Mass Spectrometry for Atmospheric Pressure Plasmas2021/02/11  · 3/57 J. Benedikt, MS for APP,...

57
1/57 J. Benedikt, MS for APP, 11.02.2021 1/57 Jan Benedikt, Tristan Winzer, Tobias Hahn Institut für Experimentelle und Angewandte Physik, Kiel University Gert Willems, Simon Große-Kreul, Simon Schneider, Dirk Ellerweg Research Department Plasmas with Complex Interactions, Ruhr University Bochum Mass Spectrometry for Atmospheric Pressure Plasmas

Transcript of Mass Spectrometry for Atmospheric Pressure Plasmas2021/02/11  · 3/57 J. Benedikt, MS for APP,...

  • 1/57

    J. Benedikt, MS for APP, 11.02.2021

    1/57

    Jan Benedikt, Tristan Winzer, Tobias Hahn

    Institut für Experimentelle und Angewandte Physik, Kiel University

    Gert Willems, Simon Große-Kreul, Simon Schneider, Dirk Ellerweg

    Research Department Plasmas with Complex Interactions, Ruhr University Bochum

    Mass Spectrometry for Atmospheric Pressure Plasmas

  • 2/57

    J. Benedikt, MS for APP, 11.02.2021

    Outline

    Motivation

    • The non-equilibrium atmospheric plasmas

    Mass Spectrometry (MS)

    Detection of reactive neutrals

    • Molecular beam mass spectrometry (MBMS)

    • Beam chopper with rotating skimmer

    • Calibration issues in MBMS

    • Threshold ionization MS (TIMS)

    Detection of Ions

    Analysis of Atmospheric Pressure Plasma jets

    • Study of CO2 conversion

    • Time-resolved ion measurements in plasma needle

    Conclusions

  • 3/57

    J. Benedikt, MS for APP, 11.02.2021

    Non-equilibrium atmospheric pressure plasmas (APP)

    6 t O3/day

    Established applications of APP:Ozonizer, from 1857

    Ozonia Ltd.

    • O3 generation

    • Surface activation: painting of plastics

    • Excimer lamps in VUV und UV

    • Air cleaning, particle precipitation

    • Plasma medicine

    • Plasmas with or in liquids

    • Material synthesis:

    thin film deposition,

    nanoparticle generation

    Emerging applications of APP:

    Motivation:

    CINOGY

    Drexel

    RUB

    Cold with Tgas 20 000 K

  • 4/57

    J. Benedikt, MS for APP, 11.02.2021

    RUB

    radicals ions + e- photons fields

    Motivation:

    APP in contact with tissues and liquids

    free-standing or in aqueous solutions

    Unique effect due to

    combination of

    several plasma

    components

    Radical effects

    dominate

    Plasma medicine, therapeutic plasma applications

    PlasmaDerm® QuelleCINOGY,kINPen® MED

  • 5/57

    J. Benedikt, MS for APP, 11.02.2021

    Outline

    Motivation

    • The non-equilibrium atmospheric plasmas

    Mass Spectrometry (MS)

    Detection of reactive neutrals

    • Molecular beam mass spectrometry (MBMS)

    • Beam chopper with rotating skimmer

    • Calibration issues in MBMS

    • Threshold ionization MS (TIMS)

    Detection of Ions

    Analysis of Atmospheric Pressure Plasma jets

    • Study of CO2 conversion

    • Time-resolved ion measurements in plasma needle

    Conclusions

  • 6/57

    J. Benedikt, MS for APP, 11.02.2021

    Why mass spectrometry?

    • Versatile diagnostic technique measuring mass (and energy) resolved ions at a detector

    • Can be used to measure neutral species as well as ions, typically in their ground state

    • Not limited e.g. by existence of reachable optical transitionsor quenching

    • Measures densities at the wall - place of plasma treatment

    • Can be absolutely calibrated (neutrals)

  • 7/57

    J. Benedikt, MS for APP, 11.02.2021

    Neutral mass spectrometry: signal calibration

    electron impactionizer

    quadrupole mass filter

    detector(electron multiplier)

    +

    Si

    ni,ionizer

    ionizerielieionizeriii nEILmmTS ,)()()( =

    mass filterAnd detector

    ionizer detected species

    e-

    p

  • 8/57

    J. Benedikt, MS for APP, 11.02.2021

    Multiple stage differential pumping

    Aligned orifices →

    Molecular Beam (MB) formed

    • Line-of-sight to ionizer

    • Background pressure reduced

    • Beam chopper for BG subtraction

    Plasma Diagnostics with mass spectrometry: Molecular Beam Mass Spectrometry (MBMS)

    iongeneration

    extractionmass separation

    and analysis

  • 9/57

    J. Benedikt, MS for APP, 11.02.2021

    Formation of molecular beam depends on Knudsen number K𝑛 =𝜆

    𝑑

    Kn > 1 Free molecular flow without collisions

    Molecular Beam Sampling

    • sheath non-collisional or weakly collisional for ions

    → directed movement

    • non-collisional sampling in orifice and molecular

    flow on MS side → no composition distortion

    𝑛𝑏𝑒𝑎𝑚 𝑥 =1

    4

    𝑑

    𝑥

    2

    𝑛0

    +

    Pla

    sma

    Große-Kreul et al., Eur. Phys. J. D 70 (2016) 103

    Große-Kreul et al., Plasma Sources Sci. Technol. 24 (2015) 044008

  • 10/57

    J. Benedikt, MS for APP, 11.02.2021

    Kn 1 Free molecular flow without collisions

    Molecular Beam Sampling

    free jet

    • sheath non-collisional or weakly collisional for ions

    → directed movement

    • non-collisional sampling in orifice and molecular

    flow on MS side → no composition distortion

    • sheath and sampling collisional

    → pressure gradient in front of the orifice

    • supersonic expansion behind the orifice

    → free jet

    → composition distortion

    → seeded molecular beam

    Pla

    sma

    Große-Kreul et al., Eur. Phys. J. D 70 (2016) 103

    Große-Kreul et al., Plasma Sources Sci. Technol. 24 (2015) 044008

    𝑛𝑏𝑒𝑎𝑚 𝑥 =1

    4

    𝑑

    𝑥

    2

    𝑛0

    +

    Pla

    sma +

  • 11/57

    J. Benedikt, MS for APP, 11.02.2021

    • Radial diffusion in free-jet

    • Mach-number focusing

    Ionizer

    p=1atmp

  • 12/57

    J. Benedikt, MS for APP, 11.02.2021

    • Radial diffusion in free-jet

    • Mach-number focusing

    Ionizer

    p=1atmp

  • 13/57

    J. Benedikt, MS for APP, 11.02.2021

    MS calibration: effect of composition distortion

    0 20 40 60 80 1000,0

    0,2

    0,4

    0,6

    0,8

    1,0

    norm

    aliz

    ed M

    S s

    ignal [a

    .u.]

    Air content [%]

    He + 1%Ne

    1% of Ne:

    relative MS signal

    Atomic O calibrated with Ne

    O3 calibrated with N2O

    The change of the gas mixture has to be considered

    D. Ellerweg et al., New J. Physics 12 (2010) 013021Corrigendum: G. Willems et al., New J. Phys. 19 (2019) 059501

    air + 1%Ne

    Factor 4 difference!

    Calibration gas should be measured

    under identical conditions as the

    species of interesst

  • 14/57

    J. Benedikt, MS for APP, 11.02.2021

    14/57

    xqs

    )1/(1

    1

    C

    Mdxqs

    Low pressure(“vacuum”)→ no collisions

    with back-ground gas

    Preferred case for the MB sampling from high pressure

    (

  • 15/57

    J. Benedikt, MS for APP, 11.02.2021

    15/57

    Molecular Beam Sampling: free jet to background gas

    Compressible Navier-Stokes equations for Ar

    pBG [Pa] xMach disk [mm]

    100 2.110 6.7

  • 16/57

    J. Benedikt, MS for APP, 11.02.2021

    Typical MBMS system configuration

    • Three pumping stages• Beam-to-background ~1• Chopper mounted in the 3rd stage

    Used e.g. for analysis of Combustion processes

    But:With 100 mm diameter sampling orifice and effective pumping in 1st stage of 50 l/s:

    pBG,1st ~ 10 Pa !

  • 17/57

    J. Benedikt, MS for APP, 11.02.2021

    Outline

    Motivation

    • The non-equilibrium atmospheric plasmas

    Mass Spectrometry (MS)

    Detection of reactive neutrals

    • Molecular beam mass spectrometry (MBMS)

    • Beam chopper with rotating skimmer

    • Calibration issues in MBMS

    • Threshold ionization MS (TIMS)

    Detection of Ions

    Analysis of Atmospheric Pressure Plasma jets

    • Study of CO2 conversion

    • Time-resolved ion measurements in plasma needle

    Conclusions

  • 18/57

    J. Benedikt, MS for APP, 11.02.2021

    18/57

    20 Hz

    MBMS with special chopper design

    Rotating chopper (14 Hz) with an imbedded skimmer

    Chopper openChopper closed

    Chopper separates 1st and 2nd stage – it closes effectively the connection to the

    atmosphere → low pressures are achieved

    Allows formation of MB for a short time, which expands to a god vacuum region

    → very high beam-to-BG ratio can be achieved

    50 Pa

    < 0.1 Pa

    1 bar

    < 0.1 Pa

    Benedikt et al., J. Phys. D: Appl. Phys. 45 (2012) 403001

  • 19/57

    J. Benedikt, MS for APP, 11.02.2021

    19/57

    20 Hz

    1 bar

    100 mm hole

    MSin

    vacuum

    MBMS with special chopper design

    Rotating chopper (14 Hz) with an imbedded skimmer

    Chopper openChopper closed

    Chopper separates 1st and 2nd stage – it closes effectively the connection to the

    atmosphere → low pressures are achieved

    Allows formation of MB for a short time, which expands to a god vacuum region

    → very high beam-to-BG ratio can be achieved

    50 Pa

    < 0.1 Pa

    1 bar

    < 0.1 Pa

  • 20/57

    J. Benedikt, MS for APP, 11.02.2021

    Atomic oxygen in He/O2 microplasma jet

    Benedikt et al.,

    Rev. Sci. Instrum. 2009, 80, 055107

    1 bar

    100 mm hole

    MSin

    vacuum

    1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    O

    counts

    time [ms]

    He

    x 1/500

    0,0 0,2 0,4 0,6 0,8 1,0 1,20

    5

    10

    15

    20

    25

    30

    O c

    ou

    nt ra

    te /1

    00

    0 r

    evo

    lutio

    ns

    O2 admixture [%]

  • 21/57

    J. Benedikt, MS for APP, 11.02.2021

    Outline

    Motivation

    • The non-equilibrium atmospheric plasmas

    Mass Spectrometry (MS)

    Detection of reactive neutrals

    • Molecular beam mass spectrometry (MBMS)

    • Beam chopper with rotating skimmer

    • Calibration issues in MBMS

    • Threshold ionization MS (TIMS)

    Detection of Ions

    Analysis of Atmospheric Pressure Plasma jets

    • Study of CO2 conversion

    • Time-resolved ion measurements in plasma needle

    Conclusions

  • 22/57

    J. Benedikt, MS for APP, 11.02.2021

    22/57

    Important issues in signal calibration

    Signal scaling with:Electron emission currentIonization cross sectionEffective ionizer lengthIon extraction efficiency

    Expansion with com-position distortions:Acceleration into orifice Radial diffusionMach-number focusing

    Entrance 2nd pumping

    stage

    reactive

    gas

    mixture

    at 1 atm.

    Electron impact ionizer

    Energy analyzer m/z analyzer

    detector

    Sampling from1 atmosphere

    Molecular beam

    +

    Ion source cage

    electronsource

    Signal scaling with:Mass-dependent ion transmission function

    𝑛𝑖𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑛𝑖

    𝑖𝑜𝑛𝑖𝑧𝑒𝑟

    𝜙𝑖𝑖𝑜𝑛𝑖𝑧𝑒𝑟 𝑆𝑖

    𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟

    Background subtraction with beam chopper not

    shown

    G. Willems et al., New J. Phys. 19 (2019) 059501

  • 23/57

    J. Benedikt, MS for APP, 11.02.2021

    23/57

    Important issues in signal calibration

    Signal scaling with:Electron emission currentIonization cross sectionEffective ionizer lengthIon extraction efficiency

    Expansion with com-position distortions:Acceleration into orifice Radial diffusionMach-number focusing

    Entrance 2nd pumping

    stage

    reactive

    gas

    mixture

    at 1 atm.

    Electron impact ionizer

    Energy analyzer m/z analyzer

    detector

    Sampling from1 atmosphere

    Molecular beam

    +

    Ion source cage

    electronsource

    Signal scaling with:Mass-dependent ion transmission function

    𝑛𝑖𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑛𝑖

    𝑖𝑜𝑛𝑖𝑧𝑒𝑟

    𝜙𝑖𝑖𝑜𝑛𝑖𝑧𝑒𝑟 𝑆𝑖

    𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟

    Background subtraction with beam chopper not

    shown 1) Composition

    distortion important

    G. Willems et al., New J. Phys. 19 (2019) 059501

  • 24/57

    J. Benedikt, MS for APP, 11.02.2021

    24/57

    He + 1%Ne

    Ne

    Important issues in signal calibration

    Signal scaling with:Electron emission currentIonization cross sectionEffective ionizer lengthIon extraction efficiency

    Expansion with com-position distortions:Acceleration into orifice Radial diffusionMach-number focusing

    Entrance 2nd pumping

    stage

    reactive

    gas

    mixture

    at 1 atm.

    Electron impact ionizer

    Energy analyzer m/z analyzer

    detector

    Sampling from1 atmosphere

    Molecular beam

    +

    Ion source cage

    electronsource

    Signal scaling with:Mass-dependent ion transmission function

    𝑛𝑖𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑛𝑖

    𝑖𝑜𝑛𝑖𝑧𝑒𝑟

    𝜙𝑖𝑖𝑜𝑛𝑖𝑧𝑒𝑟 𝑆𝑖

    𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟

    Background subtraction with beam chopper not

    shown

    → Including gas temperature effects

    1) Composition

    distortion important

    G. Willems et al., New J. Phys. 19 (2019) 059501

  • 25/57

    J. Benedikt, MS for APP, 11.02.2021

    25/57

    He + 1%Ne

    Ne

    Important issues in signal calibration

    Signal scaling with:Electron emission currentIonization cross sectionEffective ionizer lengthIon extraction efficiency

    Expansion with com-position distortions:Acceleration into orifice Radial diffusionMach-number focusing

    Entrance 2nd pumping

    stage

    reactive

    gas

    mixture

    at 1 atm.

    Electron impact ionizer

    Energy analyzer m/z analyzer

    detector

    Sampling from1 atmosphere

    Molecular beam

    +

    Ion source cage

    electronsource

    Signal scaling with:Mass-dependent ion transmission function

    𝑛𝑖𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑛𝑖

    𝑖𝑜𝑛𝑖𝑧𝑒𝑟

    𝜙𝑖𝑖𝑜𝑛𝑖𝑧𝑒𝑟 𝑆𝑖

    𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟

    Background subtraction with beam chopper not

    shown

    G. Willems et al., New J. Phys. 19 (2019) 059501

    → Including gas temperature effects

    2) MS settings important

    1) Composition

    distortion important

    G. Willems et al., New J. Phys. 19 (2019) 059501

  • 26/57

    J. Benedikt, MS for APP, 11.02.2021

    26/57

    He + 1%Ne

    Ne

    Important issues in signal calibration

    Signal scaling with:Electron emission currentIonization cross sectionEffective ionizer lengthIon extraction efficiency

    Expansion with com-position distortions:Acceleration into orifice Radial diffusionMach-number focusing

    Entrance 2nd pumping

    stage

    reactive

    gas

    mixture

    at 1 atm.

    Electron impact ionizer

    Energy analyzer m/z analyzer

    detector

    Sampling from1 atmosphere

    Molecular beam

    +

    Ion source cage

    electronsource

    Signal scaling with:Mass-dependent ion transmission function

    𝑛𝑖𝑚𝑖𝑥𝑡𝑢𝑟𝑒 𝑛𝑖

    𝑖𝑜𝑛𝑖𝑧𝑒𝑟

    𝜙𝑖𝑖𝑜𝑛𝑖𝑧𝑒𝑟 𝑆𝑖

    𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟

    Background subtraction with beam chopper not

    shown

    G. Willems et al., New J. Phys. 19 (2019) 059501

    → Including gas temperature effects

    2) MS settings important

    3) Background subtraction important → next slide

    1) Composition

    distortion important

    G. Willems et al., New J. Phys. 19 (2019) 059501

  • 27/57

    J. Benedikt, MS for APP, 11.02.2021

    27/57

    Important issues in signal calibration

    Benedikt et al., (2021) 10.1088/1361-6595/abe4bf

    Background subtraction

    energy analyzer m/z analyzer

    detector

    reactive

    gas

    mixture

    sampling2nd stage

    samplingorifice

    electron impact ionizer

    molecularbeam

    ion source cage

    electron source

    p0

    p1 p2

    pionizer

    beamshutter

    +

    pump 1 pump 2

    energy analyzer m/z analyzer

    detector

    reactive

    gas

    mixture

    electron source

    p0

    p1 p2

    pionizer

    beamshutter

    +

    pump 1 pump 2

  • 28/57

    J. Benedikt, MS for APP, 11.02.2021

    28/57

    Important issues in signal calibration

    Benedikt et al., (2021) 10.1088/1361-6595/abe4bf

    Background subtraction

    Große-Kreul et al., Plasma Sources Sci. Technol. 24 (2015) 044008

    Krähling et al., Rev. Sci. Instrum. 83, 045114 (2012)

    energy analyzer m/z analyzer

    detector

    reactive

    gas

    mixture

    sampling2nd stage

    samplingorifice

    electron impact ionizer

    molecularbeam

    ion source cage

    electron source

    p0

    p1 p2

    pionizer

    beamshutter

    +

    pump 1 pump 2

    energy analyzer m/z analyzer

    detector

    reactive

    gas

    mixture

    electron source

    p0

    p1 p2

    pionizer

    beamshutter

    +

    pump 1 pump 2

  • 29/57

    J. Benedikt, MS for APP, 11.02.2021

    Outline

    Motivation

    • The non-equilibrium atmospheric plasmas

    Mass Spectrometry (MS)

    Detection of reactive neutrals

    • Molecular beam mass spectrometry (MBMS)

    • Beam chopper with rotating skimmer

    • Calibration issues in MBMS

    • Threshold ionization MS (TIMS)

    Detection of Ions

    Analysis of Atmospheric Pressure Plasma jets

    • Study of CO2 conversion

    • Time-resolved ion measurements in plasma needle

    Conclusions

  • 30/57

    J. Benedikt, MS for APP, 11.02.2021

    30/57

    Threshold Ionization Mass Spectrometry (TIMS)

    (1) N + e → N+ + 2e Eel > 14,5 eV

    (2) N2 + e→ N+ + N + 2e Eel > 24,3 eV

    Energy Scan at mass 14

    Dissociation of N2 has to be avoided.

    (2):

    (1) only:

    (1) + (2):

    Measurement of N atoms at mass 14

    Measure N at electron energy in ionizer of 22 eV

    Schneider et al., J. Phys. D 47 (2014) 505203

  • 31/57

    J. Benedikt, MS for APP, 11.02.2021

    31/57

    Plasma analysis: N2 admixture – excited N2

    11 12 13 14 15 16 17 18 19 20 21 22

    1E-6

    1E-5

    1E-4

    1E-3

    0,01

    0,1

    1

    MS

    sig

    na

    l (a

    .u.)

    electron energy (eV)

    mass 28 measured in

    He/N2 gas

    Mass 28 measured in He/N2 plasma

    ionization of excited N2 molecules

    Große-Kreul et al., Plasma Sources Sci. Technol. 24 (2015) 044008

  • 32/57

    J. Benedikt, MS for APP, 11.02.2021

    32/57

    11 12 13 14 15 16 17 18

    1E-5

    1E-4

    1E-3

    0,01

    0,1

    1

    MS

    sig

    na

    l (a

    .u.)

    electron energy (eV)

    mass 28 in He/N2 gas

    scaled by 0.02

    shifted by -2.2 eV (± 0.1eV)

    N2 ground + N2 excited

    → IE at ~ 13.4 eV

    Große-Kreul et al., Plasma Sources Sci. Technol. 24 (2015) 044008

    Plasma analysis: N2 admixture – excited N2

  • 33/57

    J. Benedikt, MS for APP, 11.02.2021

    33/57

    Excitation probably from

    the 7th vibrational level…

    Große-Kreul et al., Plasma Sources Sci. Technol. 24 (2015) 044008

    Plasma analysis: N2 admixture – excited N2

    Singlet delta oxygen

    measurements:

    Jiang et al., Plasma Sources

    Sci. Technol. 29 (2020) 045023

  • 34/57

    J. Benedikt, MS for APP, 11.02.2021

    34/57

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80.0

    5.0x1013

    1.0x1014

    1.5x1014

    2.0x1014

    N d

    ensity [cm

    -3]

    N2 Concentration [%]

    N density

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    vibrationally excited N2

    rela

    tive

    co

    nce

    ntr

    atio

    n o

    f vib

    ratio

    na

    lly e

    xcite

    d N

    2 [

    a.u

    .]

    Plasma analysis: N2 admixture – excited N2

    Singlet delta oxygen

    measurements:

    Jiang et al., Plasma Sources

    Sci. Technol. 29 (2020) 045023

  • 35/57

    J. Benedikt, MS for APP, 11.02.2021

    Outline

    Motivation

    • The non-equilibrium atmospheric plasmas

    Mass Spectrometry (MS)

    Detection of reactive neutrals

    • Molecular beam mass spectrometry (MBMS)

    • Beam chopper with rotating skimmer

    • Calibration issues in MBMS

    • Threshold ionization MS (TIMS)

    Detection of Ions

    Analysis of Atmospheric Pressure Plasma jets

    • Study of CO2 conversion

    • Time-resolved ion measurements in plasma needle

    Conclusions

  • 36/57

    J. Benedikt, MS for APP, 11.02.2021

    36/57

    MS of ions: experimental setup: Schematic diagram

    iongeneration

    extraction andfocusing

    massseparation and

    analysis

  • 37/57

    J. Benedikt, MS for APP, 11.02.2021

    37/57

    Results: Ion mass spectrum for He/N2 plasma1.4 slm He + 3.5 sccm N2, distance 2 mm

    0 10 20 30 40 50 60 700

    2

    4

    6

    8

    10

    12

    14

    16

    N+

    4

    N+

    2

    N+

    3

    NO+

    sig

    na

    l (1

    05 c

    /s)

    m/z

    H2O

    +

    NO+ dominates due to its low ionization energy of 9.26 eV

    → not primary ions from plasma

    mainly 2nd/3rd ion generation due to

    fast ion-neutral CT collisions

    +Q1

    +Q2

    Epot

    I1I2

    Neutral

    (e.g. Ar, NO)

    Ion

    (e.g. He+)

  • 38/57

    J. Benedikt, MS for APP, 11.02.2021

    38/57

    1 10

    104

    105

    106

    1 10

    104

    105

    106

    14:N+

    42:N+3

    19:H3O+

    43:N4H+

    28:N+2

    54:?(H2O)3+

    56:N+4

    30:NO+

    He flow 1.4 slm

    N2 0.25%, Urms = 210V

    He 5.0 + gas purifier + cold trap

    MS

    sig

    nal [c

    /s]

    distance [mm]

    29:N2H+

    32:O+2

    16:O+

    17:HO+

    He flow 1.4 slm

    N2 0.214%, He 5.0

    MS

    sig

    nal [c

    /s]

    18:H2O+

    42:N+3

    32:O+2

    19:H3O+

    57:N4H+

    43:N3H+

    28:N+2

    56:N+4

    30:NO+

    12 13 14 15

    16 17 18 19

    20 21 22 23

    24 25 26 27

    28 29 30 31

    32 33 34 35

    36 37 38 39

    40 41 42 43

    44 45 46 47

    48 49 50 51

    52 53 54 55

    56 57 58 59

    60 61 62 63

    64 65 66 67

    68 69 70 71

    72 73 74 75

    76 77 78 79

    80 81 82 83

    84 85 86 87

    88 89 90 91

    92 93 94 95

    96 97 98 99

    100

    29:N2H+

    Ion masses:

    Results: Ion mass spectrum for He/N2 plasma1.4 slm He + 3.5 sccm N2, distance variation

    distance [mm]

    0 10 20 30 40 50 60 700

    2

    4

    6

    8

    10

    12

    14

    16

    N+

    4

    N+

    2

    N+

    3

    NO+

    sig

    na

    l (1

    05 c

    /s)

    m/z

    H2O

    +

  • 39/57

    J. Benedikt, MS for APP, 11.02.2021

    39/57

    1 10

    104

    105

    106

    1 10

    104

    105

    106

    14:N+

    42:N+3

    19:H3O+

    43:N4H+

    28:N+2

    54:?(H2O)3+

    56:N+4

    30:NO+

    He flow 1.4 slm

    N2 0.25%, Urms = 210V

    He 5.0 + gas purifier + cold trap

    MS

    sig

    nal [c

    /s]

    distance [mm]

    29:N2H+

    32:O+2

    16:O+

    17:HO+

    He flow 1.4 slm

    N2 0.214%, He 5.0

    MS

    sig

    nal [c

    /s]

    18:H2O+

    42:N+3

    32:O+2

    19:H3O+

    57:N4H+

    43:N3H+

    28:N+2

    56:N+4

    30:NO+

    12 13 14 15

    16 17 18 19

    20 21 22 23

    24 25 26 27

    28 29 30 31

    32 33 34 35

    36 37 38 39

    40 41 42 43

    44 45 46 47

    48 49 50 51

    52 53 54 55

    56 57 58 59

    60 61 62 63

    64 65 66 67

    68 69 70 71

    72 73 74 75

    76 77 78 79

    80 81 82 83

    84 85 86 87

    88 89 90 91

    92 93 94 95

    96 97 98 99

    100

    29:N2H+

    Ion masses:

    distance [mm]

    Effect of gas purity

    on ions

    0 10 20 30 40 50 60 700

    2

    4

    6

    8

    10

    12

    14

    16

    N+

    4

    N+

    2

    N+

    3

    NO+

    sig

    na

    l (1

    05 c

    /s)

    m/z

    H2O

    +

    Results: Ion mass spectrum for He/N2 plasma1.4 slm He + 3.5 sccm N2, distance variation

  • 40/57

    J. Benedikt, MS for APP, 11.02.2021

    MS of Ions: ion energyMass dependence of ion energy

    -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.00.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0 5 10 15 20 25 30 35 40 45 50 55 60-2.0

    -1.5

    -1.0

    -0.5

    0.0

    no

    rma

    lize

    d s

    ign

    al (a

    .u.)

    bessel box parameter 'energy' (V)

    H2O

    + (18)

    N+

    2 (28)

    N+

    3 (42)

    N+

    4 (56)

    peak position

    linear fit

    'en

    erg

    y' (

    V)

    mass (amu)

    ~ 0.8 eV

    Velocity in the beam the same for all

    → mass-dependent terminal energy!

    Important by relative

    measurements of different

    ions!

  • 41/57

    J. Benedikt, MS for APP, 11.02.2021

    MS of ions: ion trajectory simulationIon trajectory calculation for ion energy and ion denisty determination

    -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.00.0

    0.2

    0.4

    0.6

    0.8

    1.0

    no

    rma

    lize

    d tra

    nsm

    issio

    n (

    a.u

    .)Bessel box parameter 'energy' (V)

    experiment

    simulation

    Ion density in front of the sampling orifice can be reasonably estimated

    DSMC Foam simulation

  • 42/57

    J. Benedikt, MS for APP, 11.02.2021

    Outline

    Motivation

    • The non-equilibrium atmospheric plasmas

    Mass Spectrometry (MS)

    Detection of reactive neutrals

    • Molecular beam mass spectrometry (MBMS)

    • Beam chopper with rotating skimmer

    • Calibration issues in MBMS

    • Threshold ionization MS (TIMS)

    Detection of Ions

    Analysis of Atmospheric Pressure Plasma jets

    • Study of CO2 conversion

    • Time-resolved ion measurements in plasma needle

    Conclusions

  • 43/57

    J. Benedikt, MS for APP, 11.02.2021

    43/57

    Phase Resolved OES

    He (l/min)+

    Molecular gas (

  • 44/57

    J. Benedikt, MS for APP, 11.02.2021

    MS results example: neutrals in He/H2O plasma

    Willems et al., J. Phys. D: Appl. Phys. 50 (2017) 335204

    MSHe/0.6%O2

    He/0.3%N2

    He/H2O

    O, O3

    N

    He/N2/O2NO, N2O

    NO2, N, O

    OH, H2O2 O2H • Many reactive and stable species

    measurable

    • Distance variation → recombinationchemistry

    Schneider et al., J. Phys. D 47 (2014) 505203

    Willems et al., J. Phys. D: Appl. Phys. 50 (2017) 335204

    Ellerweg et al., New J. Physics 12 (2010) 013021Corrigendum: G. Willems et al., New J. Phys. 19 (2019) 059501

    Douat et al., Plasma Sources Sci. Technol. 25 (2016) 025027

  • 45/57

    J. Benedikt, MS for APP, 11.02.2021

    MS result example: neutrals in He/O2 plasma

    0 5 10 15 20 25 30 35 40 45 500

    1x1015

    2x1015

    3x1015

    4x1015

    O (MBMS)

    O3 (MBMS)

    O (TALIF)

    density [cm

    -3]

    distance from the jet nozzle [mm]

    O

    O3

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40

    1x1015

    2x1015

    3x1015

    4x1015

    O (MBMS)

    O (TALIF)

    O3 (MBMS)

    density [cm

    -3]

    O2 admixture [%]

    O

    O3

    Used for treatment of:

    biomolecules bacteria, spores liquids solids

    GAPDH b. subtilisCu → CuO

    + H2O

    Phenol oxidation

    D. Ellerweg et al., New J. Physics 12 (2010) 013021

    Corrigendum: G. Willems et al., New J. Phys. 19

    (2019) 059501

  • 46/57

    J. Benedikt, MS for APP, 11.02.2021

    MS result example: neutrals in He/CO2 plasma

    overall reaction: 2CO2 → 2CO + O2

    A. Bogaerts et al., Faraday Discuss. 183 (2015) 217

    CO2 + e → CO2(v) → CO + O

    CO2(v) + O → CO + O2

    Plasma energetically more efficient than a thermal process (50% efficiency)

  • 47/57

    J. Benedikt, MS for APP, 11.02.2021

    MS results: neutrals in He/CO2 plasma

    He/CO2

    0 2000 4000 6000 8000 100000.0

    5.0x1014

    1.0x1015

    1.5x1015

    2.0x1015

    2.5x1015

    density [cm

    -3]

    CO2 in He [ppm]

    0.0

    0.5

    1.0

    1.5

    2.0

    O2 absorb

    ed p

    ow

    er

    [W]

    CO

    power

    overall reaction: 2CO2 → 2CO + O2

    The CO/O2 ratio much higher than two?!

    Willems et al., Plasma Phys. Control. Fusion 62 (2020) 034005

  • 48/57

    J. Benedikt, MS for APP, 11.02.2021

    MS results: neutrals in He/CO2 plasma

    overall reaction: 2CO2 → 2CO + O2

    Additional Oxygen species: O atoms and O3

    0 2000 4000 6000 8000 100001012

    1013

    1014

    1015

    1016

    O2

    O

    density [cm

    -3]

    CO2 in He [ppm]

    CO

    O3

    𝑛𝑂 > 𝑛𝑂2 !

    → vibrational excitation ineffective in this type of plasma (below detection limit)

    He/CO2

    Willems et al., Plasma Phys. Control. Fusion 62 (2020) 034005

  • 49/57

    J. Benedikt, MS for APP, 11.02.2021

    m-APPJ in He/CO2 gas mixture

    • Max energy efficiency ~ 14%

    • Max conversion efficiency ~ 5 %

    → confirms low efficiency

    0 2000 4000 6000 8000 100001012

    1013

    1014

    1015

    1016

    O2

    O

    de

    nsity [cm

    -3]

    CO2 in He [ppm]

    CO

    O3

    Willems et al., Plasma Phys. Control. Fusion 62 (2020) 034005

  • 50/57

    J. Benedikt, MS for APP, 11.02.2021

    m-APPJ in He/CO2 gas mixture

    Positive ions

    Willems et al., Plasma Phys. Control. Fusion 62 (2020) 034005

  • 51/57

    J. Benedikt, MS for APP, 11.02.2021

    m-APPJ in He/CO2 gas mixture

    Positive ions

    Willems et al., Plasma Phys. Control. Fusion 62 (2020) 034005

    „primary“ ions and secondary ion clusters

  • 52/57

    J. Benedikt, MS for APP, 11.02.2021

    Outline

    Motivation

    • The non-equilibrium atmospheric plasmas

    Mass Spectrometry (MS)

    Detection of reactive neutrals

    • Molecular beam mass spectrometry (MBMS)

    • Beam chopper with rotating skimmer

    • Calibration issues in MBMS

    • Threshold ionization MS (TIMS)

    Detection of Ions

    Analysis of Atmospheric Pressure Plasma jets

    • Study of CO2 conversion

    • Time-resolved ion measurements in plasma needle

    Conclusions

  • 53/57

    J. Benedikt, MS for APP, 11.02.2021

    8 kHz plasma needle

  • 54/57

    J. Benedikt, MS for APP, 11.02.2021

    Ion mass spectra in 8 kHz plasma needle

    0 10 20 30 40 50 60 70 80 90 100

    0.01

    0.1

    1

    10

    sig

    nal (1

    05 c

    /s)

    mass [amu]

    neg ions

    pos ions

    8 kHz pulsed Plasma needle

    N2+ and O2

    + dominant

    He+, He2+(N2+), N+, O+

    ions detected in the

    streamer head

    O- the lightest

    negative ion

    Mass 48 (O3-) dominant

    Many negative clusters

    present

    He+

    He2+

    (N2+)

    N+

    O+

    N2+

    O2+

    O2-

    O-

    H2O+

    OH-

    O3-

    (H2O)O3-

    CO3OH-

    (H2O)2O3-

    CO3-

  • 55/57

    J. Benedikt, MS for APP, 11.02.2021

    Ion mass spectra in 8 kHz plasma needle

    Mass dependent delay due to

    mass-dependent drift time in

    the mass spectrometer

    0 20 40 60 80 100 1200

    20

    40

    60

    80

    100

    120

    140

    negative ions

    tim

    e (

    µs)

    mass (amu)

    mass dependence of mean ion drift time

    positive ions

    102

    103

    104

    105

    106

    0 20 40 60 80 100 120 140 160102

    103

    104

    105

    106

    sig

    nal (c

    /s) 4 8

    14

    18

    28

    32

    37

    pos. ions

    neg. ions

    sig

    nal (c

    /s)

    time (µs)

    16

    32

    48

    60

    66

    77

    109

  • 56/57

    J. Benedikt, MS for APP, 11.02.2021

    Ion mass spectra in 8 kHz plasma needle

    102

    103

    104

    105

    106

    0 20 40 60 80 100 120 140 160102

    103

    104

    105

    106

    sig

    nal (c

    /s) 4 8

    14

    18

    28

    32

    37

    pos. ions

    neg. ions

    sig

    nal (c

    /s)

    time (µs)

    16

    32

    48

    60

    66

    77

    109

    -30 -20 -10 0 10 20 30 40 50

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    O2-

    sig

    na

    l [c

    ps]

    time [ms]

    O2+

    -30 -20 -10 0 10 20 30 40 50

    0

    2000

    4000

    6000

    8000

    10000

    12000

    14000

    16000

    O-

    sig

    na

    l [c

    ps]

    time [ms]

    O+

    • broader then the current pulse

    • complex temporal behavior

    Validation of plasma chemistry models?

  • 57/57

    J. Benedikt, MS for APP, 11.02.2021

    Acknowledgements:

    Plasmadecon and Placid

    DFG PROJECT PACKAGES

    ConclusionsMass Spectrometry at one atmosphere

    • TI MBMS allows absolutely calibrated measurements

    of reactive and stable species densities:

    → N, O, OH, O2H, NOx→ H2O2, O3, O2, N2, CO2, CO, HMDSO…

    • Relative measurement of vibrationally excited species: N2(v), 1O2

    • Ion measurements: mainly ions resulting from CT reactions, clusters

    MS analysis of Non-equilibrium APPs

    • APPs are effective source of reactive species

    • Study of plasma-chemical processes for solar fuels → CO2 conversion

    • Time-resolved ion measurements provide insights in plasma dynamics

    and ion chemistry

    1 bar

    100 mm hole

    MSin

    vacuum