MBPT and TDDFT Theory and Tools for Electronic-Optical ...

40
MBPT and TDDFT Theory and Tools for Electronic-Optical Properties Calculations in Material Science Dott.ssa Letizia Chiodo Nano-bio Spectroscopy Group & ETSF - European Theoretical Spectroscopy Facility, Dipartemento de Física de Materiales, Facultad de Químicas, Universidad del País Vasco UPV/EHU, San Sebastián-Donostia, Spain

Transcript of MBPT and TDDFT Theory and Tools for Electronic-Optical ...

Page 1: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

MBPT and TDDFTTheory and Tools for

Electronic-Optical PropertiesCalculations in Material Science

Dott.ssa Letizia ChiodoNano-bio Spectroscopy Group &

ETSF - European Theoretical Spectroscopy Facility,Dipartemento de Física de Materiales, Facultad de Químicas,

Universidad del País Vasco UPV/EHU, San Sebastián-Donostia, Spain

Page 2: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

Outline of the Lectures

• Many Body Problem• DFT elements; examples• DFT drawbacks• excited properties:

electronic and optical spectroscopies. elements of theory• Many Body Perturbation Theory: GW• codes, examples of GW calculations• Many Body Perturbation Theory: BSE• codes, examples of BSE calculations• Time Dependent DFT• codes, examples of TDDFT calculations• state of the art, open problems

Page 3: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

Many Body Perturbation Theory in SolidState Physics

Outline

• Green functions, Dyson Equation• Feynman Diagrams• Hedin’s Equations• Self Energy, and GW approximation• the PPA for the W: when it works, why, what it is…• LDA and GW…. is it a good combination? • Plane Waves approaches: Yambo • examples

Page 4: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

DFT

GW

BSE

Computationalcost

Page 5: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

Green Functions

• GFs are integral Kernel used to solve differential equations with boundary conditions

to solve

where H is a differential operator F(x) is a function we need the solution G ofto calculate

)(),(ˆ yxyxGH −= δ

)()(ˆ xFxfH =

)(),()( yFyxGdyxf ∫=

Page 6: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

Green Functions

• in solid state physics, GFs are used to denote the propagation ofelectrons, called quasi-particles (electron+cloud) (single particlepropagator)

• in this formalism, correlation is included in the concept of quasi-particle• real or reciprocal space, for space and time coordinates, can be used• poles of the Green's function are the exact excitation energies of the

quasiparticles (Lehmann representation)• G includes all the information on the quasi-particle: energies, lifetimes,

expectation values of operators• its Im part is related to the spectral function (photoemission)

[ ] 00 )','(),()',';,( ΨΨ−= + txtxTitxtxG ψψ

exact ground state, Heisenberg formalism, creation and annihilation operator

Page 7: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

One-particle excitations = poles of one-particle Green’s function G

Page 8: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

Dyson Equation

)()()()()( 00 xGxxGxGxG Σ+=

non interacting particle quasi-particle

self-energy

A. L. Fetter and J. D. Walecka, Quantum theory of Many-Particle Systems (MacGraw-Hill, New York, 1971).

self-energy: effective non-local and dynamical potentialdescribes all the effects of exchange and correlation in the system. effective potential felt from the extra particle for the polarization that its propagation induces and for the exchange effects, due to the fact that it is a fermion

Page 9: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

Feynman Diagrams

• visual method, to represent particles and interactions• bubble expansion• useful to represent some relations expressed by Green Functions

Page 10: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

Hedin’s Equationsstarting from equation of motion for G � close set of equations

Page 11: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

GW

Page 12: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

GW Approximation

vertex corrections neglected

irreducible polarizability:

noninteracting quasielectron-quasihole pairs (RPA)

Dyson equation

dynamically screened potential

GW

is approximated by the independent particle G G( )0

Page 13: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

non local, non Hermitian, frequency dependent; Σ

•Plasmon Pole Approximation: metals ! in Cu ε-1is not a single pole function

full screening, explicit calculation of ε-1 , integralover energy for correlation self-energy (0-130 eV)

W

Σ − −Vxc LDAapproximated with Vxc LDA−Σif DFT & QP wfs are similar, we can use DFT ones

Page 14: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

)()()()()]()([ LDALDALDALDA

XC

LDA

H rrrrrr kkkk nnnn VVh ϕεϕϕ =++

In GW the band gap is obtained perturbatively

∫ =Σ++ )(')'(),',()()]()([ QPQP3QPQPQP

H rrrrrrr kkkkk nnnnn rdVh ϕεϕεϕ

( ) )()(,',)( LDALDA

XC

QPLDALDAQPrrrrr kkkkk′−Σ⟨=− nnnnn V ϕεϕεε

QPLDA

kk nn ϕϕ ≅

Kohn-Sham equation:

Quasiparticle equation (many-body pertubation theory):

First-order self-energy correction:

GW approximation⇒⇒⇒⇒ self-energy=ΣΣΣΣ=iGWG = one-particle Greens function,

W = dynamically screened Coulomb interaction

Goal: Self-energy correction for Kohn-Sham eigenvalues

Page 15: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

GW calculation

DFTKohn Sham

DFT

εεεε iDFT

P( )0 εεεε RPA

−−−−1W

RPA

G( )0

ΣΣΣΣGW εεεε iQP

non local, non Hermitian, frequency dependent; ΣΣΣΣ ==== iGW

Σ − −Vxc LDAapproximated with Vxc LDA−Σ

KS

i

KS

xc

KS

i

KS

ii

KS

i

QP

i VZ φεφεε −Σ+= )(

Page 16: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

Ground State calculation � self-consistent density and potential, Kohn-Sham eigenvalues and eigenfunctions at the relevant k-point as well as on a regular grid of k-points;

independent-particle susceptibility matrix (χ0), on a regular grid of q-points, for at least two frequencies (PPA, usually, zero and a large pure imaginary frequency, close to the plasmon frequency, a dozen of eV),

RPA susceptibility matrix (χ) in the same conditions,the dielectric matrix ("epsilon") and its inverse ("epsilon-1");

on this basis, compute the self-energy ("sigma") matrix element at the given k-point, and derive the GW eigenvalues for the target states at this k-point

from Abinit tutorial

Page 17: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

GW is more long-ranged than DFTthe vacuum problem

( ) ( ) ( )ωωωωπ

ω ′′′+′′=′Σ ∫ ;,;,2

;, rrrrrr WGdi

( ) ( ) ( ) ( ) ( )rrrrrrrr ′+′=′ ∫ ,,,,,;, 22112

3

1

3 vPvrdrdvrrW ωω

( ) ( ) ( )

( ) ( ) ( ) ( )rrrrrrrr

rrrrrr

′′+′′+

′′+′′=′Σ

,,,,;,2

,;,2

;,

22112

3

1

3 vPvGrdrddi

vGdi

ωωωωπ

ωωωπ

ω

Exchange part ΣΣΣΣx:

is as short ranged as Vxc and n(r) in DFT

Correlation part ΣΣΣΣc:Infinite range of Coulomb

potential connects different slabs

⇒⇒⇒⇒ This leads to long-ranged

interactions in GW

(2nd order in v)

Page 18: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

02/03/2004 18

Page 19: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

02/03/2004 19

Page 20: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

bulk phases of CdS

Page 21: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

from M. van Schilfgaarde et al., PRL 96 226402 (2006)

Page 22: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.20.0

0.4

0.8

1.2

1.6

2.0

QP-ε

KS| (

eV)

|εKS| (eV)

conduction valence

Scissor Operator Approximation

TiO2 rutileL. Chiodo et al., in preparation

Page 23: MBPT and TDDFT Theory and Tools for Electronic-Optical ...
Page 24: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

band structure of bulk fcc Si

Page 25: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

lchiodo@corvo:~/RUNS_YAMBO/TUT_Si$ /opt/yambo/bin/y ambo -H

Tool: yambo 3.2.1 rev.477Description: A shiny pot of fun and happiness [C.D. Hogan]

-h :Short Help-H :Long Help-J <opt> :Job string identifier-V <opt> :Input file verbosity

opt=RL,kpt,sc,qp,io,gen,resp-F <opt> :Input file-I <opt> :Core I/O directory-O <opt> :Additional I/O directory-C <opt> :Communications I/O directory-N :Skip MPI initialization-D :DataBases properties-S :DataBases fragmentation-i :Initialization-o <opt> :Optics [opt=(c)hi/(b)se/(t)dhf]-t <opt> :The TDDFTs [opt=(a)LDA/(b)SE/(l)RC]-c :Coulomb interaction-x :Hartree-Fock Self-energy and local X C-d :Dynamical Inverse Dielectric Matrix-b :Static Inverse Dielectric Matrix-p <opt> :GW approximations [opt=(p)PA/c(HOSE X)]-g <opt> :Dyson Equation solver

opt=n(ewton)/s(ecant)/g(reen)-l :GoWo Quasiparticle lifetimes-y <opt> :BSE solver [opt=h/d/i/t]-a :ACFDT Total Energy

Page 26: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

lchiodo@corvo:~/RUNS_YAMBO/TUT_Si$ /opt/yambo/bin/y ambo -g n -p p

gw0 # [R GW] GoWo Quasipart icle energy levelsppa # [R Xp] Plasmon Pole ApproximationHF_and_locXC # [R XX] Hartree-Fock Self-energy and Vx cem1d # [R Xd] Dynamical Inv erse Dielectric MatrixFFTWxcs = 5961EXXRLvcs= 5961 RL # [XX] Exchange RL com ponents% QpntsRXp

1 | 16 | # [Xp] Transferred momen ta%% BndsRnXp

1 | 10 | # [Xp] Polarization func tion bands%NGsBlkXp= 1 RL # [Xp] Response block size% LongDrXp

1.000000 | 0.000000 | 0.000000 | # [Xp] [cc] E lectric Field%PPAPntXp= 27.21138 eV # [Xp] PPA imaginary e nergy% GbndRnge

1 | 10 | # [GW] G[W] bands range%GDamping= 0.10000 eV # [GW] G[W] dampingdScStep= 0.10000 eV # [GW] Energy step to evalute Z factorsDysSolver= "n" # [GW] Dyson Equation solver (`n`,`s`,`g`)%QPkrange # [GW] QP generalized Kpoint/Band indices

1| 16| 1| 10|%%QPerange # [GW] QP generalized Kpoint/Energy indice s

1| 16| 0.0|-1.0|% thanks to M. Bertocchi for Si data

Page 27: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

gw0 # [R GW] GoWo Quasipart icle energy levelsppa # [R Xp] Plasmon Pole ApproximationHF_and_locXC # [R XX] Hartree-Fock Self-energy and Vx cem1d # [R Xd] Dynamical Inv erse Dielectric MatrixEXXRLvcs= 5961 RL # [XX] Exchange RL com ponents% QpntsRXp

1 | 16 | # [Xp] Transferred momen ta%% BndsRnXp

1 | 10 | # [Xp] Polarization func tion bands%NGsBlkXp= 1 RL # [Xp] Response block size% LongDrXp

1.000000 | 1.000000 | 1.000000 | # [Xp] [cc] E lectric Field%PPAPntXp= 27.21138 eV # [Xp] PPA imaginary e nergy% GbndRnge

1 | 10 | # [GW] G[W] bands range%GDamping= 0.10000 eV # [GW] G[W] dampingdScStep= 0.10000 eV # [GW] Energy step to evalute Z factorsDysSolver= "n" # [GW] Dyson Equation solver (`n`,`s`,`g`)%QPkrange # [GW] QP generalized Kpoint/Band indices

1| 1| 1| 10|%%QPerange # [GW] QP generalized Kpoint/Energy indice s

1| 16| 0.0|-1.0|%

Page 28: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

| Y || _ || Y || _ \ | _ || | ||. | ||. ||. | / |. | |

\_ _/ |. _ ||.\_/ ||. _ \ |. | ||: | |: | ||: | ||: | \|: | ||::| |:.|:.||:.|:.||::. /|::. |`--" `-- --"`-- --"`-----" `-----"

<---> [01] Job Setup<---> [02] Input variables setup<---> [02.01] Unit cells<---> [02.02] Symmetries<---> [02.03] RL shells<---> [02.04] K-grid lattice<---> [02.05] Energies [ev] & Occupations<---> [03] Transferred momenta grid<---> [04] Bare local and non-local Exchange-Correl ation<---> [M 0.019 Gb] Alloc WF (0.017)<---> [FFT-Sxx/Rho] Mesh size: 30 30 30<---> [WF loader] Wfs (re)loading |################## ##| [100%] --(E) --(X)<04s> EXS |####################| [100%] 03s(E) 03s( X)<04s> [xc] Functional Perdew & Zunger (xc)<04s> [M 0.002 Gb] Free WF (0.017)<04s> [05] Dynamic Dielectric Matrix (PPA)<04s> [WF loader] Wfs (re)loading |################## ##| [100%] --(E) --(X)<04s> Dipole (T): |####################| [100%] --( E) --(X)

Page 29: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

<04s> [FFT-X] Mesh size: 15 15 15<04s> [WF loader] Wfs (re)loading |################## ##| [100%] --(E) --(X)<04s> [X-CG] R(p) Tot o/o(of R) : 313 5184 10 0<04s> Xo@q[1] 1-2 |####################| [100%] --( E) --(X)<04s> X @q[1] 1-2 |####################| [100%] --( E) --(X)<04s> [X-CG] R(p) Tot o/o(of R) : 1156 5184 10 0<05s> Xo@q[2] 1-2 |####################| [100%] --( E) --(X)<05s> X @q[2] 1-2 |####################| [100%] --( E) --(X)<05s> [X-CG] R(p) Tot o/o(of R) : 1109 5184 10 0<05s> Xo@q[3] 1-2 |####################| [100%] --( E) --(X)<05s> X @q[3] 1-2 |####################| [100%] --( E) --(X)<05s> [X-CG] R(p) Tot o/o(of R) : 635 5184 10 0<06s> Xo@q[4] 1-2 |####################| [100%] --( E) --(X)<06s> X @q[4] 1-2 |####################| [100%] --( E) --(X)<06s> [X-CG] R(p) Tot o/o(of R) : 945 5184 10 0<06s> Xo@q[5] 1-2 |####################| [100%] --( E) --(X)<06s> X @q[5] 1-2 |####################| [100%] --( E) --(X)<06s> [X-CG] R(p) Tot o/o(of R) : 1773 5184 10 0<07s> Xo@q[6] 1-2 |####################| [100%] --( E) --(X)<07s> X @q[6] 1-2 |####################| [100%] --( E) --(X)<07s> [X-CG] R(p) Tot o/o(of R) : 1618 5184 10 0<07s> Xo@q[7] 1-2 |####################| [100%] --( E) --(X)<07s> X @q[7] 1-2 |####################| [100%] --( E) --(X)<07s> [X-CG] R(p) Tot o/o(of R) : 1556 5184 10 0<08s> Xo@q[8] 1-2 |####################| [100%] --( E) --(X)<08s> X @q[8] 1-2 |####################| [100%] --( E) --(X)<08s> [X-CG] R(p) Tot o/o(of R) : 1371 5184 10 0<08s> Xo@q[9] 1-2 |####################| [100%] --( E) --(X)<08s> X @q[9] 1-2 |####################| [100%] --( E) --(X)

Page 30: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

<08s> [X-CG] R(p) Tot o/o(of R) : 921 5184 10 0<09s> Xo@q[10] 1-2 |####################| [100%] -- (E) --(X)<09s> X @q[10] 1-2 |####################| [100%] -- (E) --(X)<09s> [X-CG] R(p) Tot o/o(of R) : 1633 5184 10 0<09s> Xo@q[11] 1-2 |####################| [100%] -- (E) --(X)<09s> X @q[11] 1-2 |####################| [100%] -- (E) --(X)<09s> [X-CG] R(p) Tot o/o(of R) : 1300 5184 10 0<10s> Xo@q[12] 1-2 |####################| [100%] -- (E) --(X)<10s> X @q[12] 1-2 |####################| [100%] -- (E) --(X)<10s> [X-CG] R(p) Tot o/o(of R) : 565 5184 10 0<10s> Xo@q[13] 1-2 |####################| [100%] -- (E) --(X)<10s> X @q[13] 1-2 |####################| [100%] -- (E) --(X)<10s> [X-CG] R(p) Tot o/o(of R) : 1675 5184 10 0<11s> Xo@q[14] 1-2 |####################| [100%] -- (E) --(X)<11s> X @q[14] 1-2 |####################| [100%] -- (E) --(X)<11s> [X-CG] R(p) Tot o/o(of R) : 1691 5184 10 0<11s> Xo@q[15] 1-2 |####################| [100%] -- (E) --(X)<11s> X @q[15] 1-2 |####################| [100%] -- (E) --(X)<11s> [X-CG] R(p) Tot o/o(of R) : 1275 5184 10 0<12s> Xo@q[16] 1-2 |####################| [100%] -- (E) --(X)<12s> X @q[16] 1-2 |####################| [100%] -- (E) --(X)<12s> [06] Dyson equation: Newton solver<12s> [06.01] G0W0 : the P(lasmon) P(ole) A(pproxima tion)<12s> [FFT-Sc] Mesh size: 15 15 15<12s> [WF loader] Wfs (re)loading |################## ##| [100%] --(E) --(X)<13s> G0W0 PPA |####################| [100%] 01s(E) 01s(X)<13s> [06.02] QP properties and I/O<13s> [07] Game Over & Game summary

Page 31: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

o.qp## K-point Band Eo E-Eo Sc(E o)#

1.00000 1.00000 -12.04408 -1.62298 4.624481.000 2.000 -.6488E-4 0.5445 1.8651.000 3.000 -.6488E-4 0.5412 1.8611.000000 4.000000 0.000000 0.547782 1.8688671.000000 5.000000 2.566559 1.764176 -2.1639851.000000 6.000000 2.566592 1.753351 -2.17636 51.000000 7.000000 2.566592 1.754164 -2.17534 41.000000 8.000000 3.470763 2.090693 -2.42593 51.000000 9.000000 7.772454 2.726582 -2.54473 8

1.00000 10.00000 7.77738 3.05872 -1.88840

convergence on:

number of plane wavesnumber of bands (total calculation andscreening)number of K pointsnumber of plane waves in ε-1

Page 32: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

# | NGsBlkXp= 113 RL # [Xp] Response bl ock size

# | FFTGvecs= 229 RL # [FFT] Plane-wave s# | EXXRLvcs= 229 RL # [XX] Exchange RL components# K-point Band Eo E-Eo Sc(Eo)#

1.000000 4.000000 0.000000 0.725893 2.13329 41.000000 5.000000 2.566559 1.544599 -2.31765 2

# | FFTGvecs= 531 RL # [FFT] Plane-wave s# | EXXRLvcs= 531 RL # [XX] Exchange RL components# K-point Band Eo E-Eo Sc(Eo)#

1.000000 4.000000 0.000000 0.725031 2.13445 71.000000 5.000000 2.566559 1.543713 -2.32114 8

# | FFTGvecs= 1061 RL # [FFT] Plane-wav es# | EXXRLvcs= 5069 RL # [XX] Exchange R L components# K-point Band Eo E-Eo Sc(Eo)#

1.000000 4.000000 0.000000 0.725035 2.13448 11.000000 5.000000 2.566559 1.543586 -2.32130 2

convergence on plane waves

Page 33: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

# | NGsBlkXp= 51 RL # [Xp] Response bl ock size

# K-point Band Eo E-Eo Sc(Eo)#

1.000000 4.000000 0.000000 0.743866 2.15688 31.000000 5.000000 2.566559 1.525832 -2.34547 1

# | NGsBlkXp= 113 RL # [Xp] Response bl ock size

# K-point Band Eo E-Eo Sc(Eo)#

1.000000 4.000000 0.000000 0.725035 2.13448 11.000000 5.000000 2.566559 1.543586 -2.32130 2

# | NGsBlkXp= 229 RL # [Xp] Response bl ock size

# K-point Band Eo E-Eo Sc(Eo)#

1.000000 4.000000 0.000000 0.724167 2.13355 21.000000 5.000000 2.566559 1.543415 -2.32135 0

convergence on local field effects

Page 34: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

plasmon pole approximation

# K-point Band Eo E-Eo Sc(Eo)#

1.000000 4.000000 0.000000 0.721853 2.13145 31.000000 5.000000 2.566559 1.536254 -2.32073 0

#

Page 35: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

convergence on bands and k-points

# K-point Band Eo E-Eo Sc(Eo)#1.000000 4.000000 0.000000 -0.326881 0.8125991.000000 5.000000 2.566558 0.312979 -3.776347

# .-Input file : yambo.in# | em1d # [R Xd] Dynamical Inverse Dielectric Matrix# | ppa # [R Xp] Plasmon Pole Approximation# | gw0 # [R GW] GoWo Quasi particle energy levels# | FFTGvecs= 1067 RL # [FFT] Plane-wave s# | EXXRLvcs= 229 RL # [XX] Exchange RL components# | % QpntsRXp# | 1 | 47 | # [Xp] Transferred momenta# | %# | % BndsRnXp# | 1 | 50 | # [Xp] Polarizatio n function bands# | %# | NGsBlkXp= 113 RL # [Xp] Response bl ock size# | % LongDrXp# | 0.5774E-5 |0.5774E-5 |0.5774E-5 | # [Xp] [c c] Electric Field# | %# | PPAPntXp= 16.21138 eV # [Xp] PPA imagina ry energy# | % GbndRnge# | 1 | 50 | # [GW] G[W] bands range# | %# | GDamping= 0.10000 eV # [GW] G[W] dampin g# | dScStep= 0.10000 eV # [GW] Energy step to evalute Z factors# | DysSolver= "n" # [GW] Dyson Equat ion solver (`n`,`s`,`g`)

Page 36: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

standard perturbative G0W0in most cases, it works

GW selfconsistent:a fully self-consistent GW Self-Energy does not improvewith respect to the first iteration Self-Energy, and it is even worsejustifications of the validity of the first iterationapproximation have been offered so far, but none is completely satisfactory

why GW doesn’t work: if the spatial localization of LDA wavefunctions is wrong (Louie)

Page 37: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

DFT-RPA GW-RPA

Page 38: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

solid argon

Page 39: MBPT and TDDFT Theory and Tools for Electronic-Optical ...
Page 40: MBPT and TDDFT Theory and Tools for Electronic-Optical ...

thanks toDr. Matteo GattiDr. Silvana Botti

by including MB exchange and correlationwe obtain a very good agreement for electronic structurebut…optical properties are still badly described