Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius...

48
M¨obius number systems Alexandr Kazda, Petr urka M¨obiustrans- formations Convergence M¨obius number systems Examples Existence theorem Conclusions obius number systems Alexandr Kazda, Petr K˚ urka Charles University, Prague Numeration Marseille, March 23–27, 2009

Transcript of Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius...

Page 1: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Mobius number systems

Alexandr Kazda, Petr Kurka

Charles University, Prague

NumerationMarseille, March 23–27, 2009

Page 2: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Outline

1 Mobius transformations

2 Convergence

3 Mobius number systems

4 Examples

5 Existence theorem

6 Conclusions

Page 3: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

• Our goal: To use sequences of Mobius transformations torepresent points on R = R ∪ {∞} or the unit circle T.

• A Mobius tranformation (MT) is any nonconstant functionM : C ∪ {∞} → C ∪ {∞} of the form

M(z) =az + b

cz + d

• We will consider MTs that preserve the upper half-plane

• or the unit disc D.

Page 4: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

• Our goal: To use sequences of Mobius transformations torepresent points on R = R ∪ {∞} or the unit circle T.

• A Mobius tranformation (MT) is any nonconstant functionM : C ∪ {∞} → C ∪ {∞} of the form

M(z) =az + b

cz + d

• We will consider MTs that preserve the upper half-plane

• or the unit disc D.

Page 5: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

• Our goal: To use sequences of Mobius transformations torepresent points on R = R ∪ {∞} or the unit circle T.

• A Mobius tranformation (MT) is any nonconstant functionM : C ∪ {∞} → C ∪ {∞} of the form

M(z) =az + b

cz + d

• We will consider MTs that preserve the upper half-plane

• or the unit disc D.

Page 6: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

• Our goal: To use sequences of Mobius transformations torepresent points on R = R ∪ {∞} or the unit circle T.

• A Mobius tranformation (MT) is any nonconstant functionM : C ∪ {∞} → C ∪ {∞} of the form

M(z) =az + b

cz + d

• We will consider MTs that preserve the upper half-plane

• or the unit disc D.

Page 7: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

R versus T

-2 2

-4

-1/4

-3

-1/3-2

-1/2

-10

1

2

1/2

3

1/3

4

1/4

8

• Using the stereometric projection, we have a one-to-onecorrespondence between the upper half-plane and unitdisc.

• This projection is itself an MT.• Therefore we can translate MTs that represent T to the

ones that represent R.

Page 8: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

R versus T

-2 2

-4

-1/4

-3

-1/3-2

-1/2

-10

1

2

1/2

3

1/3

4

1/4

8

• Using the stereometric projection, we have a one-to-onecorrespondence between the upper half-plane and unitdisc.

• This projection is itself an MT.• Therefore we can translate MTs that represent T to the

ones that represent R.

Page 9: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

R versus T

-2 2

-4

-1/4

-3

-1/3-2

-1/2

-10

1

2

1/2

3

1/3

4

1/4

8

• Using the stereometric projection, we have a one-to-onecorrespondence between the upper half-plane and unitdisc.

• This projection is itself an MT.• Therefore we can translate MTs that represent T to the

ones that represent R.

Page 10: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

R versus T

-2 2

-4

-1/4

-3

-1/3-2

-1/2

-10

1

2

1/2

3

1/3

4

1/4

8

• Using the stereometric projection, we have a one-to-onecorrespondence between the upper half-plane and unitdisc.

• This projection is itself an MT.• Therefore we can translate MTs that represent T to the

ones that represent R.

Page 11: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

R versus T

• We will be mostly talking about representing the unitcircle.

• However, the example number systems represent R.

• How to tell them apart: half-plane-preserving MTs have ahat, disc-preserving MTs don’t.

Page 12: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

R versus T

• We will be mostly talking about representing the unitcircle.

• However, the example number systems represent R.

• How to tell them apart: half-plane-preserving MTs have ahat, disc-preserving MTs don’t.

Page 13: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

R versus T

• We will be mostly talking about representing the unitcircle.

• However, the example number systems represent R.

• How to tell them apart: half-plane-preserving MTs have ahat, disc-preserving MTs don’t.

Page 14: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Disc Mobius transformationsM : D→ D

• A direct calculation shows that all MTs that preserve Dmust look like this:

•M(z) =

αz + β

βz + α,

• where |β| < |α| are complex numbers.

• Examples follow.

Page 15: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Disc Mobius transformationsM : D→ D

• A direct calculation shows that all MTs that preserve Dmust look like this:

•M(z) =

αz + β

βz + α,

• where |β| < |α| are complex numbers.

• Examples follow.

Page 16: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Disc Mobius transformationsM : D→ D

• A direct calculation shows that all MTs that preserve Dmust look like this:

•M(z) =

αz + β

βz + α,

• where |β| < |α| are complex numbers.

• Examples follow.

Page 17: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Disc Mobius transformationsM : D→ D

• A direct calculation shows that all MTs that preserve Dmust look like this:

•M(z) =

αz + β

βz + α,

• where |β| < |α| are complex numbers.

• Examples follow.

Page 18: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Examples of Mobiustransformations

-4

-1/4

-3

-1/3

-2

-1/2

-1

0

1

2

1/2

3

1/3

4

1/4

8 -4

-1/4

-3-1/3

-2

-1/2

-10

1

2

1/2

3

1/3

4

1/4

8 -4

-1/4

-3

-1/3

-2

-1/2

-1

0

1

2

1/2

3

1/3

4

1/4

8

M0(z) = 3z−iiz−3

M0(x) = x/2

hyperbolic

M1(z) = (2i+1)z+12i−1

M1(x) = x + 1

parabolic

M2(z) = (7+2i)z+i−iz+(7−2i)

M2(x) = 4x+13−x

elliptic

Page 19: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Examples of Mobiustransformations

-4

-1/4

-3

-1/3

-2

-1/2

-1

0

1

2

1/2

3

1/3

4

1/4

8 -4

-1/4

-3-1/3

-2

-1/2

-10

1

2

1/2

3

1/3

4

1/4

8 -4

-1/4

-3

-1/3

-2

-1/2

-1

0

1

2

1/2

3

1/3

4

1/4

8

M0(z) = 3z−iiz−3

M0(x) = x/2

hyperbolic

M1(z) = (2i+1)z+12i−1

M1(x) = x + 1

parabolic

M2(z) = (7+2i)z+i−iz+(7−2i)

M2(x) = 4x+13−x

elliptic

Page 20: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Examples of Mobiustransformations

-4

-1/4

-3

-1/3

-2

-1/2

-1

0

1

2

1/2

3

1/3

4

1/4

8 -4

-1/4

-3-1/3

-2

-1/2

-10

1

2

1/2

3

1/3

4

1/4

8 -4

-1/4

-3

-1/3

-2

-1/2

-1

0

1

2

1/2

3

1/3

4

1/4

8

M0(z) = 3z−iiz−3

M0(x) = x/2

hyperbolic

M1(z) = (2i+1)z+12i−1

M1(x) = x + 1

parabolic

M2(z) = (7+2i)z+i−iz+(7−2i)

M2(x) = 4x+13−x

elliptic

Page 21: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Defining convergence

• A sequence M1,M2, . . . represents the number x ∈ T ifMn(0)→ x for n→∞.

• Isn’t it a bit arbitrary?

• No. This definition is quite natural.

• For example, if M1,M2, . . . represents x thenMn(K )→ {x} for any K ⊂ Do compact.

Page 22: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Defining convergence

• A sequence M1,M2, . . . represents the number x ∈ T ifMn(0)→ x for n→∞.

• Isn’t it a bit arbitrary?

• No. This definition is quite natural.

• For example, if M1,M2, . . . represents x thenMn(K )→ {x} for any K ⊂ Do compact.

Page 23: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Defining convergence

• A sequence M1,M2, . . . represents the number x ∈ T ifMn(0)→ x for n→∞.

• Isn’t it a bit arbitrary?

• No. This definition is quite natural.

• For example, if M1,M2, . . . represents x thenMn(K )→ {x} for any K ⊂ Do compact.

Page 24: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Defining convergence

• A sequence M1,M2, . . . represents the number x ∈ T ifMn(0)→ x for n→∞.

• Isn’t it a bit arbitrary?

• No. This definition is quite natural.

• For example, if M1,M2, . . . represents x thenMn(K )→ {x} for any K ⊂ Do compact.

Page 25: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Preliminaries from Symbolicdynamics

• Let A be finite alphabet. Then A+ is the set of all finitenonempty words over A, Aω the set of all one-sided infinitewords.

• Recall that Σ ⊂ Aω is a subshift if Σ can be defined by aset of forbidden (finite) words.

• For v = v0v1 . . . vn a word, denote by Fv thetransformation Fv0 ◦ Fv1 ◦ · · · ◦ Fvn .

Page 26: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Preliminaries from Symbolicdynamics

• Let A be finite alphabet. Then A+ is the set of all finitenonempty words over A, Aω the set of all one-sided infinitewords.

• Recall that Σ ⊂ Aω is a subshift if Σ can be defined by aset of forbidden (finite) words.

• For v = v0v1 . . . vn a word, denote by Fv thetransformation Fv0 ◦ Fv1 ◦ · · · ◦ Fvn .

Page 27: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Preliminaries from Symbolicdynamics

• Let A be finite alphabet. Then A+ is the set of all finitenonempty words over A, Aω the set of all one-sided infinitewords.

• Recall that Σ ⊂ Aω is a subshift if Σ can be defined by aset of forbidden (finite) words.

• For v = v0v1 . . . vn a word, denote by Fv thetransformation Fv0 ◦ Fv1 ◦ · · · ◦ Fvn .

Page 28: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

What is a Mobius number system?

Let us have a system of MTs {Fa : a ∈ A}. A subshift Σ ⊂ Aω

is a Mobius number system if:

• For every w ∈ Σ, the sequence {Fw0w1...wn}∞n=0 representssome point Φ(w) ∈ T.

• The function Φ : Σ→ T is continuous and surjective.

Page 29: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

What is a Mobius number system?

Let us have a system of MTs {Fa : a ∈ A}. A subshift Σ ⊂ Aω

is a Mobius number system if:

• For every w ∈ Σ, the sequence {Fw0w1...wn}∞n=0 representssome point Φ(w) ∈ T.

• The function Φ : Σ→ T is continuous and surjective.

Page 30: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

What is a Mobius number system?

Let us have a system of MTs {Fa : a ∈ A}. A subshift Σ ⊂ Aω

is a Mobius number system if:

• For every w ∈ Σ, the sequence {Fw0w1...wn}∞n=0 representssome point Φ(w) ∈ T.

• The function Φ : Σ→ T is continuous and surjective.

Page 31: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Getting the idea: Binary system

• Take transformations F0(x) = x/2 and F1(x) = (x + 1)/2.

• Take the full shift Σ = {0, 1}ω.

• The function Φ maps Σ to an interval on T correspondingto [0, 1].

• Essentialy, it is the ordinary binary system; Φ(w)corresponds to 0.w .

• Note that this is not a Mobius number system yet, as it isnot surjective. . .

• . . . we will fix that soon.

Page 32: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Getting the idea: Binary system

• Take transformations F0(x) = x/2 and F1(x) = (x + 1)/2.

• Take the full shift Σ = {0, 1}ω.

• The function Φ maps Σ to an interval on T correspondingto [0, 1].

• Essentialy, it is the ordinary binary system; Φ(w)corresponds to 0.w .

• Note that this is not a Mobius number system yet, as it isnot surjective. . .

• . . . we will fix that soon.

Page 33: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Getting the idea: Binary system

• Take transformations F0(x) = x/2 and F1(x) = (x + 1)/2.

• Take the full shift Σ = {0, 1}ω.

• The function Φ maps Σ to an interval on T correspondingto [0, 1].

• Essentialy, it is the ordinary binary system; Φ(w)corresponds to 0.w .

• Note that this is not a Mobius number system yet, as it isnot surjective. . .

• . . . we will fix that soon.

Page 34: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Getting the idea: Binary system

• Take transformations F0(x) = x/2 and F1(x) = (x + 1)/2.

• Take the full shift Σ = {0, 1}ω.

• The function Φ maps Σ to an interval on T correspondingto [0, 1].

• Essentialy, it is the ordinary binary system; Φ(w)corresponds to 0.w .

• Note that this is not a Mobius number system yet, as it isnot surjective. . .

• . . . we will fix that soon.

Page 35: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Getting the idea: Binary system

• Take transformations F0(x) = x/2 and F1(x) = (x + 1)/2.

• Take the full shift Σ = {0, 1}ω.

• The function Φ maps Σ to an interval on T correspondingto [0, 1].

• Essentialy, it is the ordinary binary system; Φ(w)corresponds to 0.w .

• Note that this is not a Mobius number system yet, as it isnot surjective. . .

• . . . we will fix that soon.

Page 36: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Getting the idea: Binary system

• Take transformations F0(x) = x/2 and F1(x) = (x + 1)/2.

• Take the full shift Σ = {0, 1}ω.

• The function Φ maps Σ to an interval on T correspondingto [0, 1].

• Essentialy, it is the ordinary binary system; Φ(w)corresponds to 0.w .

• Note that this is not a Mobius number system yet, as it isnot surjective. . .

• . . . we will fix that soon.

Page 37: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Binary signed systemA = {1, 0, 1, 2}

-6

-5

-4

-1/4

-3

-1/3

-2

-1/2

-1

0

1

2

1/2

31/3

4

1/4

56

3/2-3/2

2/3

-2/3

8

1-

0

1

2

11 --

10 -

01 - 00

01

10

11

21 - 21

22

101 - - 100 - 101- 011 -- 0

10

-

001

-

000

001

010

011 101 -

100

101

211 --

210 - 210

211

221 - 221

222

F1(x) = (x − 1)/2 (1)

F0(x) = x/2 (2)

F1(x) = (x + 1)/2 (3)

F2(x) = 2x (4)

Forbidden words:20, 02, 12, 12, 11, 11

Page 38: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Regular continued fractionsA = {1, 0, 1}

-6

-5

-4

-1/4

-3

-1/3

-2

-1/2

-1

0

1

2

1/2

31/3

4

1/4

56

3/2-3/2

2/3

-2/3

8

1-0

1

11--

10-

01 -01

10

11

111 ---

110--

101

-

011 --

010 -

010

011

101

-

110

111

F1(x) = −1 + x (5)

F0(x) = −1/x (6)

F1(x) = 1 + x (7)

Forbidden words:00, 11, 11, 101, 101

Page 39: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Existence problem

• The question: Given a system of MTs {Fa : a ∈ A}, doesthere exist a Mobius number system?

• The answer: It depends on whether {Va : a ∈ A} cover Tin a certain way.

Page 40: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Existence problem

• The question: Given a system of MTs {Fa : a ∈ A}, doesthere exist a Mobius number system?

• The answer: It depends on whether {Va : a ∈ A} cover Tin a certain way.

Page 41: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Intervals of contraction andexpansion

UV U

V

Uu = {z ∈ T : |F ′u(z)| < 1},Vu = {z ∈ T : |(F−1

u )′(z)| > 1}Fu(Uu) = Vu, u ∈ A+

Page 42: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

TheoremLet {Fa : a ∈ A} be MTs.

1 If⋃{Vu : u ∈ A+} 6= T, then there does not exist any

Mobius number system.

2 If there exists a finite B ⊂ A+ such that {V u : u ∈ B}cover T, then there exists a Mobius number system.

Note that there can still be some situation in between (1) and(2).

Page 43: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

TheoremLet {Fa : a ∈ A} be MTs.

1 If⋃{Vu : u ∈ A+} 6= T, then there does not exist any

Mobius number system.

2 If there exists a finite B ⊂ A+ such that {V u : u ∈ B}cover T, then there exists a Mobius number system.

Note that there can still be some situation in between (1) and(2).

Page 44: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

TheoremLet {Fa : a ∈ A} be MTs.

1 If⋃{Vu : u ∈ A+} 6= T, then there does not exist any

Mobius number system.

2 If there exists a finite B ⊂ A+ such that {V u : u ∈ B}cover T, then there exists a Mobius number system.

Note that there can still be some situation in between (1) and(2).

Page 45: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Conclusions

• Sequences of MTs can represent numbers.

• We have some sufficient and some necessary conditions fora Mobius number system to exist.

• Continued fractions are a special case of a Mobius numbersystem.

Page 46: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Conclusions

• Sequences of MTs can represent numbers.

• We have some sufficient and some necessary conditions fora Mobius number system to exist.

• Continued fractions are a special case of a Mobius numbersystem.

Page 47: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Conclusions

• Sequences of MTs can represent numbers.

• We have some sufficient and some necessary conditions fora Mobius number system to exist.

• Continued fractions are a special case of a Mobius numbersystem.

Page 48: Möbius number systems - IRIFsteiner/num09/kazda.pdf · 2016. 1. 29. · K urka M obius trans-formations Convergence M obius number systems Examples Existence theorem Conclusions

Mobiusnumbersystems

AlexandrKazda, Petr

Kurka

Mobius trans-formations

Convergence

Mobiusnumbersystems

Examples

Existencetheorem

Conclusions

Thanks for your attention.