Mechanics: Describing Motion and Solving Problems...

24
1 Mechanics: Describing Motion and Solving Problems (Reference Chapter #1 and #2 Knight) Overall Aim: To use what you know about Newtonian Mechanics to describe what you see in words, images, diagrams, and mathematical representations. DO NOW: Witness the motion in the demo and/ or video and tell me everything you can from the start of the motion to the end The Particle Model and Motion Diagrams Lesson Aim: To review motion terminology and concepts and apply to motion diagrams The Particle Model of Motion- Simplification where we treat a moving object as if all of its mass were concentrated at a single point. The particle (aka point) has mass but no size, shape, or distinction btw top and bottom or left and right. Good for analyzing translational motion (motion of an object along a trajectory) but doesn’t work for objects undergoing a rotation- example analyzing the motion of each tooth on a gear. The Motion Diagram Use dots to represent the particle as it moves in its trajectory and 0, 1, 2, 3, etc. to locate the position of the particle at a point in time or the “frame number” where the time interval between position changes is constant Q: How is the motion of the car changed if the motion diagram looks like this? 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Transcript of Mechanics: Describing Motion and Solving Problems...

1

Mechanics:DescribingMotionandSolvingProblems(ReferenceChapter#1and#2Knight)

OverallAim:TousewhatyouknowaboutNewtonianMechanicstodescribewhatyouseeinwords,images,diagrams,andmathematicalrepresentations.

DONOW:Witnessthemotioninthedemoand/orvideoandtellmeeverythingyoucanfromthestartofthemotiontotheend

TheParticleModelandMotionDiagrams

LessonAim:Toreviewmotionterminologyandconceptsandapplytomotiondiagrams

TheParticleModelofMotion-Simplificationwherewetreatamovingobjectasifallofitsmasswereconcentratedatasinglepoint.Theparticle(akapoint)hasmassbutnosize,shape,ordistinctionbtwtopandbottomorleftandright.

• Goodforanalyzingtranslationalmotion(motionofanobjectalongatrajectory)butdoesn’tworkforobjectsundergoingarotation-exampleanalyzingthemotionofeachtoothonagear.

TheMotionDiagram

Usedotstorepresenttheparticleasitmovesinitstrajectoryand0,1,2,3,etc.tolocatethepositionoftheparticleatapointintimeorthe“framenumber”wherethetimeintervalbetweenpositionchangesisconstant

Q:Howisthemotionofthecarchangedifthemotiondiagramlookslikethis?

0 1 2 3

0 1 2 3

0 1 2 3

0

1

2

3

2

TimeInterval(ChangeinTime),∆tistf-timeasurestheelapsedtimeasanobjectmovesfromaninitialposition,ritoafinalpositionrf.Thevalueof∆tisindependentofthespecificclockusedtomeasurethetimes.

Specificityoftermsisimportantforthiscourse:Changeintime,position,changeinposition,displacement,velocity,instantaneousvsaveragevelocityoracceleration,etc.

REVIEW:Scalarsarequantitiesthatcanbedescribedwithamagnitude(akanumber)onlywhilevectorsrequiremagnitudeanddirection!

Howisachangeinpositiondescribed?(asadisplacement)∆r(BOLDTEXTDENOTESVECTORQUANITYinthesenotes)

Displacement,∆risr1-r0,orthepositionvectoratlocation1minusthepositionvectoratlocation0.

NOTEONVARIABLES&SUBSCRIPTS:Variablesinphysicsrepresentaphysicalquantitylikedistant,speed,time,etc.,soyouwillusesymbolsotherthanx,y,orzthatyouhaveusedinmathclass.Inthiscasepositionisgiventhesymbol“d”.TheGreeksymboldelta,Δ,means...whichequals_________________-________________always!Ifasubscriptisused,thenumberindicatestheinstantandtellsyourightawaythatthatisanistantaneousvalue.Forexample,positionattime=0is0cmandisdenotedasd1andthepositionattime=3sis12cmanddenotedasd2.

Δd=df,i=df-di

So,ifIwantedtocalculatethechangeinpositionfromposition1toposition2,Iwouldwrite

d2,1=d2-d1=12cm-0cm=12cm

sinceinitialisposition1andfinalisposition2

3

Lookatthediagrambelowanddistinguishbetweenthepositionvectorsandthedisplacementvector!

end?

QUESTION:Howdothepositionvectorschangeiftheoriginorreferencepointwasat(50ft,0)?Howaboutthedisplacementvector?

4

REVIEW:VECTORADDITIONANDSUBTRACTION(HEADTOTAILMETHOD)

Vector addition

Vector subtraction

5

Question:Howwouldyoufindthedisplacementvectoroftheparticleasitgoesfromitsinitialtofinalposition?

Describingthetimerateofchangeofdistancetraveled(speed)andtimerateofchangeoftheposition(velocity)

SCALER:

AverageSpeed,vavgis!"#$%&'( !"#$%&%'

!"#$ !"#$%&'( !"#$% !"#$%&'()Speedisnotavectorandisnotbasedon

displacementbutontheactualdistancetraveled!So,vavg=!"#$%&'( !"!"#$#%

∆ !

VECTOR:

AverageVelocity,vavg=∆!∆!or𝒅𝒊𝒔𝒑𝒍𝒂𝒄𝒆𝒎𝒆𝒏𝒕

∆!and

InstantaneousVelocity,v=lim∆!→!∆𝒓∆!or!𝒓

!"iswhenyouarelookingatthevelocityatan

instantintime

6

MotionDiagramswithVelocityVectorsThelengthofthevelocityvectorrepresentstheaveragespeedoftheobjectasitmovesbetweenthetwopoints.Example:TortoisevstheHareWhoismovingfaster?Howdoyouknow?

Question:CanyoutelliftheHareorTortoiseisacceleratingormovingataconstantvelocity

Describingthetimerateofchangeofthevelocityvector

AverageAcceleration,aavg=∆𝒗∆!or𝒄𝒉𝒂𝒏𝒈𝒆 𝒊𝒏 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚

∆!and

InstantaneousAcceleration,a=lim∆!→!∆𝒗∆!or!𝒗

!"iswhenyouarelookingattheaccelerationataninstantin

time

Anobject’saverageaccelerationvectorpointsinthesamedirectionasthedirectionof∆v

Note:Anobject’saveragevelocityvectorpointsinthesamedirectionofthedisplacementvectorandthisisthedirectionofmotion

Whatwouldthemotiondiagramlooklikeforaballrollingdownanincline?(Justsketchit)

Note:Whendrawingacompletemotiondiagramwithvelocityvectors,youaredeterminingtheaverageacceleration!(Justas∆rwillgiveyouVavg)

Contextisimportantthesubscriptavgisoftendroppedwhendescribingaverageaccelerationorvelocity,soitisimportanttounderstandtheproblemyouareworkingwith

7

TheCompleteMotionDiagram-FindingtheAccelerationVector-justuseheadtotailmethod

LEARNINGCHECK:Describeaphysicalscenarioforeachofthefollowingtwomotiondiagrams–what’sgoingonandhowdoyouknow?

1

2

Motiondiagramsforthiscoursepurposesarejustatooltohelpyouvisualizethemotion.Iwillnotaskyoutodrawthesetoscaleandwon’taskyoudrawtheseonanexam,butsketchingthemcanbeveryhelpfulandyoushouldbeabletointerpretthem.

8

Determiningsignsforposition,velocity,andacceleration(Traditionalconventions+xistotheright,+yisup,and+zisoutofthepage)

Assessment for Understanding: Two balls are on tracks A and B. Ball A is released from rest and rolls down an incline while ball B rolls horizontally at constant speed. Ball B overtakes ball A near the beginning, as the motion diagram shows, but later ball A overtakes ball B. Identify the time or times (if any) at which the two balls have the same speed.

WHY?EXPLAINTHIS!!!

9

PositionTimePlots:Allowyoutotrackthepositionofaparticleasafunctionoftime(YouneedtoknowhowtodrawandinterprettheseforHW,Quizzes,Tests,etc)

Examplefora1-Dmotionofastudentwalking

LearningCheck:Whatdoes1-Dmean?

Howdothetwopositiontimeplotsdifferintermsofinformation?

meters meters

10

PuttingEverythingTogethertoSolveProblems:

YOUWILLNEEDGOODPHYSICALINSIGHT,THEABILITYTOEXPRESSYOURSELFINWORDSANDEQUATIONS+ABILITYTOSOLVEPROBLEMSMATHEMATICALLY!

Aim:Tobeabletoplotposition,velocity,andaccelerationvstimegraphs

VisualizationoftheSituationExample-Motiontype,Forces,Torques,Constraints,etc.

IFYOUCAN’T“SEE”THEPROBLEM,YOUWON’TBEABLETOSOLVEIT!

*THISTAKESALOTOFEXPERIENCEANDPRACTICETODOWELL

• Identifyknowns&unknowns(couldbepositions,velocities,andaccelerationsasafunctionoftimeorforces,torques,physicaldataonthebody(beyondparticlemodel)

• Representthesituationusingsketches,diagrams,graphs,etc.

Understandhowtoapproachproblemphysically-applyamodel(Ex:Newton’sLaws,ConservationofEnergy,Gauss’sLaw,Coulomb’sLaw,etc))tosetupequations

Mathematicalsolutioninvariablestoarriveatarelationship&/ornumericalvaluewithinagivenuncertainty(sigfigs)

THEPHYSICS

THEMATH

11

IDENTIFYINGTHECOMPONENTSOFTHEPROBLEMSOLVINGPROCESSASSHOWNINTHISPICTORALREPRESENTATIONOFTHEFOLLOWINGPROBLEM-GUESSSSYSTEMSTILLWORKS!

THISPROBLEMISANEXAMPLEFORHOWPROBLEMSWILLGETABITMORECOMPLEX:

Asmallrocketislaunchedverticallywithanaccelerationof30m/s2suchthatitrunsoutoffuelafter30seconds.Whatisitsmaximumaltitude?

WORKINPAIRSTOPUTTOGETHERYOURBESTPRESENTATIONOFASOLUTION-DOtheBESTYOUCAN!

GIVENS&UNKNOWNS

SimplifyingAssumption/(s)

PictorialRepresentation

1. TypeofPictorialRepresentation:2. Knowns:3. Unknowns:4. CoordinateSystem:5. SymbolUse:

EQUATION/SOLVE/SUBSTITUTION

IDPROBLEMTYPE(KINEMATICS/NEWTON’SLAWS/CONERVATIONLAWS-ENERGYORMOMENTUM)

MATHEMATICALREPRESENTATION

DOESANSWER/SOLUTIONMAKESENSE?

NOWYOUSOLVEANDMAKESUREYOURANSWERMAKESSENSE&YOUEXPRESSYOURANSWERUSING3SIGNIFICANTFIGURES

12

Anotherlookattheballfallingwhendroppedfromrestproblemusingitsmotiondiagram:Sketchtheposition-timeplotandvelocitytimeplotforthetwomotiondiagrambelow.Follow-up:Wheredoesthelargestaccelerationoccur?

13

DESCRIBETHEMOTIONDEPICTEDASCOMPLETELYASPOSSIBLEFORTHEPOSITION-TIMEPLOTSHOWNBELOWINCORPORATINGTHEVALUESGIVEN.ASSUMETHATTHEINITIALVELOCITYIS1.0km/mintotheleftatx=10km.WHATWOULDTHEVELOCITY-TIMEPLOTLOOKLIKE?PLOTandLABEL-DONOTSKETCH!

Whycanyouuseaveragevelocitytocalculateallvaluesalongthepositiontimecurve?

Theterm“plot”meansuserealvaluesandtoscaleforAP

VERBALDESCRIPTIONUSINGVALUES,ANDDIRECTIONOFMOTION:

Forthep-tcurve:

Apositivepositionmeans…

Anegativepositionmeans…

Azeroslopemeans…

Apositiveslopemeans…

Anegativeslopemeans…

Thesteepertheslopethe…

FortheV-tcurve:

Apositivevelocitymeans…

Anegativevelocitymeans…

Azeroslopemeans…

Apositiveslopemeans…

Anegativeslopemeans…

Thesteepertheslopethe….

14

Learning Check 1: Match the Displacement- time curve with the proper Velocity- time curve

Learning Check 2: Remember what you learned last year Match the Velocity Curve with its Displacement Curve and describe the 1-D motion (stories are fine)

(C4 CHAPTER #2) Learning Check 3: Below are two displacement- time graphs for the motion of objects A and B as they move along the same axis. What can you tell me about the motions depicted in each? Do objects A and B ever have the same speed? If so, at what time or times?

15

Aim:Howarethevarious1-Dmotionsdescribedinwords,math,diagrams,andplots?

Possibilitiesfor1-DMotionallmovingNOMO(Nochangeinposition)

ConstantVelocity(V=const;a=0)

ConstantAcceleration(a=const)*IncludesFreeFall

Non-ConstantAcceleration(aincreasesordecreaseswithtimeorposition)

Bestfriendsfromlastyear

NEW

16

ConstantVelocityMotion(UniformMotion)-Straight-linemotioninwhichequaldisplacementsoccurduringany

successiveequaltimeintervalsAverageVelocity,vavg=∆𝒓∆!or𝒅𝒊𝒔𝒑𝒍𝒂𝒄𝒆𝒎𝒆𝒏𝒕

∆!ifworkingalongthexaxis,vavg=

∆𝒙∆!orifalong

theyaxis,vavg=∆𝒚∆!.Sincevelocitydoesn’tchangetheaveragevalueistheinstantaneousvalue.

AcceleratedMotion(WhenVelocityisnotConstant)-InstantaneousVelocityandtheDerivativeofPositionwithRespecttoTime

TryingtofindV2forthisverticalacceleration

Thelimitingcase:InstantaneousVelocity,v=lim∆!→!∆𝒚∆!or!𝒚

!"

*Thisyearitwillbeimportanttoconsiderinitialpositionsandconditions!

17

Theinstantaneousvelocityataninstantistheslopeatapointoftheposition-timecurve.

Equations:ConstantAccelerationandUniform(ConstantVelocityMotion)in1-D

*THESEEQUATIONSAPPLYONLYFORUNIFORM(AKACONSTANT)ACCELERATION

18

PRACTICE-MORECOMPLEX(FROMMITOPENCOURSEWARE)SOLVEONANOTHERSHEETOFPAPERAbusleavesastopatMITandacceleratesataconstantratefor5seconds.Duringthistimethebustraveled25meters.Thenthebustraveledataconstantspeedfor15seconds.Thenthedrivernoticedaredlight18metersaheadandslamsonthebrakes.Assumethebusdeceleratesataconstantrateandcomestoastopsometimelaterjustatthelight.

a) Whatwastheinitialaccelerationofthebus?

b)Whatwasthevelocityatthebusafter5seconds?

c)Whatwasthebrakingaccelerationofthebus?Isitpositiveornegative?

d)Howlongdidthebusbrake?

e)Whatwasthedistancefromthebusstoptothelight?

f)Makeagraphofthepositionvs.timefortheentiretrip.

g)Makeagraphofthevelocityvs.timefortheentiretrip.

h)Makeagraphoftheaccelerationvs.timefortheentiretrip.

19

FreeFall-Motionwheretheonlyforceactingonanobjectistheforceduetogravity,FgRememberGalileoandthegravitydiluterakatheinclinedplaneWhenworkingonmotionslidingupordowninclines,youjustplaceyourcoordinateaxessothattheyalignwiththemotion.Thex-axisparalleltotheplaneandtheyaxisperpendicular!Thesigndependsonyou-Isuptheplaneordowntheplaneisconsideredpositive?Youdecide!Justbesticktoyourcoordinatesystemandsignconventions.

When the angle of the incline= 90 degrees, then you have free fall!

Use the angle of incline to slow down the motion so you can measure it!

MotiononanInclinedPlane

20

FreeFallPracticeProblem:

Twostonesarereleasedfromrestatacertainheight,oneaftertheother.

a)Willthedifferencebetweentheirspeedsincrease,decrease,orstaythesame?

b)Willtheirseparationdistanceincrease,decrease,orstaythesame?

c)Willthetimeintervalbetweentheinstantsatwhichtheyhitthegroundbesmallerthan,equalto,orlargerthanthetimeintervalbetweentheinstantsoftheirrelease?d)Plotthespeedvs.timeforbothballsinthesameplot.e)Plotthepositionvs.timeofthetwoballsinthesameplot.(DOTHISONGRAPHPAPERANDMARKALLSIGNIFICANTPOINTSOFINTEREST)

21

ANOLDQUIZPROBLEM:Trythisone!

Directions:Youmayusereferencetablesandcalculators.Showallworkandenjoy.Youhave15minutes.

Arubberballisthrownupfromthegroundwithspeedvo.Simultaneously,asecondrubberballatheighthdirectlyabovetheballisreleasedfromrest.A. Atwhatheightabovethegrounddotheballscollide?Expressyouranswerintermsoffundamental

constants(inthiscaseg)andthevariablesgiven.

B. Whatisthemaximumvalueofhforwhichacollisionoccursbeforethefirstballfallsbacktotheground?

C. Forwhatvalueofhdoesthecollisionoccurwhenthefirstballisatitshighestheight?

22

Thisyear,accelerationsmaynotalwaysbeconstantandyour“oldfriends”equationsonlyapplytoconstantacceleration.So,thisisonereasonyouwillneedcalculus!Now,youcanalsohaveaninstantaneousaccelerationthatvaries.

Inotherwords,youtakethederivativeofthevelocitywithrespecttotimetofindtheinstantaneousacceleration.Tofindinstantaneousvelocity,youtakethederivateofthedisplacementwithrespecttotime.

Instantaneous acceleration as at a specific instant of time t is given by the

derivative of the velocity

Application: Rank in order, from largest to smallest, the accelerations aA– a

C at points A – C.

23

TableofCommonDerivatives

Youneedtoknowtheseandbeabletoapplytofindrateofchangeoffunctions

1. 0.)( =constdxd

2. 1)( =xdxd

3. 1)( −= nn nxxdxd

4. [ ] [ ])()( xfdxdcxcf

dxd

=

5. [ ] [ ] [ ])()()()( xgdxdxf

dxdxgxf

dxd

+=+

6. [ ] [ ] [ ])()()()( xgdxdxf

dxdxgxf

dxd

−=−

7. [ ] [ ] [ ])()()()()()( xfdxdxgxg

dxdxfxgxf

dxd

+= (The Product Rule)

8. [ ] [ ]

[ ]2)(

)()()()(

)()(

xg

xgdxdxfxf

dxdxg

xgxf

dxd −

=⎥⎦

⎤⎢⎣

⎡ (The Quotient Rule)

9. xxdxd cos)(sin =

10. xxdxd sin)(cos −=

11. xxdxd 2sec)(tan =

12. x

xdxd 1)(ln =

13. xx eedxd

=

24

Integrals are anti-derivatives- they are used to calculate the area under a curve *If acceleration is constant, then you can use simple geometry to figure out the area under the curve- just be careful to note initial conditions!

Application Check:

WILLTALKABOUTSOON!