Mathematical Analysis and Design of Parallel RLC Network ...

45
Mathematical Analysis and Design of Parallel RLC Network in Step-down Switching Power Conversion System Minh Tri Tran a , Yifei Sun b , Noriyuki Oiwa c Yasunori Kobori d , Anna Kuwana e , Haruo Kobayashi f Gunma

Transcript of Mathematical Analysis and Design of Parallel RLC Network ...

Mathematical Analysis and Design of Parallel RLC Network in Step-down Switching Power

Conversion System

Minh Tri Trana, Yifei Sunb, Noriyuki Oiwac

Yasunori Koborid, Anna Kuwanae, Haruo Kobayashif

Gunma

1. Research Background• Applications of Switching Power Supply• Basic Switching Converter Architecture

2. Analysis of Step-down Switching Converter • Conventional Classical Technique• Superposition Principle

3. Proposed Design of Buck Converter• Overshoot Improvement with Parallel RLC Network• Simulation Results

4. Conclusions

Outline

1. Research Background• Applications of Switching Power Supply• Basic Switching Converter Architecture

2. Analysis of Step-down Switching Converter • Conventional Classical Technique• Superposition Principle

3. Proposed Design of Buck Converter• Overshoot Improvement with Parallel RLC Network• Simulation Results

4. Conclusions

Outline

1. Research BackgroundTypical Applications of Switching Power Supply

Switching Converter

DC 12VDC 3VDC 9V

DC 4.2V

DC 9V

DC 3V

Development of switching power supply witho Fast response & high efficiencyo Low EMI noiseo Small output ripple

o Analysis of buck converter system based on classical technique and superposition principleo Overshoot reduction using parallel RLC network

Approach

Objective

1. Research BackgroundResearch Objective & Approach

1. Research BackgroundDesign Achievements

o Derivation of transfer function of buck converter based on superposition principleo Overshoot cancelation based on balanced charge-discharge time condition:

o Overshoot improvement with parallel RLC Overshoot improvement from 1Vpp into 0.1Vppo Ripple reduction using spread spectrum of PWM signals (0.05mVpp)

Achievements

1 12RCLC

2 1 2L CZ Z R L RC

1. Research BackgroundTrade-offs of Switching Power Supply

Linear Regulator

Switching Regulator

Inductive Charge Pump

Efficiency 20-60% 90-95% 75-90%

Ripple Very low Low Moderate

EMI Noise Very low Moderate Low

PCB Area Very small Largest Medium

Cost Lowest Highest Medium

Basic Switching Converter

Meritso Downsizingo Light Weight o High Efficiency

Demeritso Output Ripple o Switching noiseo Harmonic noise

1. Research BackgroundBasic Switching Converter Architecture

RV in

+

V out

iL

L

CiC

Ioutiin

High Efficiency SwitchingReduce energy consumptionExtend battery operating timeMinimize costs of systems

1. Research BackgroundSuperposition Principle

n n

i=1 i

i

i i=1A

1 =d d

(t)( EE t)

1d

2d3d

4d5d

6d7d

nd

1E (t)

2E (t)

3E (t)4E (t)

5E (t)

6E (t)

7E (t)nE (t)

AE (t)

1. Research BackgroundExample1 of Superposition Principle

R1

V1

L1

~ C1

VA

V3

V2~

~11

1CZ j C

1 1 1 1 1 1

31 21 1 1

C L C LA

V=R Z

VVZ R Z Z

V

1 1 1 1 1

1 1 1 1

31

1

2

1

C L C

C L C LA

VR Z Z R Z=

R Z Z RV

Z ZVV

1 2 31 1 1 1 1 1

1 1 1 1 1A

C L L C

C L C

Z Z R Z RV V V Z=R Z Z

VZ R

21 1 1 1 1

21

1

1 1

2

1

3

1A

j L R LC R=j L R LC R

V V VV

1 1LZ j L

1. Research BackgroundSwitching Regulator

Charge Discharge

arg arg 1( ) ( ) 1 ON

t

Ch e i disch e iV t V t e

ONt OFFt

arg arg( ) ( ) OFF

t

disch e i ch e iV t V t e

outV

ON

out inON OFF

TV VT T

inV Independence of PWM Frequency

1. Research BackgroundSquare Wave Functions

11

1

sin 2 2 14( )2 1k

k tS t

kf

11f T

T

0.5T

time

A

time

A

time

A

0.25T

0.5T

0.25T

0.125T

2 12 2f fT

3 2 14 2 4f f fT

12

1

sin 2 2 214( )2 1k

fk tS t

k

13

1

sin 2 2 414( )2 1k

fk tS t

k

1. Research BackgroundHarmonics of PWM Signals

1 1sin 2 sin 3*2 sin 5*2 ...3 5

( ) 4PWM ft fS t ft t

1 1sin 2 sin 3*21 1sin 2*2 sin 4*22 4

sin 5*2 ...3

4( )5PWM ft fS ft ft fttt

50% Duty Cycle

75% Duty Cycle

25% Duty Cycle

ff1 f2 f3 f4 f5 f6 f7 fn

ff1 f3 f5 f7

1 1sin 2 sin 3*21 1sin 2*2 sin 4*22 4

sin 5*2 ...3

4( )5PWM ft fS ft ft fttt

4

43

45

47

2

22

23

24

25

26

27

ff1 f2 f3 f4 f5 f6 f7 fn

2

22

23

24

25

26

27

1. Research Background• Applications of Switching Power Supply• Basic Switching Converter Architecture

2. Analysis of Step-down Switching Converter • Conventional Classical Technique• Superposition Principle

3. Proposed Design of Buck Converter• Overshoot Improvement with Parallel RLC Network• Simulation Results

4. Conclusions

Outline

2. Analysis of Step-down Switching ConverterConventional Classical Technique

CapacitorInductor

0

0

00

1 1( ) ( ) ( )

1( ) ( )

t t

t

t

t

v t i d i dc c

v t i dc

0

0

00

1 1( ) ( ) ( )

1( ) ( )

t t

t

t

t

i t v d v dL L

i t v dL

Magnetic energy Electric energy

• Advantages– Converts differential equation into algebraic equation.– Rapidly provides stability & transient response.

• Disadvantages– Applicable only to Linear, Time-Invariant (LTI) systems

LC( )i t ( )v t

+ -

RVin

+

Vout

iL

L

CiC

Ioutiin ON

charge

DOFF

( ) ( ) ( )L out Ci t I t i t

0

( )( )( ) 1( ) ; ( ) ; ( ; ( )) ( )ON

out out C L

Toutout

oui tn

dQ tV t I t i t CV tV i t V dtV

C R d Lt t

t

0

( ) ( ) 1 ( )ONT

out outi outn

dC V dtR dt

VL

V t V t t

0 0

( ) ( )( )1 1ON ONT Tout o t

u inu

o tV t V tddt C V dtR L L

Vdt

t 2

2

( ) ( ) (1 0)out out outV t V t V td dCR dt L dt

2

2

( ) ( ) ( )1 0out out outd ddt RC dtV t V

Ct V t

L

2. Analysis of Step-down Switching ConverterAnalysis of Buck Converter (Switch ON)

2

2

( ) ( ) ( )1 0out out outd ddt RC dtV t V

Ct V t

L

1 21 2( )o

tu

s s tstt Ae A et AV e

2

2 01st st std Ae d Ae Ae

dt RC dt LC

2 1 01s sRC LC

2 2

1 21 1 1 1 1 1

2 2 2 2s s

RC RC LC RC RC LC

21 1; ;

2RC LCRC LC

2 22 2

2 22 2

arg 1 2( )RC RC LC RC RC LCt t

ch e ch chV et A e A

2. Analysis of Step-down Switching ConverterAnalysis of Buck Converter (Switch ON)

RV in

+

Vout

iL

L

CiC

IoutOFF

discharge

DON

( ) ( ) ( )out L CI t i t i t

( ) 1; ( ) ; ( ) ; ( )( )( )( ) ( )

O

F

N

OFTdis

out C L diodis

d dis di esT

dQ t I t i t C i tV tV tV t V V dt

C R dt Lt

( ) ( ) ( )1 OF

ON

FTdis

dioded

T

isdis

V t V t VdC V dtR dt

tL

( ) ( ) ( )1 1OFF

O

FF

N

O

ONT

T Tdis d

dios

dei

dT

isV t VdC dt V dt V t tdt R L L

1( ) ( ) ) 0(OFF

ON

dis dis

Tdi

T

sdC V t V t dt

RV t

dt L

2

2

( ) ( ) ( )1 0dis dis disd ddt RC dt

VC

V t V t tL

2. Analysis of Step-down Switching ConverterAnalysis of Buck Converter (Switch OFF)

2

2

( ) ( ) ( )1 0dis dis disd ddt RC dt

VC

V t V t tL

1 23 3( ) dis diss t s ts

dis dit

sA e A e A eV t

2

2 01dis dist st

s isst

dd A e d A e A edt RC dt LC

2 1 01s sRC LC

2 2

1 21 1 1 1 1 1

2 2 2 2dis diss sRC RC LC RC RC LC

21 1; ;

2RC LCRC LC

2 22 2 2 2

2 2

rg 1 2a ( )RC RC LC RC RC LCt t

dich ed s di s isV t A e A e

2. Analysis of Step-down Switching ConverterAnalysis of Buck Converter (Switch OFF)

2 22 2 2 2

2 22 2 2

2

2 22

2

0

1

1

2

21

RC RCON

O

LC RC RC LC

RC RC LC RFF

O

C RC LC

N

T t t

out T t tON OFFdis di

ch

T

c

s

hA e A e dt

VT T

A e A e dt

21 1

2RC LC RCLC

1 2L RC

0

1 ON OFF

ON

c

T Tt t

out disON OFF

hT

V A e dt A e dtT T

2. Analysis of Step-down Switching ConverterBalanced Charge-Discharge Time Condition

2L CZ Z R

Balanced Charge-Discharge Time Condition

LZ j L

1cZ j CVin

Vout

RL

2. Analysis of Step-down Switching ConverterProposed Analysis Model of Buck Converter

RV in

+

Vout

iL

L

CiC

Ioutiin ON

charge

DOFF

RVin

+

Vout

iL

L

CiC

IoutOFF

discharge

DON

Model of Buck Converter

( )PWMS t

Switch OFFSwitch ON

LZ j L

1cZ j CVin

Vout

RL

2

1

1 1LCH j

j jRC LC

1 1 1

Co in

L C

ino

L C

L C L

VVZ Z R Z

RZV VR Z Z Z Z

o C

in L C L C

V RZHV R Z Z Z Z

2. Analysis of Step-down Switching ConverterTransfer Function of Proposed Analysis Model

Transfer Function

Output Voltage

Superpositionprinciple

Proposed analysis model

2

1

1 1LCH j

j jRC LC

2

22

12

2 1 12 2

LCH j f

j f j fRC LC

2

2 22

2

12

122

LCH f

ffRCLC

2

22

12 1 1

4 214

12

H f H f whenLC

fRC LC

fRC

2L CZ Z R

2. Analysis of Step-down Switching ConverterMax Power Propagation Condition

Balanced Charge-Discharge Time Condition

Transfer Function

2. Analysis of Step-down Switching ConverterSimulation of Un-balanced Charge-discharge Time

2L CZ Z R

1 ; 2 2L CZ Z R _1 1 /cut off rad sLC

with overshoot voltage

2L CZ Z R

2. Analysis of Step-down Switching ConverterSimulation of Balanced Charge-discharge Time

1 ; 2 1L CZ Z R _1 1 /cut off rad sLC

w/o overshoot voltage

1. Research Background• Applications of Switching Power Supply• Basic Switching Converter Architecture

2. Analysis of Step-down Switching Converter • Conventional Classical Technique• Superposition Principle

3. Proposed Design of Buck Converter• Overshoot Improvement with Parallel RLC Network• Simulation Results

4. Conclusions

Outline

Modify

Modulate

Circuit with Frequency Modulation

3. Proposed Design of Buck Converter Conventional Step-down Switching Converter

VCO:Voltage Controlled Oscillator

VCO

Input Voltage (Vin) 12V

Output Voltage (Vo) 5.0V

Output Current (Io) 1.0A

Clock Frequency (Fck) 200kHz

EMI Reduction using Spread Spectrum of VCO

( )VCO VCO mt t t

K: sensitivity of VCOVb: bias voltageVm: modulation signal

SAW VCO

Vm

Vb

PWM

ModulationSignal

cos ( )VCO VCO VCO mS t A t t

( ) cos(2 )m m mm V t A fKt K t

( ) cos(2 )m m mV t A f tVCO bVK

cos ( )VCO VCO VCOS t A tFrequency Modulation function:

cos(2 )m mVCO b AK ft V t tK

3. Proposed Design of Buck Converter Frequency Modulation of VCO

time

A

2 2 4 6

0

1cos 1

2 ! 2! 4! 6!

k k

k

x x x xxk

2

0

2 4 6

( ) cos 2

1 22 !

2 2 21

2! 4! 6!

m m m

k km

k

m m m

V t A f t

f tk

f t f t f t

cos ( )VCO VCO VCO mS t A t t

2

0

2 4 6

cos(2 )

1 22 !

2 2 21

2! 4! 6!

VCO b

k km

bk

m m mb

m m

m

m

t V t

f tV t

k

f t f t f t

K K

K

A f t

tK K

A

A

K

V

Frequency Modulation function:

frequency

A

VCOf

Spread spectrum VCO mf f

3. Proposed Design of Buck Converter Spectrum of VCO Signals

2 4 6

cos ( )

2 2 2cos 1

2! 4! 6!

VCO VCO VCO m

m m mV mCO b

S t A t t

f t f t f tA KV AtK

50% Duty Cycle

75% Duty Cycle

25% Duty Cycle

ff1 f3 f5 f7

4

43

45

47

ff1 f2 f3 f4 f5 f6 f7 fn

2

22

23

24

25

26

27

ff1 f2 f3 f4 f5 f6 f7 fn

2

22

23

24

25

26

27

V C O mf f

3. Proposed Design of Buck Converter Spread Spectrum of PWM Signals

3. Proposed Design of Buck Converter Simulation of Conventional Buck Converter

_1 5

2cut offf kHzLC

Frequency Modulation

of VCO Signal

5totalR

10L CZ Z 2L CZ Z R

5 us

Overshoot Voltage

3. Proposed Design of Buck Converter Waveforms of Conventional Buck Converter

Transient state Stable state

Ripple voltages

Spectrum of ripple voltages

Modify

Modulate

R2

L2

C2C1

L1RL Overshoot

Improvement

EMI Reduction using Spread

Spectrum of VCO

3. Proposed Design of Buck Converter Proposed Design of Step-down Switching Converter

R2

L2

C2Vin

Vout

RL

1 1LZ j L

L1

C11

1

1CZ j C

D1

1 1 2 2 2 1

1 1 1 1 ino

L C L L C L

VVZ Z R R Z Z Z

2 2 2 1

2 2 2 1 1 1 1 1 1

L C L Lo in

L C L L C L C L C L

Z Z R Z RV V

Z Z R R Z Z Z Z Z Z R

2 2 2 1

2 2 2 1 1 1 1 1 1

L C L Lo

in L C L L C L C L C L

Z Z R Z RVHV Z Z R R Z Z Z Z Z Z R

2 2

1 1 2 2 22

2 22

2 2 2 1 1 1 2 1

1 1

1 1 1L

Rj jLC L L C

H jjRj j j j

L L C R C LC L C

Transfer Function

Output Voltage

Superpositionprinciple

Proposed model Overshoot Reduction

3. Proposed Design of Buck Converter Overshoot Improvement with Parallel RLC Network

Over-shoot

Over-shoot Reduction

3. Proposed Design of Buck Converter Simulation of Parallel RLC Network

10 2 40L CZ Z R Cutoff frequency

_1 5

2cut offf kHzLC

10 ;2 40L CZ ZR

5f KHz

Over-shoot

Over-shoot

Reduction

3. Proposed Design of Buck Converter Frequency Response of Parallel RLC Network

Cutoff frequency

2L CZ Z R

Over-shoot

Over-shoot

Reduction

3. Proposed Design of Buck Converter Transient Response of Parallel RLC Network

2L CZ Z R

Power On Operation times

Transient state Stable state

VIN

VOUT

RLD1

PWM Controller

L

C

Feedback

Q1 onC charges

+ - R2

L2C2

(a)

- +

L reverses polarityoff

VIN

VOUT

RLD1

L

C

Feedback

Q1

PWM Controller

R2

L2C2

(b)

R f

C f

VVcontrol set

outV

(c)

1 1 control ou

f ffs t

f

te

VVZ R

VZ R

1set set ocontrol ut set set

Cut

f fo

f

f

V V V VZR j C R

V VV

Keep small difference

Feedback Voltage Control

3. Proposed Design of Buck Converter Analysis of Feedback Voltage Control

3. Proposed Design of Buck Converter Proposed Design of Step-down Switching Converter

Overshoot Reduction

Frequency Modulation

of VCO Signal

_ 5cut offf kHz _ 5par RLCf kHz

Overshoot Voltage>1 Vpp

Overshoot VoltageReduction< 0.1 Vpp

3. Proposed Design of Buck Converter Overshoot Reduction Waveforms

Transient state Stable statewithout parallel RLC network

with parallel RLC network

2 10MHzV uV4 3MHzV uV

0.05mVpp

• Input Voltage (Vin): 12V• Output Voltage (Vo): 5.0V• Output Current (Io): 1A• Clock Frequency (Fck): 200kHz• Overshoot: 0.1V• Ripple Voltage: 0.05mVpp

3. Proposed Design of Buck Converter Waveforms of Proposed Buck Converter

Transient state Stable state

Ripple voltages Spectrum of ripple voltages

1. Research Background• Applications of Switching Power Supply• Basic Switching Converter Architecture

2. Analysis of Step-down Switching Converter • Conventional Classical Technique• Superposition Principle

3. Proposed Design of Buck Converter• Overshoot Improvement with Parallel RLC Network• Simulation Results

4. Conclusions

Outline

This work:• Balanced charge-discharge time condition

• Analysis model of Buck converter system based on classical technique and superposition principle

• Overshoot improvement with parallel RLC network Overshoot reduction from 1Vpp into 0.1Vpp

Future of Work• Analysis of parasitic of RLC and other components

4. Conclusions

1 12RCLC

2 1 2L CZ Z R L RC

Thanks for your kind attention!

Questions & Answers1) Why was the balanced charge-discharge time

condition introduced in this research?Because the overshoot phenomena will be detected if this balanced condition is not satisfied.(Based on the selection of R, L and C components, the overshoot voltage can be perfectly controlled.)

2) Was the source code program written to simulate the parallel low-pass filter of Buck converter on Mat-labs? No, it wasn’t.(There is a stool on Mat-labs to simulate this filter.)