Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital...

26
Mars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards [email protected] September 17, 2003 DESCANSO

Transcript of Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital...

Page 1: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

Mars Network: An Orbital RelayInfrastructure for Mars Exploration

Chad [email protected]

September 17, 2003DESCANSO

Page 2: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-2

Outline• Mars exploration overview - drivers on

telecommunications• Program strategies

– Improved deep space communications– An evolving relay network

• Science orbiters• Dedicated telesats

– Electra proximity link payload– Communications protocols and standards– Radio-based in situ navigation

• Case studies– ‘03/’04 UHF relay operations– ‘09 Mars Science Loboratory

• Summary

Page 3: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-3

A Decade of Mars Exploration

Page 4: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-4

Enabling Energy-efficientRelay for Scout-class

Missions

Increased Science DataReturn for MSL-Class

Landers

Precision in situNavigation and

Positioning

Public Engagement - Creatinga Virtual Presence at Mars

Program Drivers onTelecommunications Infrastructure

Robust Capture of CriticalEvent Tracking and

Telemetry

Page 5: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-5

Mars-to-Earth Deep Space Link

0

25

50

75

100

125

0 1 2 3 4

Antenna Diameter (m)

RF T

ran

smit

Po

wer

(W)

1 kbps

10 kbps

100 kbps

1 Mbps

Range=2.67 AU, X-band, 34m DSN

MER:- 28 cm HGA- 15 W SSPA- 0.6 kbps

Odyssey:- 1.3 m HGA- 15 W SSPA- 12 kbps

MGS:- 1.5 m HGA- 25 W TWTA- 28 kbps

MRO:- 3.0 m HGA- 100 W TWTA- 450 kbps

• Mass, power constraints typically limit landerDTE capability to well below orbital DTEcapability - one of the primary rationales forrelay comm!

Improved Direct-to-Earth (DTE)Communications

• Increased X-band EIRP– Larger aperture

• Large deployable antennas could offer additionalimprovement

– Higher power– Limited spectrum allocation constrains BW

utilization to 4 MHz• Transition to Ka-band

– ~4x performance improvement over X-band– Increased spectral allocation allows higher symbol

rates– Key enablers:

• DSN 34m BWG subnet capability• 35 W Ka-band TWTA

• Increased DSN aperture– 70m offers ~4x improvement over 34m (currently

X-band only)– DSN Large Array could offer significant

improvement beyond 70m performance• Longer-term Transition to Optical

– Further performance increase relative to RF due tohighly collimated transmit beam

– 2009 Mars Telesat Orbiter will include technologydemo of 10 Mbps downlink from Mars @ 2.67 AU

Page 6: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-6

User:- Transmit power- Antenna gain/steering- Power/energy constraints

Proximity Link:- Frequency band- Comm protocols- Multiple Access Scheme

Orbiter Deep Space Link:- Data rate (~power x gain)- Frequency (X, Ka)- Range variation (25x comm performance)

Orbiter ProximityLink:

- Data Rate- Antenna gain/steering

Orbit:- Slant range- Connectivity- Global Coverage

Key Aspects of RelayCommunications

Page 7: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-7

Planned Program TelecomInfrastructure

96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11

MGS

Odyssey

MarsExpress

MRO

MarsTelesatOrbiter

Launch

Launch

Launch

Launch

MOI

MOI

MOI

MOI

Launch MOIScience & Relay

Science & Relay

Science & Relay

Science & Relay

Cruise Aerobrake

Cruise A/B

Cruise A/B

Cruise

Extended Mission

Extended Mission

ExtendedMission

Cruise

Relay

‘03 MER-A/BBeagle-2

‘07 PheonixScout ‘09 MSL

STRATEGY ELEMENTS:• Standardized relay

telecommunications protocols• Relay payload on every science

orbiter for low-cost early network• Dedicated Telesat offering

breakthrough capabilities for MSLand next-decade

• Redundant relay orbiters forsupport of each surfacecampaign

Page 8: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-8

Mars Network Evolution:Mars Global Surveyor

• Launched in 1996• Low altitude

science orbiter• Mars Balloon Relay UHF radio

– Return-link only (no commandlink)

– Unreliable bitstreamcommunications

– Limited data rates (8, 128 kbps)– Fixed frequency operation

• Relay data flow through MarsOrbiter Camera– Malin Space Science Systems

Page 9: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-9

Mars Network Evolution:Mars Odyssey

• Launched in 2001• Low altitude science orbiter• CE505 UHF Transceiver

– First implementation of CCSDSProximity-1 Link protocol

– Hailing procedure & linkdirectives

– Forward and return link (TLM &CMD); fixed frequencies

– Framed data, ARQretransmission for reliable datatransfer

– Add’l data rates: 8, 32, 128, and256 kbps

• Open-loop sampling(1 bit/sample)

Page 10: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-10

Mars Network Evolution:Mars Express (ESA)

• Launched in 2003• Highly elliptical orbit (258 x

11,560 km, 7.5 hr period)– Irregular coverage– Long proximity link

communications slant range– Low data volume return

• Will deploy Beagle 2 landerprior to Mars orbit insertion

• CCSDS Prox-1 compliant relayradio– Built by QinetiQ– Interoperable with Odyssey,

MER• Nominal mission lifetime

through Apr’08

Page 11: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-11

Mars Network Evolution:Mars Reconnaissance Orbiter

• Launch in 2005• Low altitude science orbiter• Electra UHF Transceiver

– Standardized CCSDS Prox-1Protocol

– Add’l data rates (1, 2, 4, 8, 16, 32,64, 128, 256, 512, 1024, 2048 kbps)

– Tunable frequency (390-450 MHz)– 2 dB coding improvement– Improved open-loop sampling (8

bits/sample)– Flight-reprogrammable s/w radio– USO for precision timing/nav

• High-performance DTE link– X-band prime; Ka-band demo

• Initial use of CCSDS File DeliveryProtocol (CFDP) for end-to-enddata accountability

Page 12: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-12

Mars Network Evolution:Mars Telecommunciations Orbiter

• High-altitudetelesat orbit (4450 km)

– Increased contact time (~4 hrs/sol at alllatitudes; greatly improved coverage ofcritical events)

• Electra UHF/X Transceiver– Addition of X-band (8.4 GHz) receive

capability for very high-ratedirectional links

– 12 dBi steered UHF antenna; 50 cm steeredX-band MGA

• RF and Optical in situ tracking/nav• High-performance DTE link

– X/Ka-band prime– Optical comm demo

• File-based relay ops• Immediate payoff for

MSL, w/ feed-forwardcapabilities for nextdecade exploration

3m X/Ka-BandDeep Space Antenna

Laser CommDemo

Steered UHF/X-bandRelay Antennas

2009 Mars Telecommunications Orbiter

0.01

0.1

1

10

100

34 mDTE

70 mDTE

MRORelay

MTORelay

Dat

a V

olu

me/

So

l (G

b)

UHF X-Band

0.1

1

10

100

1000

34 mDTE

70 mDTE

MRORelay

MTORelay

Meg

abit

s/W

att-

ho

ur

UHF X-Band

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

MRO Relay MTO Relay

Cri

tica

l Eve

nt

Co

vera

ge

Page 13: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-13

Electra Proximity Link Payload• Standardized proximity link

radio for Mars– Reprogrammable software radio

architecture– First flight on 2005 Mars Reconnaissance

Orbiter– Subsequent flight on 2009 Mars Telesat

and all future Mars orbiters

Power Supply Power Amplifier

Baseband Processor

Receiver Modulator

Filtering and Switching Unit

HDO RX Filter

Diplexer4 .

5 75

i n

6.7 in

7.9 in

8.55

in in

DIPLEXER

HDO RX

FILTER

Specifications:•CCSDS Proximity-1 Protocol (Reliable and Expedited Link Layer Protocols)•Software radio architecture:

•Sparc V.7 rad-hard payload controller•Xilinx XQVR 1000 rad-tolerant flight-reprogrammable FPGA

•Mass: 5.0 kg•Full-duplex/Half-duplex operations modes•Transmit Power: 5W Full-duplex, 7W Half-duplex•Noise Figure: 4.9 dB Full-duplex, 3.9 dB Half-duplex•Radiation Total Dose: 20 Krad 100 mil Al•DC Power: 71 W (Full-duplex)•Frequency Bands: 390-405 MHz; 435-450 MHz•Suppressed and Residual Carrier Modes•Symbol Rates: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 ksps•Demodulation: Within 2.0 dB of theory at all rates•Coding: K=7, 1/2 convolutional, [255,239] RS, [204,188] RS•Interfaces: 1553B for Monitor & Control; LVDS for High-Speed Data•Option to add X-band (8.4 GHz) downconverter slice•Radio Metrics: Carrier phase/Doppler observables w/ 60 ns time tag accuracy•In-flight self-test capability

Page 14: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-14

Electra UHF Transceiver

Filtering andSwitching Unit

Receiver/Modulator

Baseband Processor Module

BPM Daughter Board

Power SupplyModule

DiplexerHalf-Duplex OverlayBand Pass Filter

Page 15: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-15

Future Proximity LinkDevelopments

• Addition of X-band slice for MTO– Enables high-rate X-band directional link from surface to orbit

• Addition of QPSK and increase in symbol rate to enable up to 8 Mbps datarate (uncoded)

• Electra Lite– Tailoring of orbiter design (targeted descopes)

to achieve lower mass/volume/power moreappropriate for lander payload

• Current baseline for MSL• Adaptive Data Rates

– MTP-funded effort to develop and demonstrate adaptive data rateprofiling during pass

• Allows link operation near capacity of actual (not predicted) communicationschannel - increased performance and increased robustness

• Increased proximity link antenna gain for MTO– MTP-funded effort to develop 12-15 dBic steered UHF antenna for MTO

• Compensates for longer slant ranges in high-altitude Telesat orbit

55-58 W71.0 WPower

2120-2940 cc5080 ccVolume

2.1-2.9 kg5.0 kgMass

Electra-LiteElectraParameter

Page 16: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-16

Communications Protocols• CCSDS Proximity-1 Space Link Protocol

– Provides international standards for the physical and data link layers forMars proximity communications

– First implemented on Mars Odyssey followed by Beagle2, Mars Express,MER A/B; will be used by MRO, Phoenix, MTO, and MSL

– Key for achieving interoperability among multiple Mars landers andorbiters

• CCSDS File Delivery Protocol (CFDP)– Provides reliable and complete

end-to-end file delivery– Addresses unique aspects of deep

space communications• Long RTLT• Intermittent connectivity• High BER links• Multi-hop store-and-forward relays• Custody transfer to minimize onboard

storage rqmts• Full documentation at http://www.ccsds.org

Page 17: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-17

In Situ Navigation UsingProximity Link Radio Metrics

Precision Approach Navigation• X-band Doppler on HGA link

between approach s/c and orbiter• Capability: < 1 km B-plane error @

E-1 day

Orbiting SampleCanister Tracking• 1-way or 2-way Doppler

tracking on UHF link• Open-loop recording for weak

signals• Capability: <100 km 1-way

<100 m 2-way

Surface Positioning• 1-way or 2-way Doppler/range

tracking on UHF link• Capability: <10 m position

uncertainty within 1-3 sols

Page 18: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-18

Case Study: ‘03/’04 UHF Relay Ops

MGS

Beagle 2

MarsExpress

MER-A

MER-B

Odyssey

Beagle Data Return:DTE: n/aMGS: n/aODY: 10 Mb/solMEO: 10 Mb/sol

MER Data Return:DTE: 70 Mb/solODY: 50 Mb/solMGS: 40 Mb/sol

MEO: DemoDirect-To-Earth (DTE) assumes 70m; 4x less for 34m;

Higher DTE return (~120 Mb/sol) at start of surface ops;Lower DTE return (~10 Mb/sol) at end of 90-sol surface ops

Page 19: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-19

Case Study:‘03/’04 UHF Relay Ops (cont’d)

• Critical Event Communications for MER Entry/Descent/Landing– X-band MFSK tones (“semaphores”) on DTE link

• ~1 bps effective data rate– UHF telemetry to MGS after lander separates from backshell

• 8 kbps engineering telemetry

VIEW FROM MARS NORTH POLE

EARTH

Earth Terminator

Mars Express

Mars Odyssey

V-infinity

SUN

TICK MARKS EVERY 5 MIN

MGS

Approach Trajectory• V∞ = 2.77 km/s• Declination of V∞ = 2.04 deg (MME)

MER-A EDLArrival 1/4/04

Page 20: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-20

Case Study:‘03/’04 UHF Relay Ops (cont’d)

• Transceiver idiosyncrasies– Lack of reprogrammability prevents correction of firmware bugs -

even some found pre-launch• Large multipath effects

– Wide-beamwidth, long-wavelength UHF links• Relay coordination process

– Multi-agency interaction to identify/resolve RFI scenarios• Contingency planning

– Need prompt visibility into link performance and end-to-end dataflow, as well as rapid turn-around relay plan updates, particularlyduring first few sols of surface ops

• Orbiter-driven operations concept– Need to examine potential advantages of alternative lander-driven

relay ops concept

Page 21: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-21

Case Study:2009 Mars Science Laboratory

Mars Reconnaissance Orbiter

UHFOmni

X-band100w, 3m

Ka-band35 W, 3m Mars Telecom

Orbiter

UHF12 dBic

X-band100w, 3m

Ka-band35 W, 3m

X-band50 cm

Mars Science Laboratory

UHF13W, Omni

X-band15 W, 1 m

NASA Deep Space Network

X-band34 m

Ka-band34 m

2.5

AU

1000

km 512 kbps

8 min/sol0.25 Gb/sol

128 kbps 4 hrs/sol2 Gb/sol

10 kbps 2 hrs/sol

0.07 Gb/sol

500 kbps 8 hrs/sol14 Gb/sol

500 kbps 8 hrs/sol14 Gb/sol

8.2 Mbps, QPSK 2 hrs/sol60 Gb/sol

2.5

AU

6000

km

2.5

AU

Page 22: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-22

Case Study:2009 Mars Science Laboratory (cont’d)

0.001 0.01 0.1 1 10 100

DTE

UHF/MRO

UHF/Telesat

X/Telesat

MSL Data Return (Gb/sol)

Relay orbiterDTE-link-limited

Page 23: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-23

Summary

• Mars exploration is significantly enhanced - and insome cases enabled - by establishing an orbitaltelecommunications infrastructure– Increased data return and contact time– Robust critical event coverage– Energy-efficient relay– In situ navigation

• Key strategies– Improved DTE performance– Relay capability on every Mars science orbiter– Dedicated Telesat to provide breakthrough capability– Reprogrammable “network node” - Electra– Standardized comm protocols for interoperability and reliable end-

to-end file transfer between Mars and Earth

Page 24: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

Backup

Page 25: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-25

Critical Event Communications

Instantaneous Footprint

Total Coverage(w/out Plane Change)

EDL Coverage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 1000 10000

Spacecraft Altitude (km)

Instantaneous FootprintTotal Coverage (w/out Plane Change)

400 kmSci Orbiter

4450 kmMarconi Orbiter

• Higher-altitude telesat orbit provides much greater coveragefor critical events (e.g., EDL) than low-altitude scienceorbiters

Page 26: Mars Network: An Orbital Relay Infrastructure for Mars ... · PDF fileMars Network: An Orbital Relay Infrastructure for Mars Exploration Chad Edwards chad.edwards@jpl.nasa.gov September

030917DESCANSO Seminar cde-26

EEIS and Operability Issues

RelayOrbiterRelay

OrbiterRelay Orbiter

GDS/MOSRelay Orbiter

GDS/MOS

UserGDS/MOS

UserS/C

• Possible DTE Link

N/W Planning& Coordination

• Deep Space Link• CFDP (reliability and

accountability)• DSN pass scheduling and relay

latency

• Prox-1 interoperability• Coding• Variable data rates?• Multipath

• Cross-projectGDS/MOS interfaces

• Service and dataproduct latencies

• Conflict-free proxlink schedule

• RFI assessment• Long-term relay

planning• What - if any -

role in end-to-endaccountability???

• Onboard relay datamgmt

• What - if any -processing of user datacontent?

• Data product structure(Bitstream? Packetstream? File?)

• Surface opsconstraints