MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick...

49
MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDF Page 1 Monte Carlos for the Monte Carlos for the LHC LHC Proton A ntiProton “M inum um Bias” C ollisions Proton A ntiProton PT(hard) O utgoing Parton O utgoing Parton U nderlying Event U nderlying Event Initial-State R adiation Final-State Radiation Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo Models and Extrapolations to the LHC Jet Production, Drell-Yan, Min-Bias

Transcript of MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick...

Page 1: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 1

Monte Carlos for the LHCMonte Carlos for the LHC

Proton AntiProton

“Minumum Bias” Collisions

Proton AntiProton

PT(hard)

Outgoing Parton

Outgoing Parton

Underlying Event Underlying Event

Initial-State Radiation

Final-State Radiation

Rick FieldUniversity of Florida

CDF Run 2

MC4LHC

Tuning the Monte-Carlo Models and Extrapolations to the LHC

Jet Production, Drell-Yan, Min-Bias

Page 2: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 2

QCD Monte-Carlo Models:QCD Monte-Carlo Models:High Transverse Momentum JetsHigh Transverse Momentum Jets

Start with the perturbative 2-to-2 (or sometimes 2-to-3) parton-parton scattering and add initial and final-state gluon radiation (in the leading log approximation or modified leading log approximation).

Hard Scattering

PT(hard)

Outgoing Parton

Outgoing Parton

Initial-State Radiation

Final-State Radiation

Hard Scattering

PT(hard)

Outgoing Parton

Outgoing Parton

Initial-State Radiation

Final-State Radiation

Proton AntiProton

Underlying Event Underlying Event

Proton AntiProton

Underlying Event Underlying Event

“Hard Scattering” Component “Jet”

“Jet”

“Underlying Event”

The “underlying event” consists of the “beam-beam remnants” and from particles arising from soft or semi-soft multiple parton interactions (MPI).

Of course the outgoing colored partons fragment into hadron “jet” and inevitably “underlying event” observables receive contributions from initial and final-state radiation.

“Jet”

The “underlying event” is an unavoidable background to most collider observables and having good understand of it leads to

more precise collider measurements!

Page 3: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 3

Distribution of Particles in JetsDistribution of Particles in Jets

Ratio of charged hadron multiplicities in gluon and quark jets agrees with NNLLA

Gluon-Quark Ratio = 1.6 0.2

Momentum distribution of charged hadrons in jets well described by MLLA (A. Kortov and students)!

Dijet mass range 80-600 GeV Cutoff Qeff = 230 40 MeV

Ncharged-hadrons/Npartons = 0.56 0.10CDF Run 1 Analysis

Rat

io =

Ng-

jet /

Nq-

jet

Q = Ejet cone

Both PYTHIA and HERWIG predict a Gluon-Quark Ratio that is smaller than the data!

= ln(Ejet/pparticle)

CDF Distribution of Particles in Jets

MLLA Curve!

Page 4: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 4

Charged Multiplicity Charged Multiplicity in Quark and Gluon Jetsin Quark and Gluon Jets

CDF Run 1 data on the average charged particle multiplicities in gluon and quark jets versus Q = Ejet × cone compared with NLLA, PYTHIA, and HERWIG.

HERWIG and PYTHIA correctly predict the charged multiplicity for gluon jets.

Both HERWIG and PYTHIA over-estimate the charged multiplicity in quark jets by ~30%!

CDF Run 1 Analysis

Page 5: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 5

Distribution of Particles Distribution of Particles in Quark and Gluon Jetsin Quark and Gluon Jets

Momentum distribution of charged particles in gluon jets. HERWIG 5.6 predictions are in a good agreement with CDF data. PYTHIA 6.115 produces slightly more particles in the region around the peak of distribution.

x = 0.37 0.14 0.05 0.02 0.007

Momentum distribution of charged particles in quark jets. Both HERWIG and PYTHIA produce more particles in the central region of distribution.

pchg = 2 GeV/c

Both PYTHIA and HERWIG predict more charged particles

than the data for quark jets!

CDF Run 1 Analysis

Page 6: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 6

Charged Jet #1Direction

“Transverse” “Transverse”

“Toward”

“Away”

“Toward-Side” Jet

“Away-Side” Jet

Look at charged particle correlations in the azimuthal angle relative to the leading charged particle jet.

Define || < 60o as “Toward”, 60o < || < 120o as “Transverse”, and || > 120o as “Away”. All three regions have the same size in - space, x = 2x120o = 4/3.

Charged Jet #1Direction

“Toward”

“Transverse” “Transverse”

“Away”

-1 +1

2

0

Leading Jet

Toward Region

Transverse Region

Transverse Region

Away Region

Away Region

Charged Particle Correlations PT > 0.5 GeV/c || < 1

Look at the charged particle density in the “transverse” region!

“Transverse” region very sensitive to the “underlying event”!

CDF Run 1 Analysis

Evolution of Charged JetsEvolution of Charged Jets“Underlying Event”“Underlying Event”

Page 7: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 7

Old PYTHIA default(more initial-state radiation)New PYTHIA default

(less initial-state radiation)

Parameter Tune B Tune A

MSTP(81) 1 1

MSTP(82) 4 4

PARP(82) 1.9 GeV 2.0 GeV

PARP(83) 0.5 0.5

PARP(84) 0.4 0.4

PARP(85) 1.0 0.9

PARP(86) 1.0 0.95

PARP(89) 1.8 TeV 1.8 TeV

PARP(90) 0.25 0.25

PARP(67) 1.0 4.0

Old PYTHIA default(more initial-state radiation)New PYTHIA default

(less initial-state radiation)

Plot shows the “transverse” charged particle density versus PT(chgjet#1) compared to the QCD hard scattering predictions of two tuned versions of PYTHIA 6.206 (CTEQ5L, Set B (PARP(67)=1) and Set A (PARP(67)=4)).

"Transverse" Charged Particle Density: dN/dd

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1) (GeV/c)

"Tra

nsv

erse

" C

har

ged

Den

sity

1.8 TeV ||<1.0 PT>0.5 GeV

CDF Preliminarydata uncorrectedtheory corrected

CTEQ5L

PYTHIA 6.206 (Set A)PARP(67)=4

PYTHIA 6.206 (Set B)PARP(67)=1

Run 1 Analysis

Run 1 PYTHIA Tune ARun 1 PYTHIA Tune APYTHIA 6.206 CTEQ5L

CDF Default!

Page 8: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 8

Charged Particle Jet #1 Direction

“Toward”

“Transverse” “Transverse”

“Away”

"Transverse" Charged Particle Density: dN/dd

0.00

0.25

0.50

0.75

1.00

1.25

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1) (GeV/c)"T

ran

sver

se"

Ch

arg

ed D

ensi

ty

CDF Run 1 Min-Bias

CDF Run 1 JET20CDF Run 1 Data

data uncorrected

1.8 TeV ||<1.0 PT>0.5 GeV

"Transverse" Charged Particle Density: dN/dd

0.00

0.25

0.50

0.75

1.00

1.25

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

PT(charged jet#1) (GeV/c)"T

ran

sver

se"

Ch

arg

ed D

ensi

ty

CDF Run 1 Min-Bias

CDF Run 1 JET20

||<1.0 PT>0.5 GeV

CDF Preliminarydata uncorrected

Shows the data on the average “transverse” charge particle density (||<1, pT>0.5 GeV) as a function of the transverse momentum of the leading charged particle jet from Run 1.

Compares the Run 2 data (Min-Bias, JET20, JET50, JET70, JET100) with Run 1. The errors on the (uncorrected) Run 2 data include both statistical and correlated systematic uncertainties.

"Transverse" Charged Particle Density: dN/dd

0.00

0.25

0.50

0.75

1.00

1.25

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

PT(charged jet#1) (GeV/c)"T

ran

sver

se"

Ch

arg

ed D

ensi

ty

CDF Run 2

"Transverse" Charged Particle Density: dN/dd

0.00

0.25

0.50

0.75

1.00

1.25

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

PT(charged jet#1) (GeV/c)"T

ran

sver

se"

Ch

arg

ed D

ensi

ty CDF Run 1 Published

CDF Run 2 Preliminary

||<1.0 PT>0.5 GeV/c

CDF Preliminarydata uncorrected

Excellent agreement between Run 1 and 2!

"Transverse" Charged Particle Density: dN/dd

0.00

0.25

0.50

0.75

1.00

1.25

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

PT(charged jet#1) (GeV/c)"T

ran

sver

se"

Ch

arg

ed D

ensi

ty

CDF Run 1 Published

CDF Run 2 Preliminary

PYTHIA Tune A

||<1.0 PT>0.5 GeV/c

CDF Preliminarydata uncorrectedtheory corrected

PYTHIA Tune A was tuned to fit the “underlying event” in Run I!

Shows the prediction of PYTHIA Tune A at 1.96 TeV after detector simulation (i.e. after CDFSIM).

““Transverse” Transverse” Charged Particle DensityCharged Particle Density

“Transverse” region as defined by the leading “charged particle jet”

Page 9: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 9

Charged Multiplicity Charged Multiplicity in Charged Particle Jetsin Charged Particle Jets

Plot shows the average number of charged particles (pT > 0.5 GeV, || < 1) within the leading charged particle jet (R = 0.7) as a function of the PT of the leading charged jet. The solid (open) points are Min-Bias (JET20) data. The errors on the (uncorrected) data include both statistical and correlated systematic uncertainties. The QCD “hard scattering” theory curves (Herwig 5.9, Isajet 7.32, Pythia 6.115) are corrected for the track finding efficiency.

Nchg (jet#1) versus PT(charged jet#1)

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40 45 50

PT(charged jet#1) (GeV)

Herwig Isajet Pythia 6.115 CDF Min-Bias CDF JET20

1.8 TeV |eta|<1.0 PT>0.5 GeV

<Nchg> (Jet#1, R=0.7)

CDFdata uncorrectedtheory corrected

PYTHIA predict more charged particles than the

data for charged jets!

Includes charged particles from the “underlying event”!

CDF Run 1 Analysis

Page 10: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 10

Run 1 Fragmentation FunctionRun 1 Fragmentation Function

CDF Run 1 data from on the momentum distribution of charged particles (pT > 0.5 GeV and || < 1) within chgjet#1 (leading charged jet) for PT(chgjet#1) > 5 GeV compared with the QCD “hard scattering” Monte-Carlo predictions of HERWIG, ISAJET, and PYTHIA. The points are the charged number density, F(z) = dNchg/dz, where z = pchg/P(chgjet#1) is the ratio of the charged particle momentum to the charged momentum of chgjet#1.

Charged Momentum Distribution Jet#1

0.1

1.0

10.0

100.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

z = p(charged)/P(charged jet#1)

Herwig

Isajet

Pythia 6.115

CDF Min-Bias

Density F(z)=dNchg/dz

1.8 TeV |eta|<1.0 PT>0.5 GeV

CDFdata uncorrectedtheory corrected

PT(jet#1) > 5 GeV

CDF Run 1 Analysis

PYTHIA does not agree at high z!

Page 11: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 11

Run 1 Fragmentation FunctionRun 1 Fragmentation Function

Data from Fig. 3.8 on the momentum distribution of charged particles (pT > 0.5 GeV and || < 1) within chgjet#1 (leading charged jet) for PT(chgjet#1) > 30 GeV compared with the QCD “hard scattering” Monte-Carlo predictions of HERWIG, ISAJET, and PYTHIA. The points are the charged number density, F(z) =dNchg/dz, where z = pchg/P(chgjet#1) is the ratio of the charged particle momentum to the charged momentum of chgjet#1.

Charged Momentum Distribution Jet#1

0.1

1.0

10.0

100.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

z = p(charged)/P(charged jet#1)

Herwig

Isajet

Pythia 6.115

CDF JET20

Density F(z)=dNchg/dz

1.8 TeV |eta|<1.0 PT>0.5 GeV

CDFdata uncorrectedtheory corrected

PT(jet#1) > 30 GeV

CDF Run 1 Analysis

PYTHIA does not agree at high z!

Page 12: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 12

Fragmentation SummaryFragmentation Summary Neither HERWIG or PYTHIA describe

precisely the distribution charged particles in quark and gluon jets at the Tevatron!

Particle Jet

To learn about the fragmentation function at large z we should compare the inclusive “jet” cross-section to the inclusive charged particle cross section!

We have events with 600 GeV “jets” so we must have events with 300 GeV/c charged particles!

Was this measured in Run 1?

A lot of work has been done in comparing to analytic MLLA calculations (Korytov and students), but more work needs to be done in improving the fragmentation models in HERWIG and PYTHIA!

I wish I could show you the following: CDF measured fragmentation functions at different Q2

compared with PYTHIA and HERWIG. The kT distribution of charged particles within “jets”

compared with PYTHIA and HERWIG. The ratio of the inclusive charged particle cross-section to

the inclusive “jet” cross-section compared with PYTHIA and HERWIG.

Charged Particle PT Distribution

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

0 10 20 30 40 50 60 70 80 90 100

Charged Particle PT (GeV/c)N

um

ber

in

1 G

eV/c

Bin

CDF Run 2 Pre-PreliminaryJet 100 Trigger

Charged Particles (||<1.0)

1.96 TeV

In 1 fb-1 we have thousands of charged tracks with pT > 100 GeV/c!

Sergo “blessing” this in the QCD group last week!

Charged Particle kT Distribution in Jets

Shape Comparison Only

Page 13: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 13

Jet #1 Direction

“Transverse” “Transverse”

“Toward”

“Away”

“Toward-Side” Jet

“Away-Side” Jet

Look at charged particle correlations in the azimuthal angle relative to the leading calorimeter jet (JetClu R = 0.7, || < 2).

Define || < 60o as “Toward”, 60o < - < 120o and 60o < < 120o as “Transverse 1” and “Transverse 2”, and || > 120o as “Away”. Each of the two “transverse” regions have area = 2x60o = 4/6. The overall “transverse” region is the sum of the two transverse regions ( = 2x120o = 4/3).

Charged Particle Correlations pT > 0.5 GeV/c || < 1

“Transverse” region is very sensitive to the “underlying event”!

Jet #1 Direction

“Toward”

“Trans 1” “Trans 2”

“Away”

-1 +1

2

0

Leading Jet

Toward Region

Transverse Region 1

Transverse Region 2

Away Region

Away Region

Look at the charged particle density in the “transverse” region!

The “Transverse” RegionsThe “Transverse” Regionsas defined by the Leading Jetas defined by the Leading Jet

Page 14: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 14

Look at the “transverse” region as defined by the leading jet (JetClu R = 0.7, || < 2) or by the leading two jets (JetClu R = 0.7, || < 2). “Back-to-Back” events are selected to have at least two jets with Jet#1 and Jet#2 nearly “back-to-back” (12 > 150o) with almost equal transverse energies (ET(jet#2)/ET(jet#1) > 0.8) and with ET(jet#3) < 15 GeV.

Charged Particle Density: dN/dd

0.1

1.0

10.0

0 30 60 90 120 150 180 210 240 270 300 330 360

(degrees)

Ch

arg

ed

Pa

rtic

le D

en

sit

y

CDF Preliminarydata uncorrected

Charged Particles (||<1.0, PT>0.5 GeV/c)

30 < ET(jet#1) < 70 GeV

"Transverse" Region

Jet#1

Jet #1 Direction

“Toward”

“Transverse” “Transverse”

“Away”

Jet #1 Direction

“Toward”

“Transverse” “Transverse”

“Away”

Jet #2 Direction

Shows the dependence of the charged particle density, dNchg/dd, for charged particles in the range pT > 0.5 GeV/c and || < 1 relative to jet#1 (rotated to 270o) for 30 < ET(jet#1) < 70 GeV for “Leading Jet” and “Back-to-Back” events.

Charged Particle Density: dN/dd

0.1

1.0

10.0

0 30 60 90 120 150 180 210 240 270 300 330 360

(degrees)

Ch

arg

ed

Pa

rtic

le D

en

sit

y

Back-to-Back

Leading Jet

Min-Bias

CDF Preliminarydata uncorrected

Charged Particles (||<1.0, PT>0.5 GeV/c)

30 < ET(jet#1) < 70 GeV

"Transverse" Region

Jet#1

Refer to this as a “Leading Jet” event

Refer to this as a “Back-to-Back” event

Su

bset

Charged Particle Density Charged Particle Density Dependence Dependence

Page 15: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 15

Jet #1 Direction

“Toward”

“Transverse” “Transverse”

“Away”

Jet #1 Direction

“Toward”

“Transverse” “Transverse”

“Away”

Jet #2 Direction

Shows the average charged PTsum density, dPTsum/dd, in the “transverse” region (pT > 0.5 GeV/c, || < 1) versus ET(jet#1) for “Leading Jet” and “Back-to-Back” events.

“Leading Jet”

“Back-to-Back”

"AVE Transverse" PTsum Density: dPT/dd

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 50 100 150 200 250

ET(jet#1) (GeV)

"Tra

nsv

erse

" P

Tsu

m D

ensi

ty (

GeV

/c)

CDF Run 2 Preliminarydata uncorrected

Charged Particles (||<1.0, PT>0.5 GeV/c)

Back-to-Back

Leading Jet

1.96 TeV

Min-Bias0.24 GeV/c per unit -

"AVE Transverse" PTsum Density: dPT/dd

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 50 100 150 200 250

ET(jet#1) (GeV)

"Tra

nsv

erse

" P

Tsu

m D

ensi

ty (

GeV

/c)

CDF Preliminarydata uncorrectedtheory + CDFSIM

Charged Particles (||<1.0, PT>0.5 GeV/c)

Back-to-Back

Leading Jet

PY Tune A

HW

1.96 TeV

Compares the (uncorrected) data with PYTHIA Tune A and HERWIG (without MPI) after CDFSIM.

Hard Radiation!

““Transverse” PTsum Density vs ETransverse” PTsum Density vs ETT(jet#1)(jet#1)

Page 16: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 16

Latest CDF Run 2 Latest CDF Run 2 “Underlying Event” Results“Underlying Event” Results

Two Classes of Events: “Leading Jet” and “Back-to-Back”.Two “Transverse” regions: “transMAX”, “transMIN”, “transDIF”.Data Corrected to the Particle Level: unlike our previous CDF Run 2 “underlying event”

analysis which used JetClu to define “jets” and compared uncorrected data with the QCD Monte-Carlo models after detector simulation, this analysis uses the MidPoint jet algorithm and corrects the observables to the particle level. The corrected observables are then compared with the QCD Monde-Carlo models at the particle level.

For the 1st time we study the energy density in the “transverse” region.

Proton AntiProton

PT(hard)

Outgoing Parton

Outgoing Parton

Underlying Event Underlying Event

Initial-State Radiation

Final-State Radiation

The “underlying event” consists of the “beam-beam remnants” and possible

multiple parton interactions, but inevitably received contributions from

initial and final-state radiation.

Latest CDF Run 2 Results (L = 385 pb-1) :

Jet #1 Direction

“Toward”

“Trans 1” “Trans 2”

“Away”

“Transverse” region is very sensitive to the “underlying event”!

Page 17: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 17

““TransMAX/MIN” PTsum DensityTransMAX/MIN” PTsum Density PYTHIA Tune A vs HERWIG PYTHIA Tune A vs HERWIG

Shows the charged particle PTsum density, dPTsum/dd, in the “transMAX” and “transMIN” region (pT > 0.5 GeV/c, || < 1) versus PT(jet#1) for “Leading Jet” and “Back-to-Back” events.

Compares the (corrected) data with PYTHIA Tune A (with MPI) and HERWIG (without MPI) at the particle level.

"TransMAX" Charged PTsum Density: dPT/dd

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 50 100 150 200 250 300 350 400 450

PT(jet#1) (GeV/c)

"Tra

ns

vers

e" P

Tsu

m D

ens

ity

(G

eV

/c)

"Back-to-Back"

MidPoint R = 0.7 |(jet#1) < 2

CDF Run 2 Preliminarydata corrected to particle level

Charged Particles (||<1.0, PT>0.5 GeV/c)

1.96 TeV

PY Tune A

HW

"Leading Jet"

"TransMIN" Charged PTsum Density: dPT/dd

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300 350 400 450

PT(jet#1) (GeV/c)

"Tra

ns

vers

e" P

Tsu

m D

ens

ity

(G

eV

/c)

"Back-to-Back"

MidPoint R = 0.7 |(jet#1) < 2CDF Run 2 Preliminarydata corrected to particle level

Charged Particles (||<1.0, PT>0.5 GeV/c)

1.96 TeV

PY Tune AHW

"Leading Jet"

Jet #1 Direction

“Toward”

“TransMAX” “TransMIN”

“Away”

Jet #1 Direction

“Toward”

“TransMAX” “TransMIN”

Jet #2 Direction

“Away”

“Leading Jet” “Back-to-Back”

PYTHIA Tune A does a fairly good job fitting the PTsum density in the “transverse”

region!HERWIG does a poor job!

Page 18: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 18

Shows the data on the tower ETsum density, dETsum/dd, in the “transMAX” and “transMIN” region (ET > 100 MeV, || < 1) versus PT(jet#1) for “Leading Jet” and “Back-to-Back” events.

Compares the (corrected) data with PYTHIA Tune A (with MPI) and HERWIG (without MPI) at the particle level (all particles, || < 1).

Jet #1 Direction

“Toward”

“TransMAX” “TransMIN”

“Away”

Jet #1 Direction

“Toward”

“TransMAX” “TransMIN”

Jet #2 Direction

“Away”

“Leading Jet” “Back-to-Back” "TransMAX" ETsum Density: dET/dd

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0 50 100 150 200 250 300 350 400 450

PT(jet#1) (GeV/c)

"Tra

ns

vers

e" E

Tsu

m D

ens

ity

(G

eV

)

"Back-to-Back"

MidPoint R = 0.7 |(jet#1) < 2

CDF Run 2 Preliminarydata corrected to particle level

1.96 TeV"Leading Jet"

PY Tune A

HW

Particles (||<1.0, all PT)

"TransMIN" ETsum Density: dET/dd

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 50 100 150 200 250 300 350 400 450

PT(jet#1) (GeV/c)

"Tra

ns

vers

e" E

Tsu

m D

ens

ity

(G

eV

)

"Back-to-Back"

MidPoint R = 0.7 |(jet#1) < 2CDF Run 2 Preliminarydata corrected to particle level

Particles (||<1.0, all PT) 1.96 TeV

"Leading Jet"

PY Tune A

HW

Neither PY Tune A or HERWIG fits the

ETsum density in the “transferse” region!

HERWIG does slightly better than Tune A!

““TransMAX/MIN” ETsum DensityTransMAX/MIN” ETsum Density PYTHIA Tune A vs HERWIG PYTHIA Tune A vs HERWIG

Page 19: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 19

“transDIF” is more sensitive to the “hard scattering” component

of the “underlying event”!

Use the leading jet to define the MAX and MIN “transverse” regions on an event-by-event basis with MAX (MIN) having the largest (smallest) charged PTsum density.

Jet #1 Direction

“Toward”

“TransMAX” “TransMIN”

“Away”

Jet #1 Direction

“Toward”

“TransMAX” “TransMIN”

Jet #2 Direction

“Away”

Shows the “transDIF” = MAX-MIN ETsum density, dETsum/dd, for all particles (|| < 1) versus PT(jet#1) for “Leading Jet” and “Back-to-Back” events.

“Leading Jet”

“Back-to-Back”

"TransDIF" ETsum Density: dET/dd

0.0

1.0

2.0

3.0

4.0

5.0

0 50 100 150 200 250 300 350 400 450

PT(jet#1) (GeV/c)

"Tra

nsv

erse

" E

Tsu

m D

ensi

ty (

GeV

)"Back-to-Back"

MidPoint R = 0.7 |(jet#1) < 2

CDF Run 2 Preliminarydata corrected to particle level

1.96 TeV"Leading Jet"

PY Tune A

HW

Particles (||<1.0, all PT)

““TransDIF” ETsum DensityTransDIF” ETsum Density PYTHIA Tune A vs HERWIG PYTHIA Tune A vs HERWIG

Page 20: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 20

Possible Scenario??Possible Scenario??"Transverse" pT Distribution: dN/dpT

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

pT All Particles (GeV/c)

"Tra

nsv

erse

" P

T D

istr

ibu

tio

n

Possible Scenario??But I cannot get any of the Monte-Carlo to

do this perfectly!

Beam-Beam Remnants

Multiple Parton

Interactions

Sharp Rise at Low PT?

PYTHIA Tune A fits the charged particle PTsum density for pT > 0.5 GeV/c, but it does not produce enough ETsum for towers with ET > 0.1 GeV.

It is possible that there is a sharp rise in the number of particles in the “underlying event” at low pT (i.e. pT < 0.5 GeV/c).

Perhaps there are two components, a vary “soft” beam-beam remnant component (Gaussian or exponential) and a “hard” multiple interaction component.

Warning!? I am not sure Ibelieve the data on the energy density. I am not convienced we are simulating

correctly the “soft” energy in Calorimeter.

Page 21: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 21

““TransMAX/MIN” ETsum DensityTransMAX/MIN” ETsum Density PYTHIA Tune A vs JIMMY PYTHIA Tune A vs JIMMY

Shows the ETsum density, dETsum/dd, in the “transMAX” and “transMIN” region (all particles || < 1) versus PT(jet#1) for “Leading Jet” and “Back-to-Back” events.

Compares the (corrected) data with PYTHIA Tune A (with MPI) and a tuned version of JIMMY (with MPI, PTJIM = 3.25 GeV/c) at the particle level.

Jet #1 Direction

“Toward”

“TransMAX” “TransMIN”

“Away”

Jet #1 Direction

“Toward”

“TransMAX” “TransMIN”

Jet #2 Direction

“Away”

“Leading Jet” “Back-to-Back”"TransMAX" ETsum Density: dET/dd

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0 50 100 150 200 250 300 350 400 450

PT(jet#1) (GeV/c)

"Tra

nsv

erse

" E

Tsu

m D

ensi

ty (

GeV

)

"Back-to-Back"

MidPoint R = 0.7 |(jet#1) < 2

CDF Run 2 Preliminarydata corrected to particle level

1.96 TeV"Leading Jet"

PY Tune A

JIM

Particles (||<1.0, all PT)

"TransMIN" ETsum Density: dET/dd

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 50 100 150 200 250 300 350 400 450

PT(jet#1) (GeV/c)

"Tra

nsv

erse

" E

Tsu

m D

ensi

ty (

GeV

)

"Back-to-Back"

MidPoint R = 0.7 |(jet#1) < 2CDF Run 2 Preliminarydata corrected to particle level

Particles (||<1.0, all PT) 1.96 TeV

"Leading Jet"

PY Tune A

JIM

JIMMY was tuned to fit the energy density in the “transverse” region for

“leading jet” events!

JIMMY: MPIJ. M. Butterworth

J. R. ForshawM. H. Seymour

Page 22: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 22

““TransMAX/MIN” Nchg DensityTransMAX/MIN” Nchg Density PYTHIA Tune A vs JIMMY PYTHIA Tune A vs JIMMY

Shows the charged particle density, dNchg/dd, in the “transMAX” and “transMIN” region (pT > 0.5 GeV/c, || < 1) versus PT(jet#1) for “Leading Jet” and “Back-to-Back” events.

Compares the (corrected) data with PYTHIA Tune A (with MPI) and a tuned version of JIMMY (with MPI, PTJIM = 3.25 GeV/c) at the particle level.

Jet #1 Direction

“Toward”

“TransMAX” “TransMIN”

“Away”

Jet #1 Direction

“Toward”

“TransMAX” “TransMIN”

Jet #2 Direction

“Away”

“Leading Jet” “Back-to-Back” "TransMAX" Charged Particle Density: dN/dd

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 50 100 150 200 250 300 350 400 450

PT(jet#1) (GeV/c)

"Tra

nsv

erse

" C

har

ged

Den

sity

"Back-to-Back"

CDF Run 2 Preliminarydata corrected to particle level

MidPoint R = 0.7 |(jet#1) < 2

Charged Particles (||<1.0, PT>0.5 GeV/c) 1.96 TeV

PY Tune A

JIM

"Leading Jet"

"TransMIN" Charged Particle Density: dN/dd

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300 350 400 450

PT(jet#1) (GeV/c)

"Tra

nsv

erse

" C

har

ged

Den

sity

"Back-to-Back"

CDF Run 2 Preliminarydata corrected to particle level

MidPoint R = 0.7 |(jet#1) < 2

Charged Particles (||<1.0, PT>0.5 GeV/c)

1.96 TeV

PY Tune A

JIM

"Leading Jet"

Page 23: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 23

““Transverse” <PT>Transverse” <PT> PYTHIA Tune A vs JIMMY PYTHIA Tune A vs JIMMY

Shows the charged particle <PT> in the “transverse” (pT > 0.5 GeV/c, || < 1) versus PT(jet#1) for “Leading Jet” and “Back-to-Back” events.

Compares the (corrected) data with PYTHIA Tune A (with MPI) and HERWIG and a tuned version of JIMMY (with MPI, PTJIM = 3.25 GeV/c) at the particle level.

Jet #1 Direction

“Toward”

“TransMAX” “TransMIN”

“Away”

Jet #1 Direction

“Toward”

“TransMAX” “TransMIN”

Jet #2 Direction

“Away”

“Leading Jet” “Back-to-Back” "Transverse" Charged Particle Mean PT

0.5

1.0

1.5

2.0

0 50 100 150 200 250 300 350 400 450

PT(jet#1) (GeV/c)

"Tra

nsv

erse

" C

har

ged

<P

T>

(G

eV/c

)

"Back-to-Back"

CDF Run 2 Preliminarydata corrected to particle level

MidPoint R = 0.7 |(jet#1) < 2

Charged Particles (||<1.0, PT>0.5 GeV/c)

1.96 TeV"Leading Jet"

HW

PY Tune A

"Transverse" Charged Particle Mean PT

0.5

1.0

1.5

2.0

0 50 100 150 200 250 300 350 400 450

PT(jet#1) (GeV/c)

"Tra

nsv

erse

" C

har

ged

<P

T>

(G

eV/c

)

"Back-to-Back"

CDF Run 2 Preliminarydata corrected to particle level

MidPoint R = 0.7 |(jet#1) < 2

Charged Particles (||<1.0, PT>0.5 GeV/c)

1.96 TeV"Leading Jet"

JIM

PY Tune A

Both JIMMY and HERWIG are too “soft”

for pT > 0.5 GeV/c!

Page 24: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 24

CDF Run 1 PCDF Run 1 PTT(Z)(Z)

Shows the Run 1 Z-boson pT distribution (<pT(Z)> ≈ 11.5 GeV/c) compared with PYTHIA Tune A (<pT(Z)> = 9.7 GeV/c), Tune A25 (<pT(Z)> = 10.1 GeV/c), and Tune A50 (<pT(Z)> = 11.2 GeV/c).

Z-Boson Transverse Momentum

0.00

0.04

0.08

0.12

0 2 4 6 8 10 12 14 16 18 20

Z-Boson PT (GeV/c)

PT

Dis

trib

uti

on

1/N

dN

/dP

T

CDF Run 1 Data

PYTHIA Tune A

PYTHIA Tune A25

PYTHIA Tune A50

CDF Run 1published

1.8 TeV

Normalized to 1

s = 1.0

s = 2.5

s = 5.0

Parameter Tune A Tune A25 Tune A50

MSTP(81) 1 1 1

MSTP(82) 4 4 4

PARP(82) 2.0 GeV 2.0 GeV 2.0 GeV

PARP(83) 0.5 0.5 0.5

PARP(84) 0.4 0.4 0.4

PARP(85) 0.9 0.9 0.9

PARP(86) 0.95 0.95 0.95

PARP(89) 1.8 TeV 1.8 TeV 1.8 TeV

PARP(90) 0.25 0.25 0.25

PARP(67) 4.0 4.0 4.0

MSTP(91) 1 1 1

PARP(91) 1.0 2.5 5.0

PARP(93) 5.0 15.0 25.0

UE Parameters

ISR Parameter

Intrensic KT

PYTHIA 6.2 CTEQ5L

Vary the intrensic KT!

Page 25: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 25

CDF Run 1 PCDF Run 1 PTT(Z)(Z)

Shows the Run 1 Z-boson pT distribution (<pT(Z)> ≈ 11.5 GeV/c) compared with PYTHIA Tune A (<pT(Z)> = 9.7 GeV/c), and PYTHIA Tune AW (<pT(Z)> = 11.7 GeV/c).

Parameter Tune A Tune AW

MSTP(81) 1 1

MSTP(82) 4 4

PARP(82) 2.0 GeV 2.0 GeV

PARP(83) 0.5 0.5

PARP(84) 0.4 0.4

PARP(85) 0.9 0.9

PARP(86) 0.95 0.95

PARP(89) 1.8 TeV 1.8 TeV

PARP(90) 0.25 0.25

PARP(62) 1.0 1.25

PARP(64) 1.0 0.2

PARP(67) 4.0 4.0

MSTP(91) 1 1

PARP(91) 1.0 2.1

PARP(93) 5.0 15.0

The Q2 = kT2 in s for space-like showers is scaled by PARP(64)!

Effective Q cut-off, below which space-like showers are not evolved.

UE Parameters

ISR Parameters

Intrensic KT

PYTHIA 6.2 CTEQ5L Z-Boson Transverse Momentum

0.00

0.04

0.08

0.12

0 2 4 6 8 10 12 14 16 18 20

Z-Boson PT (GeV/c)

PT

Dis

trib

uti

on

1/N

dN

/dP

T

CDF Run 1 Data

PYTHIA Tune A

PYTHIA Tune AW

CDF Run 1published

1.8 TeV

Normalized to 1

Z-Boson Transverse Momentum

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 10 20 30 40 50 60 70 80 90 100

Z-Boson PT (GeV/c)

PT

Dis

trib

uti

on

1/N

dN

/dP

T

CDF Run 1 Data

PYTHIA Tune AWCDF Run 1

published

1.8 TeV

Normalized to 1

Tune used by the CDF-EWK group!

Also fits the high pT tail!

Page 26: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 26

JetJet--Jet Correlations (DJet Correlations (DØ)Ø)Jet#1-Jet#2 Distribution

Jet#1-Jet#2

MidPoint Cone Algorithm (R = 0.7, fmerge = 0.5)

L = 150 pb-1 (Phys. Rev. Lett. 94 221801 (2005)) Data/NLO agreement good. Data/HERWIG

agreement good. Data/PYTHIA agreement good provided PARP(67)

= 1.0→4.0 (i.e. like Tune A, best fit 2.5).

Page 27: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 27

CDF Run 1 PCDF Run 1 PTT(Z)(Z)

Shows the Run 1 Z-boson pT distribution (<pT(Z)> ≈ 11.5 GeV/c) compared with PYTHIA Tune DW, and HERWIG.

Parameter Tune DW Tune AW

MSTP(81) 1 1

MSTP(82) 4 4

PARP(82) 1.9 GeV 2.0 GeV

PARP(83) 0.5 0.5

PARP(84) 0.4 0.4

PARP(85) 1.0 0.9

PARP(86) 1.0 0.95

PARP(89) 1.8 TeV 1.8 TeV

PARP(90) 0.25 0.25

PARP(62) 1.25 1.25

PARP(64) 0.2 0.2

PARP(67) 2.5 4.0

MSTP(91) 1 1

PARP(91) 2.1 2.1

PARP(93) 15.0 15.0

UE Parameters

ISR Parameters

Intrensic KT

PYTHIA 6.2 CTEQ5L Z-Boson Transverse Momentum

0.00

0.04

0.08

0.12

0 2 4 6 8 10 12 14 16 18 20

Z-Boson PT (GeV/c)

PT

Dis

trib

uti

on

1/N

dN

/dP

T

CDF Run 1 Data

PYTHIA Tune DW

HERWIG

CDF Run 1published

1.8 TeV

Normalized to 1

Tune DW has a lower value of PARP(67) and slightly more MPI!

Tune DW uses D0’s perfered value of PARP(67)!

Z-Boson Transverse Momentum

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 10 20 30 40 50 60 70 80 90 100

Z-Boson PT (GeV/c)

PT

Dis

trib

uti

on

1/N

dN

/dP

T CDF Run 1 Data

PYTHIA Tune DWCDF Run 1

published

1.8 TeV

Normalized to 1

Also fits the high pT tail!

Page 28: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 28

““Transverse” Nchg DensityTransverse” Nchg Density

Shows the “transverse” charged particle density, dN/dd, versus PT(jet#1) for “leading jet” events at 1.96 TeV for PYTHIA Tune A, Tune AW, Tune DW, Tune BW, and HERWIG (without MPI).

Parameter Tune AW Tune DW Tune BW

MSTP(81) 1 1 1

MSTP(82) 4 4 4

PARP(82) 2.0 GeV 1.9 GeV 1.8 GeV

PARP(83) 0.5 0.5 0.5

PARP(84) 0.4 0.4 0.4

PARP(85) 0.9 1.0 1.0

PARP(86) 0.95 1.0 1.0

PARP(89) 1.8 TeV 1.8 TeV 1.8 TeV

PARP(90) 0.25 0.25 0.25

PARP(62) 1.25 1.25 1.25

PARP(64) 0.2 0.2 0.2

PARP(67) 4.0 2.5 1.0

MSTP(91) 1 1 1

PARP(91) 2.5 2.5 2/5

PARP(93) 15.0 15.0 15.0

UE Parameters

ISR Parameter

Intrensic KT

PYTHIA 6.2 CTEQ5L "Transverse" Charged Particle Density: dN/dd

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350 400 450 500

PT(particle jet#1) (GeV/c)

"Tra

ns

vers

e" C

har

ge

d D

en

sity

HERWIG

PY Tune A

PY Tune AW

PY Tune DWPY Tune BW

Leading Jet (||<2.0)Charged Particles (||<1.0, PT>0.5 GeV/c)

1.96 TeV

RDF Preliminary generator level

Shows the “transverse” charged particle density, dN/dd, versus PT(jet#1) for “leading jet” events at 1.96 TeV for Tune DW, ATLAS, and HERWIG (without MPI).

Three different amounts of ISR!

Three different amounts of MPI!"Transverse" Charged Particle Density: dN/dd

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350 400 450 500

PT(particle jet#1) (GeV/c)

"Tra

nsv

erse

" C

har

ged

Den

sity

HERWIG

PY-ATLAS

PY Tune DW

Leading Jet (||<2.0)Charged Particles (||<1.0, PT>0.5 GeV/c)

1.96 TeV

RDF Preliminary generator level

Page 29: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 29

““Transverse” PTsum DensityTransverse” PTsum Density

Shows the “transverse” charged PTsum density, dPT/dd, versus PT(jet#1) for “leading jet” events at 1.96 TeV for PYTHIA Tune A, Tune AW, Tune DW, Tune BW, and HERWIG (without MPI).

PYTHIA 6.2 CTEQ5L

Shows the “transverse” charged PTsum density, dPT/dd, versus PT(jet#1) for “leading jet” events at 1.96 TeV for Tune DW, ATLAS, and HERWIG (without MPI).

"Transverse" PTsum Density: dPT/dd

0.0

0.4

0.8

1.2

1.6

0 50 100 150 200 250 300 350 400 450 500

PT(particle jet#1) (GeV/c)

"Tra

nsv

erse

" P

Tsu

m D

ensi

ty (

GeV

/c)

HERWIG

RDF Preliminary generator level

PY Tune A

PY Tune AW PY Tune DW

PY Tune BW

Leading Jet (||<2.0)Charged Particles (||<1.0, PT>0.5 GeV/c)

1.96 TeV

"Transverse" PTsum Density: dPT/dd

0.0

0.4

0.8

1.2

1.6

0 50 100 150 200 250 300 350 400 450 500

PT(particle jet#1) (GeV/c)

"Tra

nsv

erse

" P

Tsu

m D

ensi

ty (

GeV

/c)

HERWIG

RDF Preliminary generator level

PY-ATLAS

PY Tune DW

Leading Jet (||<2.0)Charged Particles (||<1.0, PT>0.5 GeV/c)

1.96 TeV

Parameter Tune AW Tune DW Tune BW

MSTP(81) 1 1 1

MSTP(82) 4 4 4

PARP(82) 2.0 GeV 1.9 GeV 1.8 GeV

PARP(83) 0.5 0.5 0.5

PARP(84) 0.4 0.4 0.4

PARP(85) 0.9 1.0 1.0

PARP(86) 0.95 1.0 1.0

PARP(89) 1.8 TeV 1.8 TeV 1.8 TeV

PARP(90) 0.25 0.25 0.25

PARP(62) 1.25 1.25 1.25

PARP(64) 0.2 0.2 0.2

PARP(67) 4.0 2.5 1.0

MSTP(91) 1 1 1

PARP(91) 2.5 2.5 2/5

PARP(93) 15.0 15.0 15.0

Three different amounts of MPI!

Three different amounts of ISR!Intrensic KT

ISR Parameter

UE Parameters

Page 30: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 30

"Transverse" Charged Particle Density: dN/dd

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350 400 450 500

PT(particle jet#1) (GeV/c)

"Tra

ns

vers

e" C

har

ge

d D

ensi

ty

RDF Preliminary generator level

Leading Jet (||<2.0)Charged Particles (||<1.0, PT>0.5 GeV/c)

1.96 TeVHERWIG

PY Tune DW

PY-ATLAS

PY Tune A

"Transverse" PTsum Density: dPT/dd

0.0

0.4

0.8

1.2

1.6

0 50 100 150 200 250 300 350 400 450 500

PT(particle jet#1) (GeV/c)

"Tra

nsv

erse

" P

Tsu

m D

ensi

ty (

GeV

/c)

Leading Jet (||<2.0)Charged Particles (||<1.0, PT>0.5 GeV/c)

1.96 TeV

RDF Preliminary generator level

HERWIG

PY-ATLAS

PY Tune DW

PY Tune A

"Transverse" Charged Particle Average pT

0.7

0.9

1.1

1.3

1.5

0 50 100 150 200 250 300 350 400 450 500

PT(particle jet#1) (GeV/c)

"Tra

nsv

erse

" C

har

ged

PT

(G

eV/c

)

PY-ATLAS

HERWIG

Leading Jet (||<2.0)Charged Particles (||<1.0, PT>0.5 GeV/c)

1.96 TeV

RDF Preliminary generator level

PY Tune DWPY Tune A

PYTHIA 6.2 TunesPYTHIA 6.2 TunesParameter Tune A Tune DW Tune DWT ATLAS

MSTP(81) 1 1 1 1

MSTP(82) 4 4 4 4

PARP(82) 2.0 GeV 1.9 GeV 1.9409 GeV 1.8 GeV

PARP(83) 0.5 0.5 0.5 0.5

PARP(84) 0.4 0.4 0.4 0.5

PARP(85) 0.9 1.0 1.0 0.33

PARP(86) 0.95 1.0 1.0 0.66

PARP(89) 1.8 TeV 1.8 TeV 1.96 TeV 1.0 TeV

PARP(90) 0.25 0.25 0.16 0.16

PARP(62) 1.0 1.25 1.25 1.0

PARP(64) 1.0 0.2 0.2 1.0

PARP(67) 4.0 2.5 2.5 1.0

MSTP(91) 1 1 1 1

PARP(91) 1.0 2.1 2.1 1.0

PARP(93) 5.0 15.0 15.0 5.0

PYTHIA 6.2 CTEQ5L

Shows the “transverse” charged particle density, dN/dd, versus PT(jet#1) for “leading jet” events at 1.96 TeV for Tune A, DW, ATLAS, and HERWIG (without MPI).

s(MPI) at 1.96 TeV s(MPI) at 14 TeV

Tune A 309.7 mb 484.0 mb

Tune DW 351.7 mb 549.2 mb

Tune DWT 351.7 mb 829.1 mb

ATLAS 324.5 mb 768.0 mb

Shows the “transverse” charged PTsum density, dPT/dd, versus PT(jet#1) for “leading jet” events at 1.96 TeV for Tune A, DW, ATLAS, and HERWIG (without MPI).

Shows the “transverse” charged average pT, versus PT(jet#1) for “leading jet” events at 1.96 TeV for Tune A, DW, ATLAS, and HERWIG (without MPI).

Identical to DW at 1.96 TeV but usesATLAS extrapolation to the LHC!

"Transverse" Charged Average PT

0.7

0.9

1.1

1.3

1.5

1.7

0 50 100 150 200 250 300 350 400 450

PT(jet#1) (GeV/c)

"Tra

nsv

erse

" <

PT

> (

GeV

/c)

CDF Run 2 Preliminarydata corrected to particle level

MidPoint R = 0.7 |(jet#1) < 2

Charged Particles (||<1.0, PT>0.5 GeV/c) 1.96 TeV

"Leading Jet"

HERWIG

PY-ATLAS

PY Tune A, DW

CDF Run 2 Data!

Page 31: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 31

PYTHIA 6.2 TunesPYTHIA 6.2 TunesParameter Tune A Tune DW Tune DWT ATLAS

MSTP(81) 1 1 1 1

MSTP(82) 4 4 4 4

PARP(82) 2.0 GeV 1.9 GeV 1.9409 GeV 1.8 GeV

PARP(83) 0.5 0.5 0.5 0.5

PARP(84) 0.4 0.4 0.4 0.5

PARP(85) 0.9 1.0 1.0 0.33

PARP(86) 0.95 1.0 1.0 0.66

PARP(89) 1.8 TeV 1.8 TeV 1.96 TeV 1.0 TeV

PARP(90) 0.25 0.25 0.16 0.16

PARP(62) 1.0 1.25 1.25 1.0

PARP(64) 1.0 0.2 0.2 1.0

PARP(67) 4.0 2.5 2.5 1.0

MSTP(91) 1 1 1 1

PARP(91) 1.0 2.1 2.1 1.0

PARP(93) 5.0 15.0 15.0 5.0

PYTHIA 6.2 CTEQ5L

Shows the “transverse” charged particle density, dN/dd, versus PT(jet#1) for “leading jet” events at 14 TeV for Tune A, DW, ATLAS, and HERWIG (without MPI).

s(MPI) at 1.96 TeV s(MPI) at 14 TeV

Tune A 309.7 mb 484.0 mb

Tune DW 351.7 mb 549.2 mb

Tune DWT 351.7 mb 829.1 mb

ATLAS 324.5 mb 768.0 mb

Shows the “transverse” charged PTsum density, dPT/dd, versus PT(jet#1) for “leading jet” events at 14 TeV for Tune A, DW, ATLAS, and HERWIG (without MPI).

Shows the “transverse” charged average pT, versus PT(jet#1) for “leading jet” events at 14 TeV for Tune A, DW, ATLAS, and HERWIG (without MPI).

Identical to DW at 1.96 TeV but usesATLAS extrapolation to the LHC!

"Transverse" Charged Particle Density: dN/dd

0.0

0.5

1.0

1.5

2.0

2.5

0 250 500 750 1000 1250 1500 1750 2000

PT(particle jet#1) (GeV/c)

"Tra

nsv

erse

" C

har

ged

Den

sity

RDF Preliminary generator level

PY Tune DWT

Leading Jet (||<2.0)Charged Particles (||<1.0, PT>0.5 GeV/c)

14 TeV

PY Tune DW

HERWIG

PY-ATLAS

"Transverse" PTsum Density: dPT/dd

0.0

2.0

4.0

6.0

8.0

0 250 500 750 1000 1250 1500 1750 2000

PT(particle jet#1) (GeV/c)

"Tra

nsv

erse

" P

Tsu

m D

ensi

ty (

GeV

/c)

RDF Preliminary generator level

Leading Jet (||<2.0)Charged Particles (||<1.0, PT>0.5 GeV/c)

14 TeV

HERWIG

PY-ATLAS

PY Tune DW

PY Tune DWT

"Transverse" Charged Particle Average pT

1.0

1.5

2.0

2.5

0 250 500 750 1000 1250 1500 1750 2000

PT(particle jet#1) (GeV/c)

"Tra

nsv

erse

" C

har

ged

PT

(G

eV/c

) RDF Preliminary generator level

Leading Jet (||<2.0)Charged Particles (||<1.0, PT>0.5 GeV/c)

14 TeV

PY-ATLAS

HERWIG

PY Tune DWT

PY Tune DW

Page 32: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 32

"Transverse" Charged Particle Density: dN/dd

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350 400 450 500

PT(particle jet#1) (GeV/c)

"Tra

nsv

erse

" C

har

ged

Den

sity

PY Tune A

PY Tune DW

PY Tune QW

RDF Preliminary generator level

Leading Jet (||<2.0)Charged Particles (||<1.0, PT>0.5 GeV/c)

1.96 TeV

PYTHIA 6.2 TunesPYTHIA 6.2 TunesParameter Tune A Tune DW Tune QW

PDF CTEQ5L CTEQ5L CTEQ6.1

MSTP(81) 1 1 1

MSTP(82) 4 4 4

PARP(82) 2.0 GeV 1.9 GeV 1.1 GeV

PARP(83) 0.5 0.5 0.5

PARP(84) 0.4 0.4 0.4

PARP(85) 0.9 1.0 1.0

PARP(86) 0.95 1.0 1.0

PARP(89) 1.8 TeV 1.8 TeV 1.8 TeV

PARP(90) 0.25 0.25 0.25

PARP(62) 1.0 1.25 1.25

PARP(64) 1.0 0.2 0.2

PARP(67) 4.0 2.5 2.5

MSTP(91) 1 1 1

PARP(91) 1.0 2.1 2.1

PARP(93) 5.0 15.0 15.0

PYTHIA 6.2

Shows the “transverse” charged particle density, dN/dd, versus PT(jet#1) for “leading jet” events at 1.96 TeV for Tune A, DW, and Tune QW (CTEQ6.1M).

s(MPI) at 1.96 TeV s(MPI) at 14 TeV

Tune A 309.7 mb 484.0 mb

Tune DW 351.7 mb 549.2 mb

Tune QW 296.5 mb 568.7 mb

Shows the “transverse” charged PTsum density, dPT/dd, versus PT(jet#1) for “leading jet” events at 1.96 TeV for Tune A, DW, and Tune QW (CTEQ6.1M).

"Transverse" PTsum Density: dPT/dd

0.0

0.4

0.8

1.2

1.6

0 50 100 150 200 250 300 350 400 450 500

PT(particle jet#1) (GeV/c)

"Tra

nsv

erse

" P

Tsu

m D

ensi

ty (

GeV

/c) PY Tune QW

RDF Preliminary generator level

Leading Jet (||<2.0)Charged Particles (||<1.0, PT>0.5 GeV/c)

1.96 TeV

PY Tune DW

PY Tune A

Uses LO s with = 192 MeV!

Page 33: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 33

Parameter Tune A Tune DW Tune DWT Tune QW

PDF CTEQ5L CTEQ5L CTEQ5L CTEQ6.1

MSTP(81) 1 1 1 1

MSTP(82) 4 4 4 4

PARP(82) 2.0 GeV 1.9 GeV 1.9409 GeV 1.1 GeV

PARP(83) 0.5 0.5 0.5 0.5

PARP(84) 0.4 0.4 0.4 0.4

PARP(85) 0.9 1.0 1.0 1.0

PARP(86) 0.95 1.0 1.0 1.0

PARP(89) 1.8 TeV 1.8 TeV 1.96 TeV 1.8 TeV

PARP(90) 0.25 0.25 0.16 0.25

PARP(62) 1.0 1.25 1.25 1.25

PARP(64) 1.0 0.2 0.2 0.2

PARP(67) 4.0 2.5 2.5 2.5

MSTP(91) 1 1 1 1

PARP(91) 1.0 2.1 2.1 2.1

PARP(93) 5.0 15.0 15.0 15.0

"Transverse" Charged Particle Density: dN/dd

0.0

0.5

1.0

1.5

2.0

2.5

0 250 500 750 1000 1250 1500 1750 2000

PT(particle jet#1) (GeV/c)

"Tra

nsv

erse

" C

har

ged

Den

sity

RDF Preliminary generator level

Leading Jet (||<2.0)Charged Particles (||<1.0, PT>0.5 GeV/c)

14 TeV

PY Tune DWT

PY Tune QW

PY Tune DW

PYTHIA 6.2 TunesPYTHIA 6.2 TunesPYTHIA 6.2

Shows the “transverse” charged particle density, dN/dd, versus PT(jet#1) for “leading jet” events at 1.96 TeV for Tune A, DW, and Tune QW (CTEQ6.1M).

s(MPI) at 1.96 TeV s(MPI) at 14 TeV

Tune A 309.7 mb 484.0 mb

Tune DW 351.7 mb 549.2 mb

Tune DWT 351.7 mb 829.1 mb

Tune QW 296.5 mb 568.7 mb

Shows the “transverse” charged PTsum density, dPT/dd, versus PT(jet#1) for “leading jet” events at 1.96 TeV for Tune A, DW, and Tune QW (CTEQ6.1M).Uses LO s with = 192 MeV!

"Transverse" PTsum Density: dPT/dd

0.0

2.0

4.0

6.0

8.0

0 250 500 750 1000 1250 1500 1750 2000

PT(particle jet#1) (GeV/c)

"Tra

nsv

ers

e" P

Tsu

m D

ens

ity

(G

eV

/c)

RDF Preliminary generator level

14 TeV

Leading Jet (||<2.0)Charged Particles (||<1.0, PT>0.5 GeV/c)

PY Tune DWT

PY Tune DW

PY Tune QW

Page 34: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 34

MIT Search Scheme 12MIT Search Scheme 12Exclusive 3 Jet Final State Challenge

Bruce KnutesonBruce Knuteson

Markus Klute

Markus Klute

Khaldoun Makhoul

Khaldoun Makhoul

Georgios Choudalakis

Georgios Choudalakis

Ray Culbertson

Ray Culbertson

Conor Henderson

Conor Henderson Gene

Flanagan

Gene Flanagan

Exactly 3 jets(PT > 20 GeV/c, || < 2.5)

At least 1 Jet (“trigger” jet)(PT > 40 GeV/c, || < 1.0)

CDF Data

PYTHIA Tune A

Normalized to 1

Order Jets by PT

Jet1 highest PT, etc.

R(j2,j3)

Page 35: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 35

3Jexc R(j2,j3) Normalized3Jexc R(j2,j3) NormalizedExclusive 3-Jet Production: R(j2,j3)

0.00

0.04

0.08

0.12

0.16

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

R(j2,j3)

dN

/dR

(j2,

j3)

Data R(j2,j3)

pyAW

pyDW

pyBW

CDF Run 2 Preliminarydata uncorrected

generator level theory

Let Ntrig40 equal the number of events with at least one jet with PT > 40 geV and || < 1.0 (this is the “offline” trigger).

Let N3Jexc20 equal the number of events with exactly three jets with PT > 20 GeV/c and || < 2.5 which also have at least one jet with PT > 40 GeV/c and || < 1.0.

Let N3JexcFr = N3Jexc20/Ntrig40. The is the fraction of the “offline” trigger events that are exclusive 3-jet events.

The CDF data on dN/dR(j2,j3) at 1.96 TeV compared with PYTHIA Tune AW (PARP(67)=4), Tune DW (PARP(67)=2.5), Tune BW (PARP(67)=1).

PARP(67) affects the initial-state radiation which contributes primarily to the region R(j2,j3) > 1.0.

Normalized to N3JexcFr

Proton AntiProton

Initial-State Radiation

Outgoing Parton

Outgoing Parton

Underlying Event Underlying Event

Initial-State Radiation

“Jet 1”

“Jet 2”

“Jet 3”

R > 1.0

The data have more 3 jet events with small R(j2,j3)!?

Page 36: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 36

Proton AntiProton

Final-State Radiation

Outgoing Parton

Outgoing Parton

Underlying Event Underlying Event

Final-State Radiation

3Jexc R(j2,j3) Normalized3Jexc R(j2,j3) NormalizedExclusive 3-Jet Production: R(j2,j3)

0.00

0.04

0.08

0.12

0.16

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

R(j2,j3)

dN

/dR

(j2,

j3)

Data R(j2,j3)

pyDW

hw05

CDF Run 2 Preliminarydata uncorrected

generator level theory

“Jet 3”

Exclusive 3-Jet Production: R(j2,j3)

0.00

0.04

0.08

0.12

0.16

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

R(j2,j3)

dN

/dR

(j2,

j3)

Data R(j2,j3)

pyDW

pyDWnoFSR

CDF Run 2 Preliminarydata uncorrected

generator level theory

Let Ntrig40 equal the number of events with at least one jet with PT > 40 geV and || < 1.0 (this is the “offline” trigger).

Let N3Jexc20 equal the number of events with exactly three jets with PT > 20 GeV/c and || < 2.5 which also have at least one jet with PT > 40 GeV/c and || < 1.0.

Let N3JexcFr = N3Jexc20/Ntrig40. The is the fraction of the “offline” trigger events that are exclusive 3-jet events.

The CDF data on dN/dR(j2,j3) at 1.96 TeV compared with PYTHIA Tune DW (PARP(67)=2.5) and HERWIG (without MPI).

Final-State radiation contributes to the region R(j2,j3) < 1.0.

Normalized to N3JexcFr

“Jet 1”

“Jet 2” If you ignore the normalization and normalize all the

distributions to one then the data prefer Tune BW, but I believe this is misleading.R < 1.0

Exclusive 3-Jet Production: R(j2,j3)

0.00

0.20

0.40

0.60

0.80

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

R(j2,j3)

dN

/dR

(j2,

j3)

CDF Data

hw05

pyDW

pyBW

CDF Run 2 Preliminarydata uncorrected

generator level theory

Normalized to 1

I do not understand the excess number of events

with R(j2,j3) < 1.0.Perhaps this is related to the

“soft energy” problem??For now the best tune is

PYTHIA Tune DW.

Page 37: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 37

QCD Monte-Carlo Models:QCD Monte-Carlo Models:Lepton-Pair ProductionLepton-Pair Production

Start with the perturbative Drell-Yan muon pair production and add initial-state gluon radiation (in the leading log approximation or modified leading log approximation).

Proton AntiProton

Underlying Event Underlying Event

Proton AntiProton

Underlying Event Underlying Event

“Hard Scattering” Component

Lepton-Pair Production

Lepton

Anti-Lepton

Initial-State Radiation

Lepton-Pair Production

Lepton

Anti-Lepton

Initial-State Radiation

“Underlying Event”

The “underlying event” consists of the “beam-beam remnants” and from particles arising from soft or semi-soft multiple parton interactions (MPI).

Of course the outgoing colored partons fragment into hadron “jet” and inevitably “underlying event” observables receive contributions from initial and final-state radiation.

“Jet”

Page 38: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 38

The “Central” RegionThe “Central” Regionin Drell-Yan Productionin Drell-Yan Production

Look at the “central” region after removing the lepton-pair.

Study the charged particles (pT > 0.5 GeV/c, || < 1) and form the charged particle density, dNchg/dd, and the charged scalar pT sum density, dPTsum/dd, by dividing by the area in - space.

Proton AntiProton

Drell-Yan Production Lepton

Underlying Event Underlying Event

Initial-State Radiation

Anti-Lepton

Charged Particles (pT > 0.5 GeV/c, || < 1)

After removing the lepton-pair everything else is the

“underlying event”!

Proton AntiProton

Multiple Parton Interactions

Anti-Lepton

Lepton

Underlying Event Underlying Event

-1 +1

2

0

Central Region

Look at the charged particle density and the

PTsum density in the “central” region!

Page 39: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 39

DrellDrell--Yan Production (Run 2 vs LHC)Yan Production (Run 2 vs LHC)

Average Lepton-Pair transverse momentum at the Tevatron and the LHC for PYTHIA Tune DW and HERWIG (without MPI).

Proton AntiProton

Drell-Yan Production Lepton

Underlying Event Underlying Event

Initial-State Radiation

Anti-Lepton

Shape of the Lepton-Pair pT distribution at the Z-boson mass at the Tevatron and the LHC for PYTHIA Tune DW and HERWIG (without MPI).

Lepton-Pair Transverse Momentum

Shapes of the pT(+-) distribution at the Z-boson mass.

<pT(+-)> is much larger at the LHC!

Lepton-Pair Transverse Momentum

0

20

40

60

80

0 100 200 300 400 500 600 700 800 900 1000

Lepton-Pair Invariant Mass (GeV)

Ave

rag

e P

air

PT

Drell-Yangenerator level LHC

Tevatron Run 2

PY Tune DW (solid)HERWIG (dashed)

Drell-Yan PT(+-) Distribution

0.00

0.02

0.04

0.06

0.08

0.10

0 5 10 15 20 25 30 35 40

PT(+-) (GeV/c)

1/N

dN

/dP

T (

1/G

eV

)

Drell-Yangenerator level

PY Tune DW (solid)HERWIG (dashed)

70 < M(-pair) < 110 GeV|(-pair)| < 6

Normalized to 1LHC

Tevatron Run2

Z

Drell-Yan PT(+-) Distribution

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

1.0E+02

0 50 100 150 200 250

PT (+-) (GeV/c)

ds /

dP

T (

pb

/GeV

)

Drell-Yangenerator level

70 < M(-pair) < 110 GeV|(-pair)| < 6

LHC

Tevatron Run2

PY Tune DW (solid)HERWIG (dashed)

Page 40: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 40

The “Underlying Event” inThe “Underlying Event” inDrellDrell--Yan ProductionYan Production

Charged particle density versus the lepton-pair invariant mass at 1.96 TeV for PYTHIA Tune AW and HERWIG (without MPI).

Charged particle density versus the lepton-pair invariant mass at 14 TeV for PYTHIA Tune AW and HERWIG (without MPI).

The “Underlying Event”

Proton AntiProton

Drell-Yan Production Lepton

Underlying Event Underlying Event

Initial-State Radiation

Anti-Lepton

Charged Particle Density: dN/dd

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250

Lepton-Pair Invariant Mass (GeV)

Ch

arg

ed P

arti

cle

De

nsi

ty

RDF Preliminarygenerator level

Drell-Yan1.96 TeV

PY Tune AW

HERWIG

Charged Particles (||<1.0, PT>0.5 GeV/c)(excluding lepton-pair )

Charged Particle Density: dN/dd

0.0

0.5

1.0

1.5

0 50 100 150 200 250

Lepton-Pair Invariant Mass (GeV)

Ch

arg

ed P

arti

cle

De

nsi

ty

RDF Preliminarygenerator level

Drell-YanCharged Particles (||<1.0, PT>0.5 GeV/c)

(excluding lepton-pair )

PY Tune AW

HERWIG

LHC

CDF

Charged particle density versus M(pair)

“Underlying event” much more active at the LHC!

HERWIG (without MPI) is much less active than

PY Tune AW (with MPI)!

Z

Z

Page 41: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 41

Extrapolations to the LHC:Extrapolations to the LHC:DrellDrell--Yan ProductionYan Production

Average charged particle density versus the lepton-pair invariant mass at 1.96 TeV for PYTHIA Tune A, Tune AW, Tune BW, Tune DW and HERWIG (without MPI).

Proton AntiProton

Drell-Yan Production Lepton

Underlying Event Underlying Event

Initial-State Radiation

Anti-Lepton

Average charged particle density versus the lepton-pair invariant mass at 14 TeV for PYTHIA Tune DW, Tune DWT, ATLAS and HERWIG (without MPI).

The “Underlying Event”Charged particle density

versus M(pair)

Tune DW and DWT are identical at 1.96 TeV, but have different MPI energy

dependence!

Charged Particle Density: dN/dd

0.0

0.5

1.0

1.5

2.0

2.5

0 100 200 300 400 500 600 700 800 900 1000

Lepton-Pair Invariant Mass (GeV)

Ch

arg

ed P

arti

cle

Den

sity

Charged Particles (||<1.0, PT>0.5 GeV/c)(excluding lepton-pair )

RDF Preliminary generator level

14 TeV

HERWIG

PY-ATLAS

PY Tune DW

PY Tune DWT

Z

Charged Particle Density: dN/dd

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350 400 450 500

Lepton-Pair Invariant Mass (GeV)

Ch

arg

ed P

arti

cle

Den

sity

RDF Preliminary generator level

Charged Particles (||<1.0, PT>0.5 GeV/c)(excluding lepton-pair )

HERWIG

PY Tune BWPY Tune DW

PY Tune A PY Tune AW

1.96 TeV

Z

Charged Particle Density: dN/dd

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300 350 400 450 500

Lepton-Pair Invariant Mass (GeV)

Ch

arg

ed

Pa

rtic

le D

en

sity

Charged Particles (||<1.0, PT>0.5 GeV/c)(excluding lepton-pair )

1.96 TeV Drell-Yan

RDF Preliminary generator level

HERWIG

PY Tune DWPY-ATLAS

PY Tune A

Average charged particle density versus the lepton-pair invariant mass at 1.96 TeV for PYTHIA Tune A, Tune DW, ATLAS and HERWIG (without MPI).

Page 42: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 42

Extrapolations to the LHC:Extrapolations to the LHC:DrellDrell--Yan ProductionYan Production

Average charged PTsum density versus the lepton-pair invariant mass at 1.96 TeV for PYTHIA Tune A, Tune AW, Tune BW, Tune DW and HERWIG (without MPI).

Proton AntiProton

Drell-Yan Production Lepton

Underlying Event Underlying Event

Initial-State Radiation

Anti-Lepton

Average charged PTsum density versus the lepton-pair invariant mass at 14 TeV for PYTHIA Tune DW, Tune DWT, ATLAS, and HERWIG (without MPI).

The “Underlying Event”Charged particle charged

PTsum density versus M(pair)

The ATLAS tune has a much “softer” distribution of charged particles than

the CDF Run 2 Tunes!

Charged PTsum Density: dPT/dd

0.0

0.3

0.6

0.9

1.2

0 50 100 150 200 250 300 350 400 450 500

Lepton-Pair Invariant Mass (GeV)

Ch

arg

ed P

Tsu

m D

ensi

ty (

GeV

/c)

HERWIG

PY Tune BWRDF Preliminary generator level

PY Tune A

PY Tune AWPY Tune DW

Charged Particles (||<1.0, PT>0.9 GeV/c)(excluding lepton-pair )

1.96 TeV

Z Z

Charged PTsum Density: dPT/dd

0.0

1.0

2.0

3.0

4.0

5.0

0 100 200 300 400 500 600 700 800 900 1000

Lepton-Pair Invariant Mass (GeV)

Ch

arg

ed

PT

sum

De

nsi

ty (

GeV

/c)

14 TeV Drell-Yan

RDF Preliminary generator level

HERWIG

PY-ATLAS

PY Tune DWPY Tune DWT

Charged Particles (||<1.0, PT>0.5 GeV/c)(excluding lepton-pair )

Charged PTsum Density: dPT/dd

0.0

0.3

0.6

0.9

1.2

0 50 100 150 200 250 300 350 400 450 500

Lepton-Pair Invariant Mass (GeV)

Ch

arg

ed

PT

sum

De

nsi

ty (

GeV

/c)

RDF Preliminary generator level

1.96 TeV Drell-Yan

Charged Particles (||<1.0, PT>0.5 GeV/c)(excluding lepton-pair )

HERWIG

PY-ATLAS

PY Tune DW

PY Tune A

Average charged PTsum density versus the lepton-pair invariant mass at 1.96 TeV for PYTHIA Tune A, DW, ATLAS, and HERWIG (without MPI).

Page 43: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 43

Extrapolations to the LHC:Extrapolations to the LHC:DrellDrell--Yan ProductionYan Production

Average charged particle density (pT > 0.5 GeV/c) versus the lepton-pair invariant mass at 14 TeV for PYTHIA Tune DW, Tune DWT, ATLAS and HERWIG (without MPI).

Average charged particle density (pT > 0.9 GeV/c) versus the lepton-pair invariant mass at 14 TeV for PYTHIA Tune DW, Tune DWT, ATLAS and HERWIG (without MPI).

The “Underlying Event”

Proton AntiProton

Drell-Yan Production Lepton

Underlying Event Underlying Event

Initial-State Radiation

Anti-Lepton

Charged particle density versus M(pair)

Charged Particles (||<1.0, pT > 0.5 GeV/c)

Charged Particle Density: dN/dd

0.0

0.5

1.0

1.5

2.0

2.5

0 100 200 300 400 500 600 700 800 900 1000

Lepton-Pair Invariant Mass (GeV)

Ch

arg

ed P

arti

cle

Den

sity

Charged Particles (||<1.0, PT>0.5 GeV/c)(excluding lepton-pair )

RDF Preliminary generator level

14 TeV

HERWIG

PY-ATLAS

PY Tune DW

PY Tune DWT

Z Z

Charged Particle Density: dN/dd

0.0

0.4

0.8

1.2

0 100 200 300 400 500 600 700 800 900 1000

Lepton-Pair Invariant Mass (GeV)

Ch

arg

ed P

arti

cle

Den

sity

Charged Particles (||<1.0, PT>0.9 GeV/c)(excluding lepton-pair )

Generator Level14 TeV

HERWIG

PY-ATLASPY Tune DW

PY Tune DWT

Charged Particles (||<1.0, pT > 0.9 GeV/c)

Charged Particle Density: dN/dd

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Minimum pT (GeV/c)

Ch

arg

ed P

arti

cle

Den

sity

Charged Particles (pT > min, ||<1.0)

(excluding lepton-pair )

Drell-YanGenerator Level

14 TeV

70 < M(+-) < 110 GeV

HERWIG

PY Tune DW

PY-ATLAS

The ATLAS tune has a much “softer” distribution of charged particles than

the CDF Run 2 Tunes!

Page 44: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 44

Proton-AntiProton CollisionsProton-AntiProton Collisionsat the Tevatronat the Tevatron

Elastic Scattering Single Diffraction

M

stot = sELsSD sDD sHC

Double Diffraction

M1 M2

Proton AntiProton

“Soft” Hard Core (no hard scattering)

Proton AntiProton

PT(hard)

Outgoing Parton

Outgoing Parton

Underlying Event Underlying Event

Initial-State Radiation

Final-State Radiation

“Hard” Hard Core (hard scattering)

Hard Core

1.8 TeV: 78mb = 18mb + 9mb + (4-7)mb + (47-44)mb

The CDF “Min-Bias” trigger picks up most of the “hard

core” cross-section plus a small amount of single & double

diffraction.

The “hard core” component contains both “hard” and

“soft” collisions.

Beam-Beam Counters

3.2 < || < 5.9

CDF “Min-Bias” trigger1 charged particle in forward BBC

AND1 charged particle in backward BBC

stot = sELsIN

Page 45: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 45

PYTHIA Tune A Min-BiasPYTHIA Tune A Min-Bias“Soft” + ”Hard”“Soft” + ”Hard”

Charged Particle Density: dN/dd

0.0

0.2

0.4

0.6

0.8

1.0

-4 -3 -2 -1 0 1 2 3 4

Pseudo-Rapidity

dN

/d d

Pythia 6.206 Set A

CDF Min-Bias 1.8 TeV 1.8 TeV all PT

CDF Published

PYTHIA regulates the perturbative 2-to-2 parton-parton cross sections with cut-off parameters which allows one to run with PT(hard) > 0. One can simulate both “hard” and “soft” collisions in one program.

The relative amount of “hard” versus “soft” depends on the cut-off and can be tuned.

Charged Particle Density

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 2 4 6 8 10 12 14

PT(charged) (GeV/c)

Ch

arg

ed D

ensi

ty d

N/d

d d

PT

(1/

GeV

/c)

Pythia 6.206 Set A

CDF Min-Bias Data

CDF Preliminary

1.8 TeV ||<1

PT(hard) > 0 GeV/c

Tuned to fit the “underlying event”!

12% of “Min-Bias” events have PT(hard) > 5 GeV/c!

1% of “Min-Bias” events have PT(hard) > 10 GeV/c!

This PYTHIA fit predicts that 12% of all “Min-Bias” events are a result of a hard 2-to-2 parton-parton scattering with PT(hard) > 5 GeV/c (1% with PT(hard) > 10 GeV/c)!

Lots of “hard” scattering in “Min-Bias”!

PYTHIA Tune ACDF Run 2 Default

Page 46: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 46

Charged Particle Density

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 2 4 6 8 10 12 14

PT(charged) (GeV/c)

Ch

arg

ed D

ensi

ty d

N/d

d d

PT

(1/

GeV

/c)

CDF Data

||<1

630 GeV

Pythia 6.206 Set A

1.8 TeV

14 TeV

Hard-Scattering in Min-Bias Events

0%

10%

20%

30%

40%

50%

100 1,000 10,000 100,000

CM Energy W (GeV)

% o

f E

ven

ts

PT(hard) > 5 GeV/c

PT(hard) > 10 GeV/c

Pythia 6.206 Set A

Shows the center-of-mass energy dependence of the charged particle density, dNchg/dddPT, for “Min-Bias” collisions compared with PYTHIA Tune A with PT(hard) > 0.

PYTHIA Tune A predicts that 1% of all “Min-Bias” events at 1.8 TeV are a result of a hard 2-to-2 parton-parton scattering with PT(hard) > 10 GeV/c which increases to 12% at 14 TeV!

1% of “Min-Bias” events have PT(hard) > 10 GeV/c!

12% of “Min-Bias” events have PT(hard) > 10 GeV/c!

LHC?

PYTHIA Tune APYTHIA Tune ALHC Min-Bias PredictionsLHC Min-Bias Predictions

Page 47: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 47

PYTHIA Tune A and Tune DW predict about 6 charged particles per unit at = 0, while the ATLAS tune predicts around 9.

Shows the predictions of PYTHIA Tune A, Tune DW, Tune DWT, and the ATLAS tune for the charged particle density dN/d and dN/dY at 14 TeV (all pT).

PYTHIA Tune DWT is identical to Tune DW at 1.96 TeV, but extrapolates to the LHC using the ATLAS energy dependence.

Charged Particle Density: dN/d

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

PseudoRapidity

Ch

arg

ed

Pa

rtic

le D

en

sity

pyA

pyDW

pyDWT

ATLAS

Charged Particles (all pT)

Generator Level14 TeV

Charged Particle Density: dN/dY

0

2

4

6

8

10

12

-10 -8 -6 -4 -2 0 2 4 6 8 10

Rapidity Y

Ch

arg

ed

Pa

rtic

le D

en

sity

pyA

pyDW

pyDWT

ATLAS

Generator Level14 TeV

Charged Particles (all pT)

PYTHIA 6.2 TunesPYTHIA 6.2 TunesLHC Min-Bias PredictionsLHC Min-Bias Predictions

Page 48: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 48

The ATLAS tune has many more “soft” particles than does any of the CDF Tunes. The ATLAS tune has <pT> = 548 MeV/c while Tune A has <pT> = 641 MeV/c (100 MeV/c more per particle)!

Shows the predictions of PYTHIA Tune A, Tune DW, Tune DWT, and the ATLAS tune for the charged particle pT distribution at 14 TeV (|| < 1) and the average number of charged particles with pT > pT

min (|| < 1).

Charged PT Distribution

0.1

1.0

10.0

100.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Charged Particle PT (GeV/c)

1/N

ev d

N/d

PT

(1/

GeV

/c)

pyA <PT> = 641 MeV/c

pyDW <PT> = 665 MeV/c

pyDWT <PT> = 693 MeV/c

ATLAS <PT> = 548 MeV/c

Charged Particles (||<1.0)

Generator LevelMin-Bias 14 TeV

Average Number of Charged Particles vs PTmin

0

5

10

15

20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Minimum PT (GeV/c)

<N

chg

>

pyA

pyDW

pyDWT

ATLAS

Charged Particles (||<1.0, PT>PTmin)

Generator LevelMin-Bias 14 TeV

PYTHIA 6.2 TunesPYTHIA 6.2 TunesLHC Min-Bias PredictionsLHC Min-Bias Predictions

Page 49: MC4LHC Workshop July 17-26, 2006 Rick Field – Florida/CDFPage 1 Monte Carlos for the LHC Rick Field University of Florida CDF Run 2 MC4LHC Tuning the Monte-Carlo.

MC4LHC Workshop July 17-26, 2006

Rick Field – Florida/CDF Page 49

Proton AntiProton

PT(hard)

Outgoing Parton

Outgoing Parton

Underlying Event Underlying Event

Initial-State Radiation

Final-State Radiation

The ATLAS tune is “goofy”! It produces too many “soft” particles. The charged particle <pT> is too low and does not agree with the CDF Run 2 data. The ATLAS tune agrees with <Nchg> but not with <PTsum> at the Tevatron.

Proton AntiProton

“Minumum Bias” Collisions

PYTHIA Tune DW is very similar to Tune A except that it fits the CDF PT(Z) distribution and it uses the DØ prefered value of PARP(67) = 2.5 (determined from the dijet distribution).

PYTHIA Tune DWT is identical to Tune DW at 1.96 TeV but uses the ATLAS energy extrapolation to the LHC (i.e. PARP(90) = 0.16).

SummarySummary

PYTHIA Tune A does not produce enough “soft” energy in the “underlying event”! JIMMY 325 (PTJIM = 3.25 GeV/c) fits the energy in the “underlying event” but does so by producing too many particles (i.e. it is too soft).

Tevatron LHC

I am not sure I believe the data!?

The ATLAS tune cannot be rightbecause it does not fit the Tevatrondata. Right now I like Tune DW.

Probably no tune will fit the LHC data.That is why we plan to measure MB&UE

at CMS and retune the Monte-Carlomodels!