenia93

spe

cific

vo

lum

e

temperature

spe

cific

vo

lum

e

Tg

T.

T.

1

2 T1>.

gT = f(T)

Cooling‐ or Heating‐Rate Dependents of Tg

rate-dependent value

When an amorphous polymer is heated, the temperature at which it changes from a glass to the rubbery form is called the glass transition temperature, Tg.

A given polymer sample does not have a unique value of Tg because the glass phase is not at equilibrium.

The measured value of Tg will depend on the molecular weight of the polymer, on its thermal history and age, on the measurement method, and on the rate of heating or cooling.

Page 32: Mehanika nekovinskih gradiv

32

Center for Experimental Mechanics, University of Ljubljana, Slovenia94

The Glass Transition Tg

The glass transition is a property of only the amorphous polymers and amorphous portion of a semi-crystalline solid. The crystalline portion remains crystalline during the glass transition.

At a low temperature the amorphous regions of a polymer are in the glassy state. In this state the molecules are frozen on place. They may be able to vibrate slightly, but do not have any segmental motion in which portions of the molecule wiggle around, i.e., there are no long-range motion in the polymer chain.

When the amorphous regions of a polymer are in the glassy state, it generally will be hard, rigid, and brittle, but the polymer structure is still disordered

If the polymer is heated it eventually will reach its glass transition temperature. Above a transition temperature, Tg, the chain segments recover their rotational mobility and long-range motions, thereby becoming softer and more ductile. We say that polymer enters its rubbery state.

Center for Experimental Mechanics, University of Ljubljana, Slovenia95

The Glass Transition Tg

Tg depends on molecular weight, heating/cooling speed (and thereby is a kinetic process), measuring method, etc.

The value of Tg depends on the mobility of the polymer chain - the more immobile the chain, the higher the value of Tg.

A polymer chain that can move easily will change from a glass to a rubber at a low temperature. If the polymer chains don't move as easily, then it will require a relatively high temperature to change the compound into a rubbery form.

In particular, anything that restricts rotational motion within the chain should raise Tg (e.g., nano particles should raise Tg).

Plasticizers are low molecular weight compounds added to plastics to increase their flexibility and workability. They weaken the intermolecular forces between the polymer chains and decrease Tg. (Plasticizers are added to the plastic used for automobile upholstery. In older automobiles, the plasticizer may be distilled from the upholstery during hot weather so that it becomes brittle over time.)

Center for Experimental Mechanics, University of Ljubljana, Slovenia96

Definition of the free volume and the glass transition temperature

0

V

V

gT T

r

g

I.Emri, Rheology of Solid Polymers, Rheology Reviews, 2005

glassy

transition

rubbery

Time

log

()

Gt

plateauflow

f l

f g

Page 33: Mehanika nekovinskih gradiv

33

Center for Experimental Mechanics, University of Ljubljana, Slovenia97

Model defines free-volume fractionat temperature T as:

- thermal expansion coefficient below Tg

- thermal expansion coefficient above Tg

Free‐volume theory

Center for Experimental Mechanics, University of Ljubljana, Slovenia98

ln ln / fA BV V

Doolitle, 1951, studied influence of temperature on viscosity of polymer melts. He postulated the relation

where( )g f gf f T T

f f f

f

V V Vf

V V V V

f l

f g ; for T < Tg

; for T Tg

1exp exp exp 1f

f f

V VVA B A B A B

V V f

Doolitle Equation

Center for Experimental Mechanics, University of Ljubljana, Slovenia99

Thermo‐mechanical (rheological) properties of materialsVolume expansion coefficient

Temperature volume expansion coefficient

Page 34: Mehanika nekovinskih gradiv

34

Center for Experimental Mechanics, University of Ljubljana, Slovenia100

Time‐Temperature Superposition

Center for Experimental Mechanics, University of Ljubljana, Slovenia101

Time‐temeprature superposition

0( ) / ( )Ta T T Shift factor is defined as a ratio of a particular relaxation or creep time at temperature T, to that ofa reference temperature T0,

T > T0

Log aT

Log (T) Log (T0) Log t /aT

T T0

Log

G(t)

T > T0

Log aT

Log (T) Log (T0) Log t /aT

T T0

Log

G(t)

Center for Experimental Mechanics, University of Ljubljana, Slovenia102

Time‐temeprature superposition

Log (T) Log (T0) Log t /aT

LogG

(t)

T5>T4>T3>T2>T1

Experimental Window

Page 35: Mehanika nekovinskih gradiv

35

Center for Experimental Mechanics, University of Ljubljana, Slovenia103

log

G(t

)

Time‐Temperature Superposition principlePhysical Background

log

G(t

)

Complete characterization of the polymeric materialrequires measurements ower several decades of time

Application of time-temperature (or time-pressure) superposition:

Impossible to measure in one experiment!

Tschoegl, N.W., Knauss, W.G., and Emri, I, The effect of temperature and pressure on the mechanical properties of thermo- and/or piezorheologically simple polymeric materials in thermodynamic equilibrium - a critical review. Mech. time-depend. mater., 6, 53-99, (2002)

Center for Experimental Mechanics, University of Ljubljana, Slovenia104

Time‐temperature superposition

0

300

600

900

1200

-1 0 1 2 3 4log t [s]

G [

MP

a]

20°C30°C40°C50°C65°C80°C95°C

T ref = 50°CP ref = 0.1 MPa

0

300

600

900

1200

-10 -5 0 5 10 15log t [s]

G [

MP

a]

T ref = 50°C

P ref = 0.1 MPa

Center for Experimental Mechanics, University of Ljubljana, Slovenia105

G(t) for PVAc at p=0.1 MPa (raw data)

1

10

100

1000

1E-1 1E+0 1E+1 1E+2 1E+3

t [s]

G(t

) [M

Pa

]

T=40°C

T=32°C

T=30°C

T=26°C

T=20°C

G(t) for PVAc at p=0.1 MPa (superposed with Tref=40°C)

1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1

t/ap [s]

Shift Factors

0

1

2

3

4

5

6

15 35 55

T [°C]

log

aT

Time‐temperature superpositionResults on PVAc

Page 36: Mehanika nekovinskih gradiv

36

Center for Experimental Mechanics, University of Ljubljana, Slovenia106

Time‐temperature superpositionResults on PA6

-16 -12 -8 -4 0 4log t [s]

20°C30°C40°C50°C65°C80°C

2.0

2.2

2.4

2.6

2.8

3.0

3.2

-1 0 1 2 3log t [s]

log

G [

MP

a]

P 0 = 0.1 MPaT 0 = 80°C

Shift factors

0

5

10

15

20 40 60 80T [°C]

log

aT

PA6.

Center for Experimental Mechanics, University of Ljubljana, Slovenia107

Time‐temperature superpositionOpen questions

Shifting is usually done “by hand”. This means that different people will obtain different master curves forthe same experimental data.

Based on theTIME-TEMPERATURE SUPERPOSITION PRINCIPLEwe want to construct the master curve at selected reference temperature.

Back

log

E(t

), [

Pa]

log

E(t

), [

Pa]

a1 a2 a3 a4 a5 m1 m20

2

4

6

8

10

12

14

, [

%]

0 1 2 3 42

2.2

2.4

2.6

2.8

3

3.2

log(t), [s]

log

G(t

), [

MP

a]

T

1 = 30

T2 = 40

T3 = 50

T4 = 62

T5 = 75

Set of synthetic data Error in relaxation modulus

IS IT POSSIBLE TO REMOVE THE DRAWBACK OF THE “HAND SHIFTING”?

Center for Experimental Mechanics, University of Ljubljana, Slovenia108

CFS‐ Close form time‐temperature shifting

We have proposed the unique mathematical (numerical) methodology for shifting of the experimental data in the process of constructing Master Curve at selected reference temperature or pressure, which completely removes ambiguity related to different shifting procedures

M. Gergesova, B. Zupančič, I. Saprunov, and I. Emri, The Closed Form t-T-P Shifting (CFS) Algorithm, Accepted to Journal of Rheology, 2010

Page 37: Mehanika nekovinskih gradiv

37

Center for Experimental Mechanics, University of Ljubljana, Slovenia109

Isochronal curvesScheme of construction

seconds104 reftt

Center for Experimental Mechanics, University of Ljubljana, Slovenia110

log aT

T>T0

T0

log t/aT log(T) log(T0)

Williams-Landel-Ferry (WLF) Model, 1955:1 0

2 0

( )log T

C T Ta

C T T

C1 and C2 are material constants, when T0 is Tg, they are nearly the same for most polymers (polymers which they investigated), i.e.,

2 54.6gc 1 17.44gc

Later was shown that these are NOT universal constants!

Modeling the Time‐Temperature SuperpositionHorisontal shifting

Tschoegl, N.W., Knauss, W.G., and Emri, I, The effect of temperature and pressure on themechanical properties of thermo- and/or piezorheologically simple polymeric materials inthermodynamic equilibrium - a critical review. Mech. time-depend. mater., 6, 53-99, (2002)

0 0

0 0

( / 2.303 )( )log

/Tf

B f T Ta

f T T

1 0/ 2.303c B f

0

( )

( )

iT

i

Ta

T

2 0 / fc f

Center for Experimental Mechanics, University of Ljubljana, Slovenia111

ln ln / fA BV V

Doolitle, 1951, studied influence of temperature on viscosity of polymer melts. He postulated the relation

where( )g f gf f T T

f f f

f

V V Vf

V V V V

f l

f g ; for T < Tg

; for T Tg

1exp exp exp 1f

f f

V VVA B A B A B

V V f

Doolitle Equation

Page 38: Mehanika nekovinskih gradiv

38

Center for Experimental Mechanics, University of Ljubljana, Slovenia112

WLF constants expressed in terms of free‐volume

0 0

0 0

( / 2.303 )( )log

/Tf

B f T Ta

f T T

01 002 0

( )log T

c T Ta

c T T

01 0/ 2.303c B f

0 0 0

( ) ( ) 1 1exp

( ) ( )i

Ti

T Ta B

T T f f

02 0 / fc f

02 2 0r

rc c T T 0 01 2 1 2r rc c c c

WLF constants for another reference temperatureTr:

I.Emri, Rheology of Solid Polymers, Rheology Reviews, 2005

Center for Experimental Mechanics, University of Ljubljana, Slovenia113

WLF Equation

01 002 0

( )log T

c T Ta

c T T

-20 -10 2010

-2

-4

2

T-T Csº

c1s

c2s

log (T, T ) PSa s

experimental shiftWLF approximation

log Ta

0( )T T

02c

01c

0

01

( )lim (log )T

T Ta c

00 2( )

lim (log )TT T c

a

I.Emri, Rheology of Solid Polymers, Rheology Reviews, 2005

Center for Experimental Mechanics, University of Ljubljana, Slovenia114

Determination of the WLF Constants ‐1

log ( ), ; 1,2,3, ,i ia T T i N

0

log ( ) log ( )i i

ii i

T T TS

a T a T

I.Emri, Rheology of Solid Polymers, Rheology Reviews, 2005

{ , ; 1, 2,3, , }i iS T i N

-20 -10 2010

-2

-4

2

T-T Csº

c1s

c2s

log (T, T ) PSa s

experimental shift

WLF approximation

01 002 0

( )log T

c T Ta

c T T

00 2

00 01 1

1( )

log T

T T cS T T

a c c

Page 39: Mehanika nekovinskih gradiv

39

Center for Experimental Mechanics, University of Ljubljana, Slovenia115

Determination of the WLF Constants‐2

0( )T T

Z

02C

0201

C

C

S

0

log ( ) log ( )i i

ii i

T T TS

a T a T

I.Emri, Rheology of Solid Polymers, Rheology Reviews, 2005

{ , ; 1, 2,3, , }i iS T i N

02

0 01 1

1( )i i i i i

cS S T T

c c

011/a c

0 02 1/b c c

( )i i i i iS S T a T b

( )i i iS a T b 2 2

1 1

[ ( )]N N

i i ii i

S a T b

Center for Experimental Mechanics, University of Ljubljana, Slovenia116

Determination of the WLF Constants‐3

Minimizing the sum of the squares with respect to a and b we obtain,

1

2 [ ( )] 0N

i i ii

S a T b Ta

The solution of this matrix equation is given by

aDa

D

bDb

D

2

1 1 1

1 1

N N N

i i i ii i i

N N

i ii i

aT T S T

T N Sb

2

1 1

1

N N

i ii i

N

ii

T T

D

T N

1 1

1

N N

i i ii i

a N

ii

S T T

D

S N

2

1 1

1 1

N N

i i ii i

b N N

i ii i

T S T

D

T S

Center for Experimental Mechanics, University of Ljubljana, Slovenia117

Determination of the WLF Constants‐4

Solving the above determinants we find the constants and to be given as:

2

2

1 101

1 1 1

1

N N

i ii i

N N N

i i ii i i

T N T

ca

N S T S T

2

1 1 1 102

1 1 1

N N N N

i i i i ii i i i

N N N

i i ii i i

T S S T Tb

ca

N S T S T

Page 40: Mehanika nekovinskih gradiv

40

Center for Experimental Mechanics, University of Ljubljana, Slovenia118

Determination of the WLF ConstantsSummary

log ( ), ; 1,2,3, ,i ia T T i N

0 01 0 0 2

00 0 02 0 1 1

( ) 1log ( )

logTT

c T T T T ca S T T

ac T T c c

0( )T T

Z

02C

020

1

C

C

S

2

2

1 101

1 1 1

N N

i ii i

N N N

i i ii i i

T N T

c

N S T S T

2

1 1 1 102

1 1 1

N N N N

i i i i ii i i i

N N N

i i ii i i

T S S T T

c

N S T S T

0

log ( ) log ( )i i

ii i

T T TS

a T a T

Center for Experimental Mechanics, University of Ljubljana, Slovenia119

The horizontal shifting is accompanied by a vertical shift, to compensate difference in density due to temperature difference (T-T0) – entropic corrections:

00 0

( ) ( )T

D T D TT

0

01 3 ( )T T

00

0

/( ) ( )

1 3 ( )

T TD T D T

T T

is a linear thermal expansion coefficient,

00 0

( ) ( )T

E T E TT

00

0

/( ) ( )

1 3 ( )

T TE T E T

T T

Vertical Shifting of Creep and Relaxation Curves

Tschoegl, N.W., Knauss, W.G., and Emri, I, The effect of temperature and pressure on the mechanical properties of thermo- and/or piezorheologically simple polymeric materials in thermodynamic equilibrium - a critical review. Mech. time-depend. mater., 6, 53-99, (2002)

3

Center for Experimental Mechanics, University of Ljubljana, Slovenia120

Time‐Temperature SuperpositionSummary

log

E(t

), [

Pa]

log

E(t

), [

Pa]

TTS implies that the response time function of thematerial at a certain temperature resembles theshape of the same functions of adjacenttemperatures.

Time-temperature superposition is a procedure for widening the time time scale of experiments at a given referene temperature.

log

E(t

)

Restrictions:

t-T shifting may be used only if specimen was atall temperatures in equilibrium state

Material can be brought to equilibriumsufficiently close only well above the glasstransition temperature, i.e., T > Tg+20˚C.

Page 41: Mehanika nekovinskih gradiv

41

Center for Experimental Mechanics, University of Ljubljana, Slovenia121

Time‐Temperature SuperpositionHomework ‐ 2

0

300

600

900

1200

1500

-1 0 1 2 3 4log t [s]

G [

MP

a]

20°C30°C40°C50°C65°C80°C95°C

T ref = 50°CP ref = 0.1 MPa

Center for Experimental Mechanics, University of Ljubljana, Slovenia122

Time‐Temperature SuperpositionHomework ‐ 2

183,9687220,3847277,9006452,4285708,981903,5732979,54641000

187,6638221,9378289,6285473,7961735,4359922,6379990,364630

189,1633227,8286296,2691494,7886765,586939,132997,4329400

192,8585230,881306,7653515,5669790,6486953,64491007,822251

194,5721235,433315,7086539,4516815,3898967,56851014,034158

198,8028238,8068322,135560,9261837,3998975,54771018,051100

199,8202241,4309330,8641583,7929858,2853988,66791027,36963

202,2301246,1971340,7177606,2315878,3141998,03971031,86740

203,8902249,678350,6784629,848896,68261006,0191036,68725,1

206,7286252,2485361,8708652,9292913,17671016,0331041,77515,8

207,9067257,1218371,4033676,9205925,17221020,4781045,79110

210,9592262,7983384,4166700,9656942,36281028,8331048,9516,3

216,4751266,2257397,4834721,2622955,80441035,7411053,2884

215,7789273,8837411,8353747,3423968,38911040,6681056,2872,51

217,6532279,0783425,9196770,0484980,70631046,8261059,4471,58

218,7243285,2903441,4499792,2726989,38161051,861061,1071

222,955291,8237457,5155812,6761998,91411055,2871064,1060,63

226,061298,6249474,8668833,991007,1611058,4471065,7120,4

229,0599304,3015492,8602852,7871014,1771062,3031067,4260,251

228,0425315,6011511,2824870,1381019,9071064,1771067,8010,158

234,7365323,0985528,0442885,88251021,2451067,6581071,7640,1

G(t)7G(t)6G(t)5G(t)4G(t)3G(t)2G(t)1t [s]

95°C80°C65°C50°C40°C30°C20°CT [oC]

183,9687220,3847277,9006452,4285708,981903,5732979,54641000

187,6638221,9378289,6285473,7961735,4359922,6379990,364630

189,1633227,8286296,2691494,7886765,586939,132997,4329400

192,8585230,881306,7653515,5669790,6486953,64491007,822251

194,5721235,433315,7086539,4516815,3898967,56851014,034158

198,8028238,8068322,135560,9261837,3998975,54771018,051100

199,8202241,4309330,8641583,7929858,2853988,66791027,36963

202,2301246,1971340,7177606,2315878,3141998,03971031,86740

203,8902249,678350,6784629,848896,68261006,0191036,68725,1

206,7286252,2485361,8708652,9292913,17671016,0331041,77515,8

207,9067257,1218371,4033676,9205925,17221020,4781045,79110

210,9592262,7983384,4166700,9656942,36281028,8331048,9516,3

216,4751266,2257397,4834721,2622955,80441035,7411053,2884

215,7789273,8837411,8353747,3423968,38911040,6681056,2872,51

217,6532279,0783425,9196770,0484980,70631046,8261059,4471,58

218,7243285,2903441,4499792,2726989,38161051,861061,1071

222,955291,8237457,5155812,6761998,91411055,2871064,1060,63

226,061298,6249474,8668833,991007,1611058,4471065,7120,4

229,0599304,3015492,8602852,7871014,1771062,3031067,4260,251

228,0425315,6011511,2824870,1381019,9071064,1771067,8010,158

234,7365323,0985528,0442885,88251021,2451067,6581071,7640,1

G(t)7G(t)6G(t)5G(t)4G(t)3G(t)2G(t)1t [s]

95°C80°C65°C50°C40°C30°C20°CT [oC]

Construct Master Curve for Tref = 50 CCalculate c1 c2 for Tref = 50 C and Tref = 20 CDetermine Isochronous temperature dependence at t = 10, 100, and 1000 seconds

Center for Experimental Mechanics, University of Ljubljana, Slovenia123

Time‐Temperature‐ Pressure Superposition

Page 42: Mehanika nekovinskih gradiv

42

Center for Experimental Mechanics, University of Ljubljana, Slovenia124

The Effect of Pressure

Similarity of Temperature and Pressure Effect

Polymer Applications

Center for Experimental Mechanics, University of Ljubljana, Slovenia125

An increase of pressure slows both relaxation and retardation, Fillers-Moonan-Tschoegl, 1977, 1983.

)()(

)]([log

2

1,

pTTpc

pTTca

refrr

refrr

pT

p pref ( )p 0The FMT equation comprises the WLF equation. When and equation reduces to the WLF equation.

N.W. Tschoegl and W.G. Kanuss

The Effect of Pressure (and Temperature)

Center for Experimental Mechanics, University of Ljubljana, Slovenia126

The Effect of Pressure (and Temperature)

experimentalwindow

T T = 0

log t

P P P1 2 5 < < ... <

P P0 3 =

t1 t2 t3

master curve at P3

P1

P2

P3

P4

P5

(b)

log aP2

Fillers-Moonan-Tschoegl (FMT) Model, 1979

log

( )

( ),ac T T P

c T T PP T

1 0

2 0

06

65

04

43 1

c1ln

1

1ln

)(

)()( 0

Pc

Pc

Pc

Pcc

P

PfP

f

T

c k Pr f3 1 / ( )

c k Kr r4 /

c k Pf5 1 / ( )

c k K6 /

)(/02 Pfc f

c B f1 02 303 / .

Page 43: Mehanika nekovinskih gradiv

43

Center for Experimental Mechanics, University of Ljubljana, Slovenia127

The effect of constant T and P atlo

g

()

Gt

experimentalwindow

P P = 0

master curve at T3

log tt1 t3

T T T1 2 5< < ... <

T T0 3 = T1

T2

T3

T4

T5

t2

(a)

log aT4

experimentalwindow

T T = 0

log t

P P P1 2 5 < < ... <

P P0 3 =

t1 t2 t3

master curve at P3

P1

P2

P3

P4

P5

(b)

log aP2

.

t

Center for Experimental Mechanics, University of Ljubljana, Slovenia128

What do we know ?

The State-of-Art on the effect of pressure and temperature is summarized in:

• Tschoegl, N.W., Knauss, W.G., Emri, I., “The Effect of Temperature and Pressure on the Mechanical Properties of thermo- and/or Piezorheologically Simple Polymeric Materials in Thermodynamic Equilibrium – A Critical Review”, Mechanics of Time Dependent Materials Vol.6, 2002, pp.53-99.

• Tschoegl, N.W., Knauss, W.G., Emri, I., “Poisson’s Ratio in Linear Viscoelasticity-A critical Review”, Mechanics of Time Dependent Materials Vol.6, 2002, pp.3-51.

Center for Experimental Mechanics, University of Ljubljana, Slovenia129

Shear Relaxation Modulus with Pressure Superposition

G(t) for PVAc at T=40°C (raw data)

1

10

100

1000

1E-1 1E+0 1E+1 1E+2 1E+3

t [s]

G [

MP

a]

p=0.1MPap=20 MPap=40 MPap=55 MPap=70 MPa

G(t) for PVAc at T=40°C (superposed with pref=40°C)

1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+1

t/aT [s]

Shift Factors

0

1

2

3

4

5

0 20 40 60 80

p [MPa]

log

ap

Page 44: Mehanika nekovinskih gradiv

44

Center for Experimental Mechanics, University of Ljubljana, Slovenia130

Shear Relaxation Modulus with Pressure Superposition

-8 -5 -2 1 4log t [s]

0.1 MPa25 MPa50 MPa75 MPa100 MPaP 0 = 0.1 MPa

1.0

1.5

2.0

2.5

3.0

3.5

-1 0 1 2 3log t [s]

log

G( t

) [M

Pa

]

T 0 = 35°C

Shift factors

0

4

8

0 50 100P [MPa]

log

aP

Center for Experimental Mechanics, University of Ljubljana, Slovenia131

The effect of constant T and P on amorphous polymers at

-8 -4 0 4

log t [s]

T 0 = 35°C

1.0

1.5

2.0

2.5

3.0

3.5

-1 0 1 2 3log t [s]

log

G( t

) [M

Pa

]

15°C20°C25°C30°C35°C

Shift factors

0

2

4

6

15 25 35T [°C]

log

aT

P 0 = 0.1 MPa

-8 -5 -2 1 4log t [s]

0.1 MPa25 MPa50 MPa75 MPa100 MPaP 0 = 0.1 MPa

1.0

1.5

2.0

2.5

3.0

3.5

-1 0 1 2 3log t [s]

log

G( t

) [M

Pa]

T 0 = 35°C

Shift factors

0

4

8

0 50 100P [MPa]

log

aP

1.0

1.5

2.0

2.5

3.0

3.5

-8 -4 0 4log t [s]

log

G( t

) [M

Pa

]

- master curve - master curve

T 0 = 35°C

P0 = 0.1 MPa

TP

Time‐temperature‐pressure supperposition

Constant temperature and pressure does not change the shape of the spectrum.

t

Center for Experimental Mechanics, University of Ljubljana, Slovenia132

-1.0

0.0

1.0

2.0

3.0

-9 -6 -3 0 3 6log t [s]

log

G [

MP

a]

- master curve

- master curve

P 0 = 200 MPa

T 0 = 5°C

T

P

SBR

The effect of constant T and P at         for  SBRt

Page 45: Mehanika nekovinskih gradiv

45

Center for Experimental Mechanics, University of Ljubljana, Slovenia133

0.5

1.0

1.5

2.0

2.5

-8 -5 -2 1 4 7log t [s]

log

G [

MP

a]

- master curve

- master curve

T 0 = 5°C

P 0 = 200 MPa

T

P

EPDM

The effect of constant T and P at          for EPDMt

Center for Experimental Mechanics, University of Ljubljana, Slovenia134

log

( )

( ),ac T T P

c T T PP T

1 0

2 0

c k Pr f3 1 / ( )

c k Kr r4 /

c k Pf5 1 / ( )

c k K6 /

Fillers‐Moonan‐Tschoegl (FMT) Model

)(/02 Pfc f

c B f1 02 303 / .

02

01 )(log

TTc

TTcaT

Williams‐Landel‐Ferry (WLF) Model

ffc /02

c B f1 02 303 / .

06

65

04

43 1

c1ln

1

1ln

)(

)()( 0

Pc

Pc

Pc

Pcc

P

PfP

f

T

Modeling the Effect of P and T at t

Center for Experimental Mechanics, University of Ljubljana, Slovenia135

Volume Dependence on Pressure

PVAc Specific Volume Dependence on Pressure (T=40°C)

0.810

0.820

0.830

0.840

0.850

0 20 40 60 80 100

p [MPa]

v [

cm

3/g

]

v [cm3/g]Murnaghan's Fit

Page 46: Mehanika nekovinskih gradiv

46

Center for Experimental Mechanics, University of Ljubljana, Slovenia136

Thermal Expansivity Dependence on Pressure

PVAc Thermal Expansion Dependence on Pressure

0.825

0.830

0.835

0.840

0.845

0.850

38.5 39.0 39.5 40.0 40.5 41.0 41.5

T [°C]

v [

cm

3/g

]

p=0.1MPa, Beta=0.000645/Kp=50 MPa, Beta=0.000560/K

Center for Experimental Mechanics, University of Ljubljana, Slovenia137

Effect of Pressure on Tg, and Tm

0

V

V

1p

TgT

2p

3p

13 2p p p

Tm

Center for Experimental Mechanics, University of Ljubljana, Slovenia138

B(t) for PVAc (T=40°C, p=8.5 MPa 0.1 MPa)

0.00041

0.00043

0.00045

0.00047

0.00049

0.00051

10 100 1000 10000

t [s]

B(t

) =

v(

t)/

p [

/MP

a]

The Effect of Pressure Variation

Page 47: Mehanika nekovinskih gradiv

47

Center for Experimental Mechanics, University of Ljubljana, Slovenia139

Effect of pressure variation on PVAc

1.00

1.50

2.00

2.50

0 1 2 3 4 5log t [MPa]

B( t

) [ x

10 -

3/M

Pa]

35°C

32°C

30°C

P 0 = 0.1 MPa

P = 10 MPa

4.00

5.00

6.00

7.00

0 1 2 3 4 5log t [s]

B( t

) [ x

10

- 4/M

Pa

]

= 100 MPa

= 75 MPa

= 50 MPa

= 25 Mpa

T 0 = 30°C

P 0 = 0.1 MPa

P 1

P 2

P 3

P 4

Understanding of the effect of pressure variation is still insufficient.There are very few models that allow mathematical description of the simultaneous pressure and temperature variation

Center for Experimental Mechanics, University of Ljubljana, Slovenia140

dtttKttP

t

kk

0

)()(')('3)()(

t

ctT

dttt

)(),(),()(')('

0

1

)(),(),(

1

303.2)(),(),(log

fctTf

bctT

d

Ttf

t

T

0

)()(

dtMf

tkk

0

)()(

3

1 d

ctf

t

c

0

)()(

3

1

cT ffffctTf 0)(),(),(

Stress‐Strain Relations

The Knauss‐Emri (KE) ModelModeling the eefect of pressure

Center for Experimental Mechanics, University of Ljubljana, Slovenia141

Measurement conditions:

• pressure up to 600 MPa (6000bar), ±0.1 MPa

• temperature from –50°C to +120°C, ±0.01°C

data acquisition

circulator

measuring inserts

thermal bath

pressurizing system

pressure vessel

carrier amplifier

CEM P‐T‐t Apparatus

Kralj, A., Prodan T., and Emri, I., J. rheol., 45, 929-943, (2001).Emri, I., and Prodan, T., Experimental Mechanics, (2005), In print

Page 48: Mehanika nekovinskih gradiv

48

Center for Experimental Mechanics, University of Ljubljana, Slovenia142

Assumptions:

• homogeneous, isotropic specimen

• = 3

260

mm

LVDT

LVDT rod

specimen

Measurement Principle

P, T

CEM P‐T‐t Apparatus: Dilatometer

Center for Experimental Mechanics, University of Ljubljana, Slovenia143

280

mm

loading device

load cell

specimen

slidermechanism

triggeringmechanism

electric motor

(a)

CEM P‐T‐t Apparatus: Relaxometer

Kralj, A., Prodan T., and Emri, I., J. Rheol., 45, 929-943, (2001).Emri, I., and Prodan, T., Experimental Mechanics, 46, 429-439, (2006)

Load

Response

Center for Experimental Mechanics, University of Ljubljana, Slovenia144

Typical geometry of teh specimens

CEM P‐T‐t Apparatus: Specimens

Page 49: Mehanika nekovinskih gradiv

49

Center for Experimental Mechanics, University of Ljubljana, Slovenia145

P h ys ica l P ro p erties S ym b o ls

S hear m om ent ( ), ( ), ( )M t M T M P o r ( , , )M t T P

Mea

s

-ure

d

S pec im en leng th ( ), ( ), ( )L t L T L P o r ( , , )L t T P

S hear re la xa tion m odu lus ( ), ( ), ( )G t G T G P o r ( , , )G t T P

S pec ific vo lum e ( ), ( ), ( )v t v T v P o r ( , , )v t T P

L inear the rm a l e xpa ns ion coe ff. ( ), ( )T P , o r ( , )T P

V o lum e tric the rm a l expa ns ion coe ff. ( ), ( ), , ,g e fT P , o r , , ( , )g e f T PB u lk c reep com p liance ( ), ( ), ( )B t B T B P o r ( , , )B t T P

Ca

lcu

late

d f

rom

de

fin

itio

ns

B u lk m odu lus ( ), ( )K T K P o r ( , )K T P

W LF cons tan ts 1 2, c c

W LF m ate ria l pa ram ete rs 0, f f

F M T constan ts 1 2 3 4 5 6, , , , , c c c c c c

Ca

lcu

late

d

fro

m m

od

els

F M T m ate ria l pa ram ete rs *0( ), ( ), , , , , f e eP f P B K k K k

CEM P‐T‐t Apparatus: Measuring capabilities

Center for Experimental Mechanics, University of Ljubljana, Slovenia146

Shear relaxation modulus of PVAcEffect of Temperature

40 0

32 ( )( , , )

M tG t T P

D

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18 20t [h]

T( t

) [°

C]

0

0.1

0.2

0.3

0.4

P(t

) [M

Pa]

MeasTP

-8 -4 0 4

log t [s]

T 0 = 35°C

1.0

1.5

2.0

2.5

3.0

3.5

-1 0 1 2 3log t [s]

log

G( t

) [M

Pa]

15°C20°C25°C30°C35°C

Shift factors

0

2

4

6

15 25 35T [°C]

log

aT

P 0 = 0.1 MPa

P-T boundary conditions

1.0

1.5

2.0

2.5

3.0

3.5

15 20 25 30 35T [°C]

log

G(t

) [M

Pa]

0.1 s1 s10 s100 s

P 0 = 0.1 MPa

Center for Experimental Mechanics, University of Ljubljana, Slovenia147

Shear relaxation modulus of PVAcEffect of Pressure

40 0

32 ( )( , , )

M tG t T P

D

P-T boundary conditions

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18t [h]

T( t

) [°

C]

-20

0

20

40

60

80

100

120

140

P( t

) [M

Pa]

T

P

Meas

-8 -5 -2 1 4log t [s]

0.1 MPa25 MPa50 MPa75 MPa100 MPaP 0 = 0.1 MPa

1.0

1.5

2.0

2.5

3.0

3.5

-1 0 1 2 3log t [s]

log

G( t

) [M

Pa]

T 0 = 35°C

Shift factors

0

4

8

0 50 100P [MPa]

log

aP

1.0

1.5

2.0

2.5

3.0

3.5

0 20 40 60 80 100P [MPa]

log

G( t

) [M

Pa

]

0.1 s1 s10 s100 s

T 0 = 35°C

Page 50: Mehanika nekovinskih gradiv

50

Center for Experimental Mechanics, University of Ljubljana, Slovenia148

Specific Volume v(T,P)

( , , )( , )

V t T Pv T P

m

0

48

12

16

20

2428

32

36

40

0 12 24 36 48 60 72 84 96 108t [h]

T(t

) [°

C]

-4

04

8

12

16

2024

28

32

36

P( t

) [M

Pa

]

T

P

Meas

P-T boundary conditions0,760

0,780

0,800

0,820

0,840

0 10 20 30 40P [MPa]

v(P

) [c

m3 /g

]

32°C

28°C

24°C

20°C

16°C

0,760

0,780

0,800

0,820

0,840

0,860

15 20 25 30 35T [°C]

v( T

) [c

m3 /g

]0.1 MPa8 MPa16 MPa24 MPa32 MPa

Center for Experimental Mechanics, University of Ljubljana, Slovenia149

Thermal expansion coefficient

0

1 ( , , )( , ) ( , , )

L t T PT P t T P

L T

0

48

12

16

20

2428

32

36

40

0 12 24 36 48 60 72 84 96 108t [h]

T(t

) [°

C]

-4

04

8

12

16

2024

28

32

36

P( t

) [M

Pa]

T

P

Meas

P-T boundary conditions3.00

4.00

5.00

6.00

7.00

8.00

15 20 25 30 35T [°C]

[ x

10 -

4/ °

C]

P 0 = 0.1 MPa

Tg

6.00

6.40

6.80

7.20

7.60

8.00

0 10 20 30 40P [MPa]

P

[ x

10 -

4/°

C]

T 0 = 32°C

Pg

Center for Experimental Mechanics, University of Ljubljana, Slovenia150

Bulk Creep Compliance B(t,T,P) ‐ I

0 00 0 0 0 0 0 0

0 0

( , , )( , , ) ( , , ) ( , , ) ( ) ( )

t tkk

kk

T PT P t B T P t d B T P t P P P h d

0 0 0 00 0

0

( , , ) ( , , )( , , ) kk T P t V T P t

B T P tP V P

0

5

10

15

20

25

30

35

40

0 6 12 18 24 30 36 42 48 54t [h]

T( t

) [°

C]

-2

0

2

4

6

8

10

12

P [

MP

a]

T

P

Meas

1.00

1.50

2.00

2.50

0 1 2 3 4 5log t [MPa]

B( t

) [x

10 -

3/M

Pa]

35°C

32°C

30°C

P 0 = 0.1 MPa

P = 10 MPa

P-T boundary conditions

1.00

1.40

1.80

2.20

2.60

28 30 32 34 36T [°C]

B( t

) [ x

10 -

3/M

Pa]

9 s

90 s

1000 s

P 0 = 0.1 MPa

Page 51: Mehanika nekovinskih gradiv

51

Center for Experimental Mechanics, University of Ljubljana, Slovenia151

Bulk Creep Compliance B(t,T,P) ‐ II

0 00 0 0 0 0 0 0

0 0

( , , )( , , ) ( , , ) ( , , ) ( ) ( )

t tkk

kk

T PT P t B T P t d B T P t P P P h d

0 0 0 00 0

0

( , , ) ( , , )( , , ) kk T P t V T P t

B T P tP V P

P-T boundary conditions

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18 20 22t [h]

T( t

) [°

C]

-20

0

20

40

60

80

100

120

P [

MP

a]

T

P

Meas

4.00

5.00

6.00

7.00

0 1 2 3 4 5log t [s]

B( t

) [x

10 -

4/ M

Pa]

= 100 MPa

= 75 MPa

= 50 MPa

= 25 Mpa

T 0 = 30°C

P 0 = 0.1 MPa

P 1

P 2

P 3

P 4

4.00

5.00

6.00

7.00

0 30 60 90 120P [MPa]

B( t

) [ x

10 -

4/M

Pa]

9 s

90 s

1000 s

T 0 = 30°C

Center for Experimental Mechanics, University of Ljubljana, Slovenia152

Bulk Modulus K(T, P)

( , ) ( , , )K T P K T P t

( , )dP

K T P VdV

350

400

450

500

550

600

650

0 10 20 30 40P [MPa]

K(P

) [M

Pa

]

T 0 = 32°C

300

500

700

900

15 20 25 30 35T [°C]

K(t

) [M

Pa

]

P 0 = 0.1 MPa

Center for Experimental Mechanics, University of Ljubljana, Slovenia153

Free Volume and WLF Parameters

TABLE 4— WLF CONSTANTS AND PARAMETERS FOR PVAc.

Parameter [Units]

0P

[MPa] 0T

[C]

01c 0

2c

[C]

B f

[ 410 /C] 0f

[ 210 ]

Value 0.1 35 23.37 83.58 1 1.81 1.62

c B f1 02 303 / .02

01 )(log

TTc

TTcaT

ffc /02

Page 52: Mehanika nekovinskih gradiv

52

Center for Experimental Mechanics, University of Ljubljana, Slovenia154

FMT Parameters and Constants

log

( )

( ),ac T T P

c T T PP T

1 0

2 0

c k Pr f3 1 / ( )

c k Kr r4 /

c k Pf5 1 / ( )

c k K6 /

)(/02 Pfc f

c B f1 02 303 / .

06

65

04

43 1

c1ln

1

1ln

)(

)()( 0

Pc

Pc

Pc

Pcc

P

PfP

f

T

TABLE 5— FMT PARAMETERS FOR PVAc.

Parameter [Units]

0P

[MPa] 0T

[C]

001c 00

2c

[C]

B f

[ 410 /C] 0f

[ 210 ]

*K

[MPa]

k *rK

[MPa] rk

Value 0.1 35 23.37 83.58 6.756 15.02 12.55 1976 11.09 1067 9.11

Center for Experimental Mechanics, University of Ljubljana, Slovenia155

The Effect of Moisture

Center for Experimental Mechanics, University of Ljubljana, Slovenia156

0,0001

0,001

0,01

0,1

1

1 10 100 1000 10000 100000 1000000

1E+07 1E+08 1E+09 1E+10

t [sec]

J(t

) [m

m2/N

]

100

10-1

10-2

10-3

10-4100 102 104 106 108 1010

master curves:different Tdifferent cw

0,0001

0,001

0,01

0,1

1

1 10 100 1000 10000

J(t

) [m

m2 /N

]

t [sec]100 5 101 5 102 5 103 5 104

Cw[%]

2.72

1.81

1.291.050.740.00

100

10-1

10-2

10-3

10-4

0,0

0,0

0,0

0,1

1,0

1 10 100 1000 10000

t [ sec]

J(t

) [m

m2 /N

]

T[oC]

35.8

34.4

32.3

30.628.426.420.0

100 5 101 5 102 5 103 5 104

100

10-1

10-2

10-3

10-4

Effect of Moisture

Page 53: Mehanika nekovinskih gradiv

53

Center for Experimental Mechanics, University of Ljubljana, Slovenia157

Knauss‐Emri model: Modeling teh Effect of Moisture and Solvents

de

tttGtSt ij

ij

0

)()(')('2)(

dtttKt

t

kk

0

)()(')('3)(

t

ctT

dttt

)(),(),()(')('

0

1

)(),(),(

1

303.2)(),(),(log

fctTf

bctT

d

Ttf

t

T

0

)()(

dtMf

tkk

0

)()(

3

1 d

ctf

t

c

0

)()(

3

1

cT ffffctTf 0)(),(),(

Stress‐Strain Relations

Center for Experimental Mechanics, University of Ljubljana, Slovenia158

Effect of Moisture on Fracture Properties of PA

Center for Experimental Mechanics, University of Ljubljana, Slovenia159

Effect of Moisture on Fracture Properties of PA

Page 54: Mehanika nekovinskih gradiv

54

Center for Experimental Mechanics, University of Ljubljana, Slovenia160

Effect of Moisture on Fracture Properties of PA

Center for Experimental Mechanics, University of Ljubljana, Slovenia161

Dynamic Loading

Center for Experimental Mechanics, University of Ljubljana, Slovenia162

Dynamic Loading ‐ 1

Creep and stress relaxation tests are convenient for providing information on the material response at long times (minutes to days), but are not useful at shorter times (seconds or less) because of inertial effects (ringing) induced by the step-function input.

In dynamic tests one applies a sinusoidally oscillating stress or strain. Such tests are well-suited for covering the short-time range in the response (high frequencies) but are inconvenient at long times (low frequencies).

Page 55: Mehanika nekovinskih gradiv

55

Center for Experimental Mechanics, University of Ljubljana, Slovenia163

Dynamic Loading ‐ 2

0( , ) sint t ( 0) 0t 0( , ) cost t

( ) ( ) exp( / ) lneE t E H t d

0

( )( ) ( ) (0) ( )

t ut E t E t u du

u

0

0

( , ) [ ( ) exp( ) ln ]cost

e

t ut E H d u du

0 0

0 0

( , ) cos [ ( ) exp( ) ln ] cost t

e

t ut E u du H d u du

0 0

0

( , ) sin ( )[ exp( )cos ] lnt

e

t ut E t H u du d

Excitation:

Response: Material property:

2 2

0 0 02 2 2 2

2 2

0 2 2

( , ) sin sin ( ) ln cos ( ) ln1 1

+ ( ) exp( / ) ln1

et E t t H d t H d

H t d

Center for Experimental Mechanics, University of Ljubljana, Slovenia164

Dynamic Loading ‐ 3

( , ) ( )t

2 2

2 2( ) ( ) ln

1eE E H d

2 2

( ) ( ) ln1

E H d

Usually we are interested in steady-state response, i.e., when

2 2

0 0 02 2 2 2

2 2

0 2 2

( , ) sin sin ( ) ln cos ( ) ln1 1

+ ( ) exp( / ) ln1

et E t t H d t H d

H t d

The storage modulus, is a measure of the material's ability to storage energy elastically. The loss modulus is a measure of its ability to dissipate energy through viscous mechanisms, and is a parameter often related to the toughness and impact resistance of the material. In composite materials Coulomb friction between the matrix and the fibers can substantially increase

)(

)()(tan

E

E

22 )()()(~ EEE

)(sin)(~

)( EE

)cos()(~

)( EE )(

~)( 00 E

)(sin)()(sin)()(cos)(sin)()( 022

000 ttEEtEtE

Center for Experimental Mechanics, University of Ljubljana, Slovenia165

Hysteresis Experiment ‐ 1

Frequency dependent material functions may be conveniently determined with a so called hysteresis experiment.We excite the material, for example, uniaxial with a harmonic strain excitation and measure the correspondingstress, which is phase shifted in respect to strain

0( , ) sint t 0sin ( , ) /t t

2

0 0 0

( , ) ( , ) ( , )cos ( ) 1 sin ( )

( )

t t t

2 2

20 0 0 0

( , ) 2 ( , ) ( , ) cos ( ) ( , )1

( ) sin ( ) ( ) sin ( )

t t t t

)(sincos)(cossin)()(sin)(),( 00 tttt

Page 56: Mehanika nekovinskih gradiv

56

Center for Experimental Mechanics, University of Ljubljana, Slovenia166

0( ) /t

0( ) /t

1.0

1.0AB

B

A

0.5

Hysteresis Experiment ‐ 2

2 2

20 0 0 0

( , ) 2 ( , ) ( , ) cos ( ) ( , )1

( )sin ( ) ( ) sin ( )

t t t t

( , ) 0

0

( , )sin ( )

( )t

tA

0( , )

0

( , )cos ( )

( )t

tB

( , ) 0

0

( , )sin ( )t

tA

0( , ) ( )

0

( , )cos ( )t

tB

)(

)()(tan

E

E

B

A

B

A

Center for Experimental Mechanics, University of Ljubljana, Slovenia167

Hysteresis Experiment ‐3

)(sin)(~

)( EE

Wd

2 / 2 /

0 0

( )(loop) ( ) ( ) ( )

d tW t d t t dt

dt

2 /

0 0

0

(loop) ( ) cos sin[ ( )]W t t dt

0( ) sint t 0( ) ( )sin[ ( )]t t

20

(loop)( )

WE

2 2

0 0

(loop) (loop)( )( )

tan ( )

W B W BEE

A A

20

(loop)( )

WD

2 20 0

(loop) (loop)( )( )

tan ( )

W B W BDD

A A

)(sin)()loop( 00 W

)()(sin)(~

)loop( 20

20 EEW

0

0(

22 )()()(~ EEE

)(~

)( 00 E

)(cos)(~

)( EE

2 2

20 0 0 0

( , ) 2 ( , ) ( , ) cos ( ) ( , )1

( ) sin ( ) ( ) sin ( )

t t t t

Center for Experimental Mechanics, University of Ljubljana, Slovenia168

Dynamic Loading ‐ 4

2 2( ) ( ) ( )E E E

( )tan ( )

( )

E

E

0 0( ) ( ) sin[ ( )] ( ) sin[ ( )]E t t

2 20 0 0( ) ( ) ( ) ( )E E E

The Absolute Modulus:

The Loss Tangent:

0 0( ) ( )sin ( ) cosE t E t

We observe that when a viscoelastic material is subjected to a sinusoidally oscillating strain the resulting stress will bealso sinusoidal, having the same angular frequency, but leading the strain by the phase angle, which is a function of theloading frequency.

Page 57: Mehanika nekovinskih gradiv

57

Center for Experimental Mechanics, University of Ljubljana, Slovenia169

Dynamic Loading ‐ 5

0 0( ) ( )sin ( )cosE t E t

*( ) ( ) ( ) ( ) exp[ ( )]E E jE E j 1j

1

1j

j

( )E

( )E

( )E

( )

( )

( )D

( )D

( )D

( ) ( ) cos ( )E E ( ) ( )sin ( )E E

Center for Experimental Mechanics, University of Ljubljana, Slovenia170

j

1

~( )E

E ' ( )

E"( )

j

1

~( )J

J ' ( )

J "( )

Hysteresis Experiment ‐4

Dynamic Creep and Relaxation Modulus

Center for Experimental Mechanics, University of Ljubljana, Slovenia171

Dynamic Materila FunctionsHomework ‐ 3

For the three viscoleastic models shown below determine:

E´() and E”() D´(), D”() tan(), andHysteresis energy as function of excitation frequency(loop)W

1E2E1E

1E

1

1 1

1E2E1E

1E

1

1 1

Page 58: Mehanika nekovinskih gradiv

58

Center for Experimental Mechanics, University of Ljubljana, Slovenia172

Interrelation Between Material 

Functions

Center for Experimental Mechanics, University of Ljubljana, Slovenia173

Interrelation Between Material Functions ‐1

We discuss here the interrelations between the time- and frequency-dependent viscoelastic material functions measured in shear.

The interrelations between other viscoelastic material functions are from the mathematical stand-point of view analogous. Thus, the findings may be readily generalized to other modes of deformation.

ln)(1

)()(ln)(1

)()()(

ln)()(

22

2

dHGdHGG

deHGtG

e

t

e

Center for Experimental Mechanics, University of Ljubljana, Slovenia174

Interrelation Between Material Functions ‐2

The theoretical interrelations between the harmonic and the time dependent material functions are given in the formof the (generalized) Fourier transform,

( ) ( ) ( ) ( ); ( ) exp( )G G jG j G t j j G t j t dt

( ) ( ) ( ) ( ); ( ) exp( )J J jJ j J t j j J t j t dt

0

( ) ( ) cosG G t t dt

0

( ) ( ) sinJ J t t dt

0

( ) ( ) cosJ J t t dt

0

( ) ( ) sinG G t t dt

Static Dynamic

Page 59: Mehanika nekovinskih gradiv

59

Center for Experimental Mechanics, University of Ljubljana, Slovenia175

Interrelation Between Material Functions ‐3

1 1 ( )( ) ( ) ; exp( )

2

GG t G j t j t d

j

1 1 ( )

( ) ( ) ; exp( )2

JJ t J j t j t d

j

Dynamic Static

0 0

( )2 2 ( ))( ) sin (1 cos )g

g g

G G GG t G t d G t d

0

0

( )2( ) sin

( )2(1 cos ) .

gg f

f

g f

J JJ t J t d t

JJ t d t

Center for Experimental Mechanics, University of Ljubljana, Slovenia176

Interrelation Between Material Functions ‐4

0

( )lim lim ( )ft

dJ tJ

dt

0lim ( ) lim ( )gt

G G t G

0

lim ( ) lim ( )g tJ J t J

0 00

( )lim ( ) lim ( ) lim ( ) lim

t

f t t

Gt G u du

0 0 1e eG J 1g gG J 1f f

Center for Experimental Mechanics, University of Ljubljana, Slovenia177

Interrelation Between Material Functions ‐5

Time- and Frequency- Dependent Functions Expressed in Terms of Relaxation and Retardation Spectra:

2 2

2 2 2 2

1( ) ( ) ln ( ) ln

1 1e gG G H d G H d

2 2( ) ( ) ln

1G H d

2 2

1( ) ( ) ln

1H d

2 2

( ) ( ) ln1

eGH d

,

0lim ( ) lim ( )et

G G t G

( ) ( ) exp( / ) ln ( ) 1 exp( / ) lne gG t G H t d G H t d

( ) ( ) 1 exp( / ) lnet G t H t d

,

Page 60: Mehanika nekovinskih gradiv

60

Center for Experimental Mechanics, University of Ljubljana, Slovenia178

Interrelation Between Material Functions ‐6

Time- and Frequency- Dependent Functions Expressed in Terms of Discrete Relaxation and Retardation Spectra:

2 2

2 2 2 21 1

1( )

1 1

i n i ni

e i g ii ii i

G G H G H

2 2

1

( )1

i ni

ii i

G H

2 21

1( )

1

i n

i ii i

H

2 21

( )1

i ne i

i ii i

GH

1 1

( ) exp( / ) 1 exp( / )i n i n

e i i g i ii i

G t G H t G H t

1

( ) ( ) 1 exp( / )i n

e i i ii

t G t H t

0lim ( ) lim ( )et

G G t G

Center for Experimental Mechanics, University of Ljubljana, Slovenia179

Interrelation Between Material Functions ‐7

( ) lng eG G H d

0 ( ) lne gJ J L d

( ) lnf H d

,

1

i n

g e ii

G G H

0

1

i n

e g ii

J J L

1

i n

f i ii

H

Material Constants:

Center for Experimental Mechanics, University of Ljubljana, Slovenia180

Interrelation Between Material Functions ‐8

1 t

G t G

Simple (Laun) (1991):Christansen (1982):

Ninomiya in Ferry (1959):

Schwarzl in Struik (1967):

Schwarzl1 (1975):

Schwarzl2 (1975):

1

( ) 0.4 0.4 0.014 10t

G t G G G

1

( ) 0,337 0,323t

G t G G

1

( ) 0.00807 16 0.00719 8

0.00616 4 0.467 2 0.0918

0.0534 2 0.08 4 0.0428 8t

G t G G G

G G G

G G G

1

( ) 0.496 2 0.0651 4 2

0.0731 2 .111 2

0.03 8 16 0.00683 32 64t

G t G G G G

G G G G

G G G G

2 t

G t G

R. Cvelbar: Interkonverzija materialnih funkcij viskoelastičnih materialov, Doktorska disertacija, Fakulteta za strojništvo, Ljubljana, 2005, zagovor.

Approximate Interrelations:

Page 61: Mehanika nekovinskih gradiv

61

Center for Experimental Mechanics, University of Ljubljana, Slovenia181

Interrelation Between Material Functions ‐9

An Owerview:

Center for Experimental Mechanics, University of Ljubljana, Slovenia182

Interrelation Between Material Functions

Determination of Spectra Using Emri‐Tschoegl 

Algorithm

Center for Experimental Mechanics, University of Ljubljana, Slovenia183

Determination of the mechanical spectrumPhysical meaning of the Mehanical Spectrum

Assumption:Positions of the spectrum lines are fixed:

1) Spectrum lines are equally distributed,2) Two lines per decade.

Open questions: How to determine positions?Where to position the first spectrum line?

Response time i corresponds to length of the molecule.Equal distribution is not realistic.

Schematics of polymer structureEach color corresponds to certain length of

molecule

Response times

Page 62: Mehanika nekovinskih gradiv

62

Center for Experimental Mechanics, University of Ljubljana, Slovenia184

Determination of the mechanical spectrum

( ) ( ) exp( / ) ln ( ) 1 exp( / ) lne gG t G H t d G H t d

Selected papers related to this subject: 1. Cost T.L., Becker E.B.: Int. J. Numerical Methods in Engineering, 2, 207-219,

(1970). 2. Honerkamp J.: Rheol. Acta, 28, 363-371, (1989).3. Baumgaertl M., Winter H.H.: Rheol. Acta, 28, 511-519, (1989).4. Emri I., Tschoegl, N.W.: Rheol. Acta, 32, 311 –321, (1993).5. Tschoegl, N.W., Emri I.: Rheol. Acta, 32, 322 – 327, (1993).6. Tschoegl, N.W., Emri I.: Int. J. of Polymeric Mater., 18, 117-127, (1992). 7. Emri I., Tschoegl, N.W.: Rheol. Acta, 33, 60 – 70, (1994). 8. Emri I., Tschoegl, N.W.: Rheol. Acta, 36, 303- 306, (1997) 9. Emri, I., and Tschoegl, N.W.:Polimeri (Zagreb), 19, 79-85, (1998).10. Winter, H.H.: J. Non-Newton. Fluid Mech., 68, 225-239, (1997).11. Malkin A.Y., Kuznetsov V.V.: Rheol. Acta, 39, 379 – 383, (2000).

)

log

0

300

600

900

1200

1500

-10 -5 0 5 10 15log t [s]

G

[MP

a]

Tref = 50°C

Pref = 0.1 MPa

Log H(

Emri-Tschoeglalgoritem

Emri-Tschoeglalgorithm

Solving the inverse problem

0( ) ( )t h t ( )G t( )H

Center for Experimental Mechanics, University of Ljubljana, Slovenia185

The first spectrum line does not contribute to value of point A.

We could not use this points, as well as points lying to the right frompoint A, to reconstruct the first spectrum line.

Point B contains information about all spectrum lines, however, itcould not be used for calculation of the first spectrum line if the level ofnoise in point B exceed magnitude of spectrum line, h1.

Such conditions allow qualitative determination of “Window” whichshould be used for calculation of the first spectrum line.

Quantitative determination implies information about the kernelfunction and number of spectrum lines per decade.

Algorithm Windowing Algorithm

/

1

( ) i

Mt

e g e ii

E t E E E h e

0.6

0.4

0.2

0

0.2

0

0.6

0.4

0.2

0

0.4

0.2

0

0.4

0.2

0

0.4

0.2

0

0.6

0.8

1

-4 -3 -2 -1 0 21 3 4

log (t/ )

f1(t)

f2(t)

f3(t)

f4(t)

hi

h4

h3

h2·exp(-t/ )A

B

SPECTRUM

RELAXATION MODULUS

i

/ , 1, 2,3, 4iti if t h e i

log

E(t

), [P

a]

H, [

-]

Main idea of WA:[ 1 0 1 2]

Center for Experimental Mechanics, University of Ljubljana, Slovenia186

Windowing Algorithm (Emri‐Tschoegl)

Definition of the Window:

11/

1 1

1log( / ) log ln log

(10 1) logk k

l k nk k k

tn e

1/1 1

1/1

10log( / ) log ln log

(10 1) log

nk k

u k nk k k

tn e

( , ) / (1/ ) exp( / )k k kdk t dt t

log ilog t

exp(-t/i)

1

00.99 443.72 10log k

Window

1/1

1

10 nk k

k k

n is a number of spectrum lines per decade

n log /l kt log /u kt n log /l kt log /u kt

1 -0.59 0.41 5 -0.10 0.10 2 -0.27 0.23 6 -0.08 0.08 3 -0.18 0.15 7 -0.07 0.07 4 -0.13 0.12 8 -0.06 0.06

1

( ) exp( / )i N

e i ii

G t G G t

0

1

( ) exp( / )i N

e i i fi

J t J J t t

Page 63: Mehanika nekovinskih gradiv

63

Center for Experimental Mechanics, University of Ljubljana, Slovenia187

Windowing Algorithm (Emri‐Tschoegl)

1

ˆ ˆ ˆ( ) ( ) exp( / ) ( )i N

j M i j i ji

g t g t g t t

1

( ) exp( / )i N

e i ii

G t G G t

1

( )ˆ( ) j

jM

G tg t

G G

1

( )ˆ( ) M

MM

G tg t

G G

1

ˆ ii

M

Gg

G G

1

1 1

ˆ ˆ ˆ ˆ ˆ( ) ( ) exp( / ) exp( / ) exp( / ) ( )i k i N

j M i j i k j k i j i ji i k

g t g t g t g t g t t

1

1

ˆ ˆ ˆ ˆ ˆ( ) ( ) exp( / ) exp( / ) exp( / ) ( )i k i N

j M i j i k j k i j i ji m i k

g t g t g t g t g t t

( 2 1) 1m k n

1

1

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) exp( / ) exp( / ) exp( / )i k i N

j j M i j i k j k i j ii m i k

t g t g t g t g t g t

,

,

( )ˆ/ 2 ( ) 0

ˆ

k u

k l

j sj

k k jj s k

tE g t

g

,

,

2( )k u

k l

j s

k jj s

E t

,

,

,

,

( ) exp( / )

ˆ

exp 2( / )

k u

k l

k u

k l

j s

m j j kj s

k j s

j kj s

t t

g

t

1

1

ˆ ˆ ˆ ˆ( ) ( ) ( ) exp( / ) exp( / )i k i N

m j j M i j i i j ii m i k

t g t g t g t g t

Center for Experimental Mechanics, University of Ljubljana, Slovenia188

Windowing Algorithm (Emri‐Tschoegl)

0

1

( ) exp( / )i N

e i i fi

J t J J t t

1

ˆ ˆ ˆ( ) ( ) exp( / ) ( )i N

j M i j i ji

j t j t j t t

1

( )ˆ ( )

j f j

jM

J t tj t

J J

1

ˆ( ) MM

M

Jj t

J J

1

ˆ ii

M

Jj

J J

1

1

ˆ ˆ ˆ ˆ ˆ( ) ( ) exp( / ) exp( / ) exp( / ) ( )i k i N

j M i j i k j k i j i ji m i k

j t j t j t j t j t t

,

,

,

,

( ) exp( / )ˆ

exp 2( / )

k u

k l

k u

k l

j s

c j j kj s

k j s

j kj s

t t

j

t

1

1

ˆ ˆ ˆ ˆ( ) ( ) ( ) exp( / ) exp( / )i k i N

c j j M i j i i j ii m i k

t j t j t j t j t

Center for Experimental Mechanics, University of Ljubljana, Slovenia189

Physical Aging

Page 64: Mehanika nekovinskih gradiv

64

Center for Experimental Mechanics, University of Ljubljana, Slovenia190

Aging

AGING

chemical physical

leads to modification of polymer chain(chemical reaction)

chemistry remains unchanged,but the local packing of the chains alters

(dimensional changes)

Center for Experimental Mechanics, University of Ljubljana, Slovenia191

Effect of temperature

amorphous solids

glassy state rubber state

Tg

Center for Experimental Mechanics, University of Ljubljana, Slovenia192

temperature

spec

ific

volu

me

TgTo

cooling

Physical aging

Aging occurs in broad temperature rangebelow Tg (temperature range of practicalinterest)

Should be considered for prediction oflong-term behavior

Physical aging is basic feature of solidstate in general

Page 65: Mehanika nekovinskih gradiv

65

Center for Experimental Mechanics, University of Ljubljana, Slovenia193

coolin

g

coolin

g

coolin

g

coolin

g

coolin

g

coolin

g

coolin

g

coolin

g

coolin

g

coolin

g

coolin

g

Physical aging

Center for Experimental Mechanics, University of Ljubljana, Slovenia194

Physical Aging  of PVAc

0

0.001

0.002

0.003

0.004

0.005

0.001 0.01 0.1 1 10 100 1000

log t [hours]

V

/V0

raw data

Knauss-Emri

A

B

C

D

E

T =27.5 ºC1

T =30 ºC2

T =32.5 ºC3

T =35 ºC4

T =37.5 ºC5

V

TT1T2T3T4 T5 T0

A B C D E

T =40 ºC0

Experimental data (shown in circles) were obtained by Kovacs, 1964.

Physical Aging of PVAc

F

L

F

L

Center for Experimental Mechanics, University of Ljubljana, Slovenia195

Effect of pressure variation on PVAc

1.00

1.50

2.00

2.50

0 1 2 3 4 5log t [MPa]

B( t

) [ x

10

- 3/M

Pa

]

35°C

32°C

30°C

P 0 = 0.1 MPa

P = 10 MPa

4.00

5.00

6.00

7.00

0 1 2 3 4 5log t [s]

B( t

) [ x

10

- 4/M

Pa

]

= 100 MPa

= 75 MPa

= 50 MPa

= 25 Mpa

T 0 = 30°C

P 0 = 0.1 MPa

P 1

P 2

P 3

P 4

Understanding of the effect of pressure variation is still insufficient.There are very few models that allow mathematical description of the simultaneous pressure and temperature variation.

Page 66: Mehanika nekovinskih gradiv

66

Center for Experimental Mechanics, University of Ljubljana, Slovenia196

Model defines free-volume fractionat temperature T as:

- thermal expansion coefficient below Tg

- thermal expansion coefficient above Tg

Free‐volume theory

Center for Experimental Mechanics, University of Ljubljana, Slovenia197

ln ln / fA BV V

Doolitle, 1951, studied influence of temperature on viscosity of polymer melts. He postulated the relation

where( )g f gf f T T

f f f

f

V V Vf

V V V V

f l

f g ; for T < Tg

; for T Tg

1exp exp exp 1f

f f

V VVA B A B A B

V V f

Doolitle Equation

Center for Experimental Mechanics, University of Ljubljana, Slovenia198

de

tttGtSt ij

ij

0

)()(')('2)(

dtttKt

t

kk

0

)()(')('3)(

t

ctT

dttt

)(),(),()(')('

0

1

)(),(),(

1

303.2)(),(),(log

fctTf

bctT

d

Ttf

t

T

0

)()(

dtMf

tkk

0

)()(

3

1 d

ctf

t

c

0

)()(

3

1

cT ffffctTf 0)(),(),(

Stress-Strain Relations:

Knauss‐Emri Model

Page 67: Mehanika nekovinskih gradiv

67

Center for Experimental Mechanics, University of Ljubljana, Slovenia199

Modeling Physical Aging  with Knauss‐Emri Model

0

0.001

0.002

0.003

0.004

0.005

0.001 0.01 0.1 1 10 100 1000

log t [hours]

V

/V0

raw data

Knauss-Emri

A

B

C

D

E

T =27.5 ºC1

T =30 ºC2

T =32.5 ºC3

T =35 ºC4

T =37.5 ºC5

V

TT1T2T3T4 T5 T0

A B C D E

T =40 ºC0

Experimental data (shown in circles) were obtained by Kovacs, 1964.

Physical Aging of PVAc

Center for Experimental Mechanics, University of Ljubljana, Slovenia

Center for Experimental Mechanics, University of Ljubljana, Slovenia201

Using Creep as  a “Spectroscopic Method”

Page 68: Mehanika nekovinskih gradiv

68

Center for Experimental Mechanics, University of Ljubljana, Slovenia202

Example I: Extrusion of LDPE

Using Creep measurements for the analysis ofdurability of LDPE exposed to different thermo-mechanical boundary conditions during teh extrusion prtocess. s.

Center for Experimental Mechanics, University of Ljubljana, Slovenia203

LDPE used in this investigation

Physical Characteristics of Low Density Polyethylene OKITEN® 245 S (Dioki)a

Material propertiesb ISO Standard Value Unit

Density 1183 0,924 g/cm3

Melt Flow Rate 1133 2,3 g/10min

VICAT softening temperature 306/A 94 ºC

Tensile strength at yield 527/2 11 MPa

Tensile strength at break 527/2 14 MPa

Elongation at break 527/2 535 %

Hardness, Shore 868 47 Scale D

Melting point (DSC – air) 11357 114 ºC

Hazec 14782 4 %

Friction coefficientc: static/dynamic 3295 ≤0.11 -

a The granulated LDPE contains the following additives: flow additive and thermal stabilizerb Test samples obtained by direct press mouldingc Film thickness 0.025 mm exstruded on a laboratory extruder under standard conditions

Center for Experimental Mechanics, University of Ljubljana, Slovenia204

Specimen preparation: The equipment

The die fitting with the glass tube tool.

Insulation system for slow cooling of glass tubes with extruded polymer.

Page 69: Mehanika nekovinskih gradiv

69

Center for Experimental Mechanics, University of Ljubljana, Slovenia205

Thermo‐mechanical boundary conditions

Torque, M, depending on the screw revolutions, n, and the set temperature, T, along the extruder barrel.

Center for Experimental Mechanics, University of Ljubljana, Slovenia206

Thermo‐mechanical boundary conditions

Diagram 4: Pressure, p, depending on the screw revolutions, n, and the set temperature, T, along the extruder barrel.

Center for Experimental Mechanics, University of Ljubljana, Slovenia207

Selected thermo‐mechanical boundary conditions

Specimen nameProcessing parameters

Set quantities Measured quantities

Tcylinder1

(°C)n2

(min-1)Tmelt

3

(°C)pmelt

4

(bar)M5

(Nm)

LDPE_168_23 160 25 168 23 30

LDPE_168_77 160 200 168 77 105

LDPE_263_20 250 25 263 20 28

LDPE_263_37 250 250 263 37 75

1 The temperature set on the ten heaters along the extruder barrel2 The number of screw revolutions3 The temperature of the melt measured at the outlet from the extruder barrel4 Pressure measured at the outlet from the extruder barrel5 Torque measured on the screws

Page 70: Mehanika nekovinskih gradiv

70

Center for Experimental Mechanics, University of Ljubljana, Slovenia208

The geometry of specimens

Cylindrical specimen of extruded LDPE, glued to metal holders and prepared for shear creep measurement.

Center for Experimental Mechanics, University of Ljubljana, Slovenia209

The Creep Experiment – the long term behavior

The temperature and mechanical profile of loading in theshear-creep measurement of the extruded LDPE specimens.

Center for Experimental Mechanics, University of Ljubljana, Slovenia210

The CEM Creep Apparatus

The Shear Creep Torsiometer: A - specimen, B - upper grip, C- guide, D - lower grip, E - principal bearing, F-weight, G - measuring cord, H - measuring cord bearing, I-loading wheel, J - friction wheel, K - friction rod, L - measuring bearing, M – inductive displacement meter, N - counterweight, O – loading weight, P – loading device.

Page 71: Mehanika nekovinskih gradiv

71

Center for Experimental Mechanics, University of Ljubljana, Slovenia211

Creep measurements  in shear

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

0 1 2 3 4 5log t [s]

log

J [

1/M

Pa]

38.9°C

48.6°C

58.1°C

67.4°C

76.8°C

LDPE_168_23Specimen name

Processing parameters

Set quantities Measured quantities

Tcylinder1

(°C)n2

(min-1)Tmelt

3

(°C)pmelt

4

(bar)M5

(Nm)

LDPE_168_23 160 25 168 23 30

LDPE_168_77 160 200 168 77 105

LDPE_263_20 250 25 263 20 28

LDPE_263_37 250 250 263 37 75

Center for Experimental Mechanics, University of Ljubljana, Slovenia212

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

0 1 2 3 4 5log t [s]

log

J [

1/M

Pa]

38.9°C48.6°C48.1°C57.5°C66.9°C76.9°C

LDPE_168_77Specimen name

Processing parameters

Set quantities Measured quantities

Tcylinder1

(°C)n2

(min-1)Tmelt

3

(°C)pmelt

4

(bar)M5

(Nm)

LDPE_168_23 160 25 168 23 30

LDPE_168_77 160 200 168 77 105

LDPE_263_20 250 25 263 20 28

LDPE_263_37 250 250 263 37 75

Creep measurements  in shear

Center for Experimental Mechanics, University of Ljubljana, Slovenia213

Creep measurements in shear

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

0 1 2 3 4 5log t [s]

log

J [

1/M

Pa]

31.9°C39.1°C48.5°C58.1°C67.4°C76.9°C

LDPE_263_20Specimen name

Processing parameters

Set quantities Measured quantities

Tcylinder1

(°C)n2

(min-1)Tmelt

3

(°C)pmelt

4

(bar)M5

(Nm)

LDPE_168_23 160 25 168 23 30

LDPE_168_77 160 200 168 77 105

LDPE_263_20 250 25 263 20 28

LDPE_263_37 250 250 263 37 75

Page 72: Mehanika nekovinskih gradiv

72

Center for Experimental Mechanics, University of Ljubljana, Slovenia214

Creep measurements in shear

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

0 1 2 3 4 5log t [s]

log

J [

1/M

Pa]

33.7°C38.9°C48.6°C58.1°C67.1°C76.7°C

LDPE_263_37Specimen name

Processing parameters

Set quantities Measured quantities

Tcylinder1

(°C)n2

(min-1)Tmelt

3

(°C)pmelt

4

(bar)M5

(Nm)

LDPE_168_23 160 25 168 23 30

LDPE_168_77 160 200 168 77 105

LDPE_263_20 250 25 263 20 28

LDPE_263_37 250 250 263 37 75

Center for Experimental Mechanics, University of Ljubljana, Slovenia215

Master creep compliance

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

0 2 4 6 8 10 12log t [s]

log

Jre

f [1

/MP

a]

LDPE_168_23LDPE_168_77LDPE_263_20LDPE_263_37

T ref = 39°C

10

več kot 106

22 h 12 dni 3170 let

J kr =10-1.46

10-2.18

Specimen nameProcessing parameters

Set quantities Measured quantities

Tcylinder1

(°C)n2

(min-1)Tmelt

3

(°C)pmelt

4

(bar)M5

(Nm)

LDPE_168_23 160 25 168 23 30

LDPE_168_77 160 200 168 77 105

LDPE_263_20 250 25 263 20 28

LDPE_263_37 250 250 263 37 75

Center for Experimental Mechanics, University of Ljubljana, Slovenia216

Isochronal creep compliance

0

0.02

0.04

0.06

0.08

30 40 50 60 70 80 90T [°C]

J [

1/M

Pa]

t=10 st=100 st=1000 st=10000 s

LDPE_168_23

∆J (T )

∆J (t)

Specimen nameProcessing parameters

Set quantities Measured quantities

Tcylinder1

(°C)n2

(min-1)Tmelt

3

(°C)pmelt

4

(bar)M5

(Nm)

LDPE_168_23 160 25 168 23 30

LDPE_168_77 160 200 168 77 105

LDPE_263_20 250 25 263 20 28

LDPE_263_37 250 250 263 37 75

Page 73: Mehanika nekovinskih gradiv

73

Center for Experimental Mechanics, University of Ljubljana, Slovenia217

Isochronal creep compliance

0

0.02

0.04

0.06

0.08

30 40 50 60 70 80 90T [°C]

J [

1/M

Pa]

t=10 s

t=100 s

t=1000 s

t=10000 s

LDPE_168_77

∆J (T )

∆J (t )

Specimen nameProcessing parameters

Set quantities Measured quantities

Tcylinder1

(°C)n2

(min-1)Tmelt

3

(°C)pmelt

4

(bar)M5

(Nm)

LDPE_168_23 160 25 168 23 30

LDPE_168_77 160 200 168 77 105

LDPE_263_20 250 25 263 20 28

LDPE_263_37 250 250 263 37 75

Center for Experimental Mechanics, University of Ljubljana, Slovenia218

Isochronal creep compliance

0

0.02

0.04

0.06

0.08

30 40 50 60 70 80 90T [°C]

J [

1/M

Pa]

t=10 s

t=100 s

t=1000 st=10000 s

LDPE_263_20

∆J (T )

∆J (t )

Specimen nameProcessing parameters

Set quantities Measured quantities

Tcylinder1

(°C)n2

(min-1)Tmelt

3

(°C)pmelt

4

(bar)M5

(Nm)

LDPE_168_23 160 25 168 23 30

LDPE_168_77 160 200 168 77 105

LDPE_263_20 250 25 263 20 28

LDPE_263_37 250 250 263 37 75

Center for Experimental Mechanics, University of Ljubljana, Slovenia219

Isochronal creep compliance

0

0.02

0.04

0.06

0.08

30 40 50 60 70 80 90T [°C]

J [

1/M

Pa]

t=10 s

t=100 s

t=1000 s

t=10000 s

LDPE_263_37

∆J (T )

∆J (t )

Specimen nameProcessing parameters

Set quantities Measured quantities

Tcylinder1

(°C)n2

(min-1)Tmelt

3

(°C)pmelt

4

(bar)M5

(Nm)

LDPE_168_23 160 25 168 23 30

LDPE_168_77 160 200 168 77 105

LDPE_263_20 250 25 263 20 28

LDPE_263_37 250 250 263 37 75

Page 74: Mehanika nekovinskih gradiv

74

Center for Experimental Mechanics, University of Ljubljana, Slovenia220

Isochronal creep compliance at t=10000s

0

0.02

0.04

0.06

0.08

30 40 50 60 70 80 90T [°C]

J [

1/M

Pa]

LDPE168_23

LDPE168_77

LDPE263_20

LDPE263_37

t=10000sSpecimen name

Processing parameters

Set quantities Measured quantities

Tcylinder1

(°C)n2

(min-1)Tmelt

3

(°C)pmelt

4

(bar)M5

(Nm)

LDPE_168_23 160 25 168 23 30

LDPE_168_77 160 200 168 77 105

LDPE_263_20 250 25 263 20 28

LDPE_263_37 250 250 263 37 75

compliance

Center for Experimental Mechanics, University of Ljubljana, Slovenia221

Isochronal creep compliance

0

0.005

0.01

0.015

0.02

0.025

LDPE_168_23 LDPE_168_77 LDPE_263_20 LDPE_263_37

∆J

(t)

[1/M

Pa]

Specimen nameProcessing parameters

Set quantities Measured quantities

Tcylinder1

(°C)n2

(min-1)Tmelt

3

(°C)pmelt

4

(bar)M5

(Nm)

LDPE_168_23 160 25 168 23 30

LDPE_168_77 160 200 168 77 105

LDPE_263_20 250 25 263 20 28

LDPE_263_37 250 250 263 37 75

0

0.02

0.04

0.06

0.08

30 40 50 60 70 80 90T [°C]

J [

1/M

Pa

]

t=10 s

t=100 s

t=1000 s

t=10000 s

LDPE_263_37

∆J (T )

∆J (t )

Center for Experimental Mechanics, University of Ljubljana, Slovenia222

Isochronal creep compliance

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

LDPE_168_23 LDPE_168_77 LDPE_263_20 LDPE_263_37

∆J

(T)[

1/M

Pa]

0

0.02

0.04

0.06

0.08

30 40 50 60 70 80 90T [°C]

J [

1/M

Pa

]

t=10 s

t=100 s

t=1000 s

t=10000 s

LDPE_263_37

∆J (T )

∆J (t )

Specimen nameProcessing parameters

Set quantities Measured quantities

Tcylinder1

(°C)n2

(min-1)Tmelt

3

(°C)pmelt

4

(bar)M5

(Nm)

LDPE_168_23 160 25 168 23 30

LDPE_168_77 160 200 168 77 105

LDPE_263_20 250 25 263 20 28

LDPE_263_37 250 250 263 37 75

Page 75: Mehanika nekovinskih gradiv

75

Center for Experimental Mechanics, University of Ljubljana, Slovenia223