Measurement of the Trapping Time Constants in Silicon with...

14
Measurement of the Trapping Time Constants in Silicon with the Transient Current Technique *O. Krasel, C. Gößling, J. Klaiber-Lodewigs, R. Klingenberg, M. Maß, S. Rajek and R. Wunstorf for the ATLAS Collaboration Lehrstuhl f. Experimentelle Physik IV, Universität Dortmund

Transcript of Measurement of the Trapping Time Constants in Silicon with...

Page 1: Measurement of the Trapping Time Constants in Silicon with ...rd50.web.cern.ch/rd50/2nd-workshop/talks/2-4-Olaf-Krasel.pdf · Transient Current Technique, Set-up • 672nm red laser

Measurement of theTrapping Time Constants in Silicon

with the Transient Current Technique

*O. Krasel, C. Gößling, J. Klaiber-Lodewigs, R. Klingenberg,M. Maß, S. Rajek and R. Wunstorf for the ATLAS Collaboration

Lehrstuhl f. Experimentelle Physik IV, Universität Dortmund

Page 2: Measurement of the Trapping Time Constants in Silicon with ...rd50.web.cern.ch/rd50/2nd-workshop/talks/2-4-Olaf-Krasel.pdf · Transient Current Technique, Set-up • 672nm red laser

Olaf Krasel, Universität Dortmund 2

• fluence up to 1015 1-MeV-neq/cm2

for design luminosityData on charge collection efficiency are needed for:• detector simulation• optimization of operation conditions

Motivation: The ATLAS Pixel Detector• innermost part of tracking system

• 3 points for tracking

• coverage 0≤η≤2.5

• 3 barrel layers, 6 wheels

• total active area ≈2m² (1744 modules with ≈80 million pixel)

Page 3: Measurement of the Trapping Time Constants in Silicon with ...rd50.web.cern.ch/rd50/2nd-workshop/talks/2-4-Olaf-Krasel.pdf · Transient Current Technique, Set-up • 672nm red laser

Olaf Krasel, Universität Dortmund 3

Effective Trapping Time

• Trapping leads to charge carrier loss:

• charge induced on electrodes by driftingcharge (Ramo’s theorem):

• resulting (measured) signal current:

• injection with short range laser from one sideallows to distinguish between electron andhole signal

)(with ,)(1

)( eqeffeffeff

dttQtdQ Φ=−= τττ

)/exp()()( 0effm ttv

dQ

ti τ−=

dttvdQ

dxdQ

dq )(==

Page 4: Measurement of the Trapping Time Constants in Silicon with ...rd50.web.cern.ch/rd50/2nd-workshop/talks/2-4-Olaf-Krasel.pdf · Transient Current Technique, Set-up • 672nm red laser

Olaf Krasel, Universität Dortmund 4

Transient Current Technique, Set-up

• 672nm red laser (3.5µm absorption length, FWHM = 44ps),• voltage source with picoamperemeter (Keithley 487)• fast pulse amplifier (10×, 100 kHz - 1.8 GHz), (current sensitive!)• oscilloscope (Tektronix TDS 784D, band width 1 GHz)• rise time of system (incl. detector) about 1 ns• PC readout system (LabVIEW)• cooling system (-20°C - +20°C, RMS 0.2°C)

Page 5: Measurement of the Trapping Time Constants in Silicon with ...rd50.web.cern.ch/rd50/2nd-workshop/talks/2-4-Olaf-Krasel.pdf · Transient Current Technique, Set-up • 672nm red laser

Olaf Krasel, Universität Dortmund 5

Charge Correction Method (CCM)• correction of measured current:

• t obtained from slope vs. t plotdepbias

cc

VV

dttiQ

>

== ∫ and correct for

const.)(

τ

( )τ/exp)()( ttiti measc +⋅=icorr(corrected)

im (measured)

lines with τ=const.

Page 6: Measurement of the Trapping Time Constants in Silicon with ...rd50.web.cern.ch/rd50/2nd-workshop/talks/2-4-Olaf-Krasel.pdf · Transient Current Technique, Set-up • 672nm red laser

Olaf Krasel, Universität Dortmund 6

Exponentiated Charge Crossing (ECC)

dtttiQ meas )/exp()(exp τ+= ∫• exponentiated charges from different Vbias are plotted vs. 1/τ• 1/τ is obtained from mean of intersection points of lines

icorr(corrected)

im (measured)

lines with Vbias=const.

Page 7: Measurement of the Trapping Time Constants in Silicon with ...rd50.web.cern.ch/rd50/2nd-workshop/talks/2-4-Olaf-Krasel.pdf · Transient Current Technique, Set-up • 672nm red laser

Olaf Krasel, Universität Dortmund 7

Samples

• irradiated with 24 GeV protons at CERN-PS,no biasing during irradiation

• 4 diodes from ATLAS-Pixel pre-production (CiS),irradiated to 1.1, 3.2, 5.0 and 8.9⋅1014 neq/cm2

annealed to minimum in Vdep at 60ºC• 2 diodes from SRD-Project (CiS),

irradiated to 4.5 and 6.5⋅1014 neq/cm2;annealed to minimum in Vdep at room temperature

• ⟨111⟩ crystal orientation,24h at 1200ºC oxygenation

For the irradiation of the samples I want to thank M. Glaser,M. Moll (CERN) and P. Sicho (Acadamy of Sciences, Prague)

Page 8: Measurement of the Trapping Time Constants in Silicon with ...rd50.web.cern.ch/rd50/2nd-workshop/talks/2-4-Olaf-Krasel.pdf · Transient Current Technique, Set-up • 672nm red laser

Olaf Krasel, Universität Dortmund 8

Trapping Times: Fluence Dependence

/nscm10)16.016.5( 216−⋅±=eβ /nscm10)16.004.5( 216−⋅±=hβ

• errors include only “statistical” error, systematics not yet included• comparison with results obtained by other groups (extrapolated from data taken at fluences < 2.4⋅1014neq/cm2): agreement for electrons, deviation for holes

Page 9: Measurement of the Trapping Time Constants in Silicon with ...rd50.web.cern.ch/rd50/2nd-workshop/talks/2-4-Olaf-Krasel.pdf · Transient Current Technique, Set-up • 672nm red laser

Olaf Krasel, Universität Dortmund 9

Trapping Times: Annealing

holes,cm/1046.4 2eq

14eq n⋅=Φ

electrons

,cm/1046.4 2eq

14eq n⋅=Φ

( ) ( )( )( )( ) 19% by increase h,59.069.1

20%,by decreaseh,80.077.2

/exp1/exp)(

,

,

0

≈±=

≈±=−−⋅+−⋅= ∞

ha

ea

aa ttt

τ

ττβτββ

• ansatz for annealing function:

Page 10: Measurement of the Trapping Time Constants in Silicon with ...rd50.web.cern.ch/rd50/2nd-workshop/talks/2-4-Olaf-Krasel.pdf · Transient Current Technique, Set-up • 672nm red laser

Olaf Krasel, Universität Dortmund 10

Charge Collection Efficiency

electrons

,cm/1046.4 2eq

14eq n⋅=Φ

holes

,cm/1046.4 2eq

14eq n⋅=Φ

• CCE changes during annealing due to changes in Neff and t

• charge collection efficiencies CCEmin refer to chargesinjected close to surface

• therefore they give only a lower limit for CCE interesting inHEP experiments

Page 11: Measurement of the Trapping Time Constants in Silicon with ...rd50.web.cern.ch/rd50/2nd-workshop/talks/2-4-Olaf-Krasel.pdf · Transient Current Technique, Set-up • 672nm red laser

Olaf Krasel, Universität Dortmund 11

Charge Collection Efficiency

• CCEmin for electrons is40-50% at Vdep50-60% at Vdep+50V (as foreseen in ATLAS)

electrons

,cm/1046.4 2eq

14eq n⋅=Φ

Vdep from chargecollection curve,? Vdep=15V

Page 12: Measurement of the Trapping Time Constants in Silicon with ...rd50.web.cern.ch/rd50/2nd-workshop/talks/2-4-Olaf-Krasel.pdf · Transient Current Technique, Set-up • 672nm red laser

Olaf Krasel, Universität Dortmund 12

Conclusions• the effective trapping times of holes and electrons in

silicon have been measured for fluences between 1.1 and8.9·1014 1-MeV-neq/cm2

• confirmed• results for electrons are consistent with extrapolation of

measurements at lower fluences (Brodbeck et al., 2000;Kramberger et al., 2000)

• trapping times for holes are not consistent with thesemeasurements

• annealing of t is negligible, for electrons it even improvesslightly (important for n+-on-n-pixels)

( ) ( )

)ts!measuremenother to(contrary

ns,/cm1016.004.5 ns,/cm1016.016.5

e

216216

h

he

ββ

ββ

⋅±=⋅±= −−

eqΦ⋅= βτ1

Page 13: Measurement of the Trapping Time Constants in Silicon with ...rd50.web.cern.ch/rd50/2nd-workshop/talks/2-4-Olaf-Krasel.pdf · Transient Current Technique, Set-up • 672nm red laser

Olaf Krasel, Universität Dortmund 13

Finally...

Page 14: Measurement of the Trapping Time Constants in Silicon with ...rd50.web.cern.ch/rd50/2nd-workshop/talks/2-4-Olaf-Krasel.pdf · Transient Current Technique, Set-up • 672nm red laser

Olaf Krasel, Universität Dortmund 14

Signal Treatment

• bandwidth:

• tail (problems withreflections/oscillations):

DRC

BW

mRCmm

RC

tu

tututu

==

+→

τ

τ)(

)()()( &

parametersfit are,

point inflection

for for

)/exp()(

)(

0

0

f

ip

ip

ip

f

BWBW

tu

t

tttt

ttutu

tu

=

>≤

−→