Mechanical Measurement Lab, 17.06.2011 T.Dijoud Characterisation of the Strain Gauge Factor at...

26
Mechanical Measurement Lab, 17.06.2011 T.Dijoud Characterisation of the Strain Gauge Factor at Cryogenic Temperature

Transcript of Mechanical Measurement Lab, 17.06.2011 T.Dijoud Characterisation of the Strain Gauge Factor at...

Mechanical Measurement Lab, 17.06.2011

T.Dijoud

Characterisation of the Strain Gauge Factor at Cryogenic Temperature

2Mechanical Measurement Lab [email protected]

2011.17.06

• Introduction

• Goal of the study

• Method

• Results

• Conclusion

Summary

3Mechanical Measurement Lab [email protected]

2011.17.06

• APPLICATION:

Strain measurement Stress analysis

• MATERIALS:

Measuring grid (5μm thickness) : Chromium-Nickel alloys, Copper-Nickel alloys

Support (25μm thickness):Polyimide

All type for several applications

Introduction : Strain gauges

Between 0.6 and 160 mm Between 0.6 and 160 mm

4Mechanical Measurement Lab [email protected]

2011.17.06

Close bond between the strain gauge and the object

Strain on the object transferred without loss to the strain gauge

PRINCIPLE:

WIRE RESISTANCE CHANGING WITH LENGTH OF WIRE

R = ρL/S (ρ: resistivity (Ω.m); L: length (m); S: section (m2))

∆R/R = ε (1 + 2ν) + ∆ ρ/ ρ (ε: strain = ∆L/L (μm/m); ν: Poisson coefficient)

Introduction : Strain gauges

F (N)

F (N)

5Mechanical Measurement Lab [email protected]

2011.17.06

Bridgman’s law: ∆ρ/ρ = C ∆v/v (C: Bridgman constant, ranging from 1.13 to 1.15)

∆R/R = ε ((1 + 2ν) + C(1 – 2ν)) k = (1 + 2ν) + C(1 – 2ν)

∆R/R = k ε

k : Strain gauge factor = Strain gauge sensitivity

Depends on: • Material of measuring grid• TEMPERATURE

Introduction : Strain gauges

∆L/L (μm/m)

∆R/R (μΩ/Ω)

6Mechanical Measurement Lab [email protected]

2011.17.06

Goal of the study

• GOAL: Characterise the strain gauge factor at 293K, 77K and 4.2K

NEW STRAIN GAUGES, NEW ADHESIVE, MORE ADVANCED DATA ACQUISITION SYSTEM

• WHY? Measurement conditions at CERN: 1.9 K to 500 K Strain measurements must be accurate

Application: Stress measurements during assembly and cryogenic cool down at 4.2 K of short magnet coil

7Mechanical Measurement Lab [email protected]

2011.17.06

COMPARISON BETWEEN 2 TECHNIQUES OF STRAIN MEASUREMENT

Reference sensor Strain gauges

Strain Resistance relative change

(∆L/Lo)Ref ∆R/Ro = (∆V/Vo)SG

Tests procedure

k =

�̃

• STEPS:

Find a way to measure strain with a great accuracy

Identify the set up for the measurements at room and cryogenic temperature

8Mechanical Measurement Lab [email protected]

2011.17.06

Strain measurement

Cryogenic temperature = cryostat

• WHAT IS NEEDED:

Sensor inside the cryostat Must work at low temperature Not too big, easy to install Great accuracy

• TECHNIQUE:

STRAIN = EXTENSION (∆L) / INITIAL LENGTH (L)

LVDT (Inductive sensor) : Infinite resolution Low linearity error

9Mechanical Measurement Lab [email protected]

2011.17.06

Method

LVDT and extension support

Strain gauge on each side

(¼ Bridge (X2))

LVDT

LO = 60 mm

Sample instrumentation

TENSILE TEST

10Mechanical Measurement Lab [email protected]

2011.17.06

Method: Set up

CRYOSTAT

77 K Nitrogen 4.2 K Helium

Sample

Fmax = 5kN

Vacuum

Tensile machine

Bellow

11Mechanical Measurement Lab [email protected]

2011.17.06

Sample design

F max 5 kNWidth 12 mm

Thickness 1,5 mmSection 18 mm2

L0 60 mmStress 278 MPa

E 193000 MPaε (μm/m) 1439 µm/m

(∆L)LVDT 90.7 µm

Aluminum Copper Stainless Steel

Young modulus E (MPa) 69000 128000 193000

Yield limit σe (MPa) 50 70 290

Max strain εm (μm/m) 725 547 1503 εm = e

Requirements:

- Strain does not exceed the yield limit of the material

12Mechanical Measurement Lab [email protected]

2011.17.06

FIRST RESULTS

13Mechanical Measurement Lab [email protected]

2011.17.06

Test at 293K

y = 2.1823x + 13.166R² = 1

0

500

1000

1500

2000

2500

0 500 1000 1500

Output signal (μV/V)

Strain (μm/m)

293K (Up#1)

Gauge factor

UP#1 2.18

UP#2 2.17

UP#3 2.16Force (kN) LVDT 1 (μm) LVDT 2 (μm)

1 3 292 11 553 24 77

3,8 36 91

14Mechanical Measurement Lab [email protected]

2011.17.06

Test at 77K: Set up

15Mechanical Measurement Lab [email protected]

2011.17.06

Test at 77K: Results

Gauge factor

UP#1 2.32

UP#2 2.32

UP#3 2.32

y = 2.3176x - 18.468R² = 1

0

500

1000

1500

2000

2500

0 500 1000 1500

Output signal (μV/V)

Strain (μm/m)

77K (Up#1)

Force (kN) LVDT 1 (μm) LVDT 2 (μm)1 11 182 23 393 36 584 49 78

16Mechanical Measurement Lab [email protected]

2011.17.06

Accuracy of the measurements

• Displacement (LVDT)- DAQ Linearity : 0.02 % FS

ULDAQ = (0.02*2)/3 = 0.013 %- DAQ Precision : (0.05 % Meas. Value + 0.05 % FS)

UPDAQ = (0.05*4)/3 = 0.067 % UDis = 0.18 %- Linearity error LVDT : 0.25 % FS

UL = (0.25*2)/3 = 0.17 % UStrain = 0.19 %

• Initial length - Resolution of the caliper + Repeatability:

ULength = 0.071 %• Output signal (SG)

- DAQ Linearity: 0.013 %- DAQ Precision: 0.067 % UOS = 2.67 %- Accuracy of strain gauge measurement: 2.67%

GAUGE FACTOR ACCURACY : Uk = (0.192+2.672)1/2 = +/- 5.35 %

17Mechanical Measurement Lab [email protected]

2011.17.06

Conclusion

Gauge factor (293K) Gauge factor (77K)

UP#1 2.18 +/- 0.12 2.32 +/- 0.12

UP#2 2.17 +/- 0.12 2.32 +/- 0.12

UP#3 2.16 +/- 0.12 2.32 +/- 0.12

Average 2.17 2.32

Theoretical 2.2 +/- 0.022 /

• k-factor value satisfactorily close to the value given by the manufacturer • What we are looking for: Variations of the gauge factor • Between 293K and 77K, k-factor increases by 6.9%• Set up (sample instrumentation) validated for the measurements

NEXT STEPS:

• Tests with others samples Check the reproducibility of the experiment• Use the original cryostat for the tests at 293K, 77K and 4.2K

18Mechanical Measurement Lab [email protected]

2011.17.06

Thanks to

Thanks to Ofelia Capatina and Ramon Folch for this period at CERN

Thanks to Michael, Eugenie, Andrey, Raul, Alex, Robin,

Jean-Michel, Kurt and Rosmarie

Thank you for your attention!

19Mechanical Measurement Lab [email protected]

2011.17.06

Questions?

20Mechanical Measurement Lab [email protected]

2011.17.06

Stress versus strain

Steel 304 L (AISI) 293 K 77 K

Young Modulus(MPa) 193000 208000

y = 0.2004x + 6.1235R² = 0.9998

0.0

50.0

100.0

150.0

200.0

250.0

0 500 1000 1500

Stress (MPa)

Strain (μm/m)

293K (Up#1)

y = 0.2164x + 5.5506R² = 1

0

50

100

150

200

250

0 500 1000 1500

Stress (MPa)

Strain (μm/m)

77K (Up#1)

21Mechanical Measurement Lab [email protected]

2011.17.06

Last study

k factor changing with temperature

last study: 1995

22Mechanical Measurement Lab [email protected]

2011.17.06

y = 198,93x + 1,5105R² = 0,9999

y = 199.08x - 3.0614R² = 0.9999

-250

-200

-150

-100

-50

0

50

100

150

200

250

-1,5 -1 -0,5 0 0,5 1 1,5

Output sig(mV/V)

Displacement (mm)

Signal versus displacement

Up #1

Down #1

Linear (Up #1)

Linear (Down #1)

LVDT 1 calibration at room temperature

y = 1.003x - 0.9999R² = 1

y = 1.002x - 22.954R² = 0.9998-1500

-1000

-500

0

500

1000

1500

-1500 -1000 -500 0 500 1000 1500

LVDT (μm)

Displacement (μm)

Up 3Down 3Linear (Up 3)Linear (Down 3)

Micrometer

23Mechanical Measurement Lab [email protected]

2011.17.06

LVDT 2 calibration at room temperature

y = 197.31x - 0.2624R² = 0.9999

y = 197.24x + 4.4976R² = 0.9999

-250

-200

-150

-100

-50

0

50

100

150

200

250

-1,5 -1 -0,5 0 0,5 1 1,5

Signal output (mV/V)

Displacement (mm)

Up #1

Down #1

Linear (Up #1)

Linear (Down #1)

y = 1.0009x - 11.286R² = 0.9999

y = 0.9996x + 13R² = 0.9999

-1500

-1000

-500

0

500

1000

1500

-1500 -500 500 1500

Displacement (μm)

Displacement (µm)

Up1

Down 1

Linear (Up1)

Linear (Down 1)

24Mechanical Measurement Lab [email protected]

2011.17.06

Wheatstone bridge

Bridge equation:

Vout/Vin =

Application with strain gauges:

Vout/Vin =

Configuration:- ¼ bridge- half bridge- full bridge

For the experiment: 1/4 bridge

R1+∆R1

R2+∆R2

Very low ∆R can be measuredFor 2000 µm/m, ∆R = 11µΩ

R3+∆R3

R4+∆R4

25Mechanical Measurement Lab [email protected]

2011.17.06

Sample

26Mechanical Measurement Lab [email protected]

2011.17.06

LVDT: Principle