Magnitudes of Energy

download Magnitudes of Energy

of 12

Transcript of Magnitudes of Energy

  • 8/18/2019 Magnitudes of Energy

    1/12

    Orders of magnitude (energy)From Wikipedia, the free encyclopedia

    This list compares various energies in joules (J), organized by order of magnitude.

  • 8/18/2019 Magnitudes of Energy

    2/12

    List of orders of magnitude for energy

  • 8/18/2019 Magnitudes of Energy

    3/12

    Factor(Joules)

    SIprefix Value Item

    10− 34 6.626×10

    − 34 J Energy of a 1-hertz radio photon. [1]

    10− 33 2×10

    − 33 JAverage kinetic energy of translational motion of a molecule at the lowest temperaturereached, 100 picokelvins as of 2003 [2]

    10− 28 6.6×10

    − 28 J Energy of a typical AM radio photon (1 MHz) (4×10− 9 eV) [3]

    10− 24 Yocto-

    (yJ) 1.6×10− 24

    J Energy of a typical microwave oven photon (2.45 GHz) (1×10− 5

    eV)[4][5]

    10− 23 2×10

    − 23 JAverage kinetic energy of translational motion of a molecule in the Boomerang Nebula, thecoldest place known outside of a laboratory, at a temperature of 1 kelvin [6][7]

    10− 22 2-3000×10

    − 22 J Energy of infrared light photons [8]

    10− 21 Zepto-

    (zJ)

    1.7×10− 21 J 1 kJ/mol, converted to energy per molecule [9]

    2.1×10− 21 J Thermal energy in each degree of freedom of a molecule at 25 °C (kT/2) (0.01 eV) [10]

    2.856×10− 21 J

    By Landauer's principle, the minimum amount of energy required at 25 °C to change one bitof information

    3–7×10− 21 J Energy of a van der Waals interaction between atoms (0.02–0.04 eV) [11][12]

    4.1×10− 21 J

    The "kT" constant at 25 °C, a common rough approximation for the total thermal energy of

    each molecule in a system (0.03 eV)[13]

    7–22×10− 21 J Energy of a hydrogen bond (0.04 to 0.13 eV) [11][14]

    10− 20 4.5×10

    − 20 J Upper bound of the mass-energy of a neutrino in particle physics (0.28 eV) [15][16]

    10− 19

    1.6×10− 19 J ≈ 1 electronvolt (eV) [17]

    3–5×10− 19 J Energy range of photons in visible light [18][19]

    3–14×10− 19 J Energy of a covalent bond (2–9 eV) [11][20]

    5–200×10− 19 J Energy of ultraviolet light photons [8]

    10− 18 Atto-

    (aJ)

    10− 17 2-2000×10

    − 17 J Energy range of X-ray photons [8]

    10− 16

    10− 15 Femto-

    (fJ)

    10− 14

    > 2×10− 14 J Energy of gamma ray photons [8]

    2.7×10− 14 J Upper bound of the mass-energy of a muon neutrino [21][22]

    8.2×10− 14 J Rest mass-energy of an electron [23]

    10− 13 1.6×10

    − 13 J 1 megaelectronvolt (MeV) [24]

    10− 12 Pico-

    (pJ) 2.3×10− 12 J Kinetic energy of neutrons produced by D-T fusion, used to trigger fission (14.1 MeV) [25][26]

    10− 11 3.4×10

    − 11 JAverage total energy released in the nuclear fission of one uranium-235 atom (215 MeV) [27][28]

    10− 10

    1.5030×10− 10 J Rest mass-energy of a proton [29]

    1.505×10− 10 J Rest mass-energy of a neutron [30]

    1.6×10− 10 J 1 gigaelectronvolt (GeV) [31]

    3×10− 10 J Rest mass-energy of a deuteron [32]

    6×10− 10 J Rest mass-energy of an alpha particle [33]

    10− 9 Nano-

    (nJ)

    1.6×10− 9 J 10 GeV [34]

    8×10− 9 J

    Initial operating energy per beam of the CERN Large Electron Positron Collider in 1989 (50GeV) [35][36]

  • 8/18/2019 Magnitudes of Energy

    4/12

    10− 8

    1.3×10− 8 J Mass-energy of a W boson (80.4 GeV) [37][38]

    1.5×10− 8 J Mass-energy of a Z boson (91.2 GeV) [39][40]

    1.6×10− 8 J 100 GeV [41]

    2×10− 8 J Mass-energy of the Higgs Boson (125.1 GeV) [42]

    6.4×10− 8 J

    Operating energy per proton of the CERN Super Proton Synchrotron accelerator in 1976 [43][44]

    10− 7 1×10

    7 J ≡ 1 erg [45]

    1.6×10− 7 J 1 TeV (teraelectronvolt), [46] about the kinetic energy of a flying mosquito [47]

    10− 6 Micro-

    (µJ) 1.04×10− 6 J Energy per proton in the CERN Large Hadron Collider in 2015 (6.5 TeV) [48][49]

    10− 5

    10− 4

    10− 3 Milli-

    (mJ)

    10− 2 Centi-

    (cJ)

    10− 1 Deci-

    (dJ)1.1×10

    − 1 J Energy of an American half-dollar falling 1-metre [50][51]

    100 J

    1 J ≡ 1 N·m (Newton–metre)

    1 J ≡ 1 W·s (Watt-second)

    1 J Kinetic energy produced as an extra small apple (~100 grams [52]) falls 1 meter against

    Earth's gravity [53]

    1 J Energy required to heat 1 gram of dry, cool air by 1-degree Celsius [54]

    1.4 J ≈ 1 ft·lbf (foot-pound force) [45]

    4.184 J ≡ 1 thermochemical calorie (small calorie) [45]

    4.1868 J ≡ 1 International (Steam) Table calorie [55]

    8 JGreisen-Zatsepin-Kuzmin theoretical upper limit for the energy of a cosmic ray coming

    from a distant source[56][57]

    101Deca-(daJ) 5×10

    1 JThe most energetic cosmic ray ever detected [58] was most likely a single proton travelingonly slightly slower than the speed of light. [59]

    102

    1×10 2 JFlash energy of a typical pocket camera electronic flash capacitor (100–400 µF @ 330 V) [60][61]

    3×10 2 J Energy of a lethal dose of X-rays [62]

    3×10 2 J Kinetic energy of an average person jumping as high as they can [63][64][65]

    3.3×10 2 J Energy to melt 1 g of ice [66]

    > 3.6×10 2 JKinetic energy of 800 g [67] standard men's javelin thrown at > 30 m/s [68] by elite javelinthrowers [69]

    5–20×10 2 J Energy output of a typical photography studio strobe light in a single flash [70]

    6×10 2 JKinetic energy of 2 kg[71] standard men's discus thrown at 24.4 m/s by the world record holder Jürgen Schult [72]

    6×10 2 J Use of a 10-watt flashlight for 1-minute

    7.5×10 2 J A power of 1 horsepower applied for 1 second [45]

    7.8×10 2 JKinetic energy of 7.26 kg[73] standard men's shot thrown at 14.7 m/s by the world record holder Randy Barnes [74]

    8.01×10 2Amount of work needed to lift a man with an average weight(81.7kg) one meter above earth(or any planet with earth gravity)

  • 8/18/2019 Magnitudes of Energy

    5/12

    103Kilo-(kJ)

    1.1×10 3 J ≈ 1 British thermal unit (BTU), depending on the temperature [45]

    1.4×10 3 JTotal solar radiation received from the Sun by 1 square meter at the altitude of Earth's orbit

    per second (solar constant) [75]

    1.8×10 3 J Kinetic energy of M16 rifle bullet (5.56×45mm NATO M855, 4.1 g fired at 930 m/s) [76]

    2.3×10 3 J Energy to vaporize 1 g of water into steam [77]

    3×10 3 J Lorentz force can crusher pinch [78]

    3.4×10 3 J Kinetic energy of world-record men's hammer throw (7.26 kg

    [79] thrown at 30.7 m/s

    [80] in

    1986) [81]

    3.6×10 3 J ≡ 1 W·h (Watt-hour) [45]

    4.2×10 3 J Energy released by explosion of 1 gram of TNT [45][82]

    4.2×10 3 J ≈ 1 food Calorie (large calorie)

    ~7×10 3 J Muzzle energy of an elephant gun, e.g. firing a .458 Winchester Magnum [83]

    9×10 3 J Energy in an alkaline AA battery [84]

    104

    1.7×10 4 J Energy released by the metabolism of 1 gram of carbohydrates [85] or protein [86]

    3.8×10 4 J Energy released by the metabolism of 1 gram of fat [87]

    4–5×10 4 J Energy released by the combustion of 1 gram of gasoline [88]

    5×10 4 J Kinetic energy of 1 gram of matter moving at 10 km/s [89]

    1053×10 5 J—15×10 5 J Kinetic energy of an automobile at highway speeds (1 to 5 tons [90] at 89 km/h or 55 mph) [91]

    5×10 5 J Kinetic energy of 1 gram of a meteor hitting Earth [92]

    106Mega-(MJ)

    1×10 6 J Kinetic energy of a 2 tonne [90] vehicle at 32 metres per second (72 miles per hour) [93]

    1.2×10 6 J Approximate food energy of a snack such as a Snickers bar (280 food calories) [94]

    3.6×10 6 J = 1 kWh (kilowatt-hour) (used for electricity) [45]

    4.2×10 6 J Energy released by explosion of 1 kilogram of TNT [45][82]

    8.4×10 6 JRecommended food energy intake per day for a moderately active woman (2000 food calories) [95][96]

    107

    1×10 7 J Kinetic energy of the armor-piercing round fired by the assault guns of the ISU-152 tank [97]

    1.1×10 7 JRecommended food energy intake per day for a moderately active man (2600 food calories)[95][98]

    3.7×10 7 J $1 of electricity at a cost of $0.10/kWh (the US average retail cost in 2009) [99][100][101]

    4×10 7 J Energy from the combustion of 1 cubic meter of natural gas [102]

    4.2×10 7 JCaloric energy consumed by Olympian Michael Phelps on a daily basis during Olympictraining [103]

    6.3×10 7 JTheoretical minimum energy required to accelerate 1 kg of matter to escape velocity fromEarth's surface (ignoring atmosphere) [104]

    108

    1×10 8 J Kinetic energy of a 55 tonne aircraft at typical landing speed (59 m/s or 115 knots)

    1.1×10 8 J ≈ 1 therm, depending on the temperature [45]

    1.1×10 8 J ≈ 1 Tour de France, or ~90 hours [105] ridden at 5 W/kg [106] by a 65 kg rider [107]

    7.3×10 8 J ≈ Energy from burning 16 kilograms of oil (using 135 kg per barrel of light crude)

    109 Giga-(GJ)

    1.10×10 9 J Energy in an average lightning bolt [108] (thunder)

    1.1×10 9 JMagnetic stored energy in the world's largest toroidal superconducting magnet for theATLAS experiment at CERN, Geneva [109]

    1.4x10 9 J Theoretical minimum amount of energy required to melt a tonne of steel (380 kWh) [110][111]

    2x10 9 J Energy of an ordinary 61 liter gasoline tank of a car. [88][112][113]

    2×10 9 J Planck energy, the unit of energy in Planck units [114]

  • 8/18/2019 Magnitudes of Energy

    6/12

    3.3×109 J Approximate average amount of energy expended by a human heart muscle over an 80-year lifetime[115][116]

    4.5×109 J Average annual energy usage of a standard refrigerator [117][118]

    6.1×109 J ≈ 1 bboe (barrel of oil equivalent) [119]

    1010

    2.3×1010 J Kinetic energy of an Airbus A380 at cruising speed (560 tonnes at 562 knots or 289 m/s)

    4.2×1010 J ≈ 1 toe (ton of oil equivalent) [119]

    5×1010 J Yield energy of a Massive Ordnance Air Blast bomb, the second most powerful non-nuclear weapon ever designed [120][121]

    7.3×1010 J Energy consumed by the average U.S. automobile in the year 2000 [122][123][124]

    8.6×1010 J ≈ 1 MW·d (megawatt-day), used in the context of power plants [125]

    8.8×1010 J Total energy released in the nuclear fission of one gram of uranium-235 [27][28][126]

    1011

    1012 Tera-(TJ)

    3.4×1012 J Maximum fuel energy of an Airbus A330-300 (97,530 liters [127] of Jet A-1[128])[129]

    3.6×1012 J 1 GW·h (gigawatt-hour)[130]

    4×1012 J Electricity generated by one 20-kg CANDU fuel bundle assuming ~29%[131] thermal

    efficiency of reactor [132][133]

    6.4×1012 J Energy contained in jet fuel in a Boeing 747-100B aircraft at max fuel capacity (183,380liters[134] of Jet A-1[128])[135]

    1013

    1.1×1013 J Energy of the maximum fuel an Airbus A380 can carry (320,000 liters [136] of Jet A-1[128])[137]

    1.2×1013 J Orbital kinetic energy of the International Space Station (417 tonnes [138] at 7.7 km/s[139])[140]

    6.3×1013 JYield of the Little Boy atomic bomb dropped on Hiroshima in World War II (15 kilotons)[141][142]

    9×1013 J Theoretical total mass-energy of 1 gram of matter [143]

    1014 6×1014 J Energy released by an average hurricane in 1 second [144]

    1015 Peta-(PJ)

    > 1015 J Energy released by a severe thunderstorm [145]

    1×1015 J Yearly electricity consumption in Greenland as of 2008 [146][147]

    4.2×1015

    J Energy released by explosion of 1 megaton of TNT[45][148]

    10161×1016 J Estimated impact energy released in forming Meteor Crater

    1.1×1016 J Yearly electricity consumption in Mongolia as of 2010 [146][149]

    9×1016 J Mass-energy in 1 kilogram of antimatter (or matter) [150]

    1017

    1×1017 JEnergy released on the Earth's surface by the magnitude 9.1–9.3 2004 Indian Oceanearthquake [151]

    1.7×1017 J Total energy from the Sun that strikes the face of the Earth each second [152]

    2.1×1017 J Yield of the Tsar Bomba, the largest nuclear weapon ever tested (50 megatons) [153][154]

    4.2×1017 J Yearly electricity consumption of Norway as of 2008 [146][155]

    4.5×1017 J Approximate energy needed to accelerate one ton to one-tenth of the speed of light

    8×1017 J Estimated energy released by the eruption of the Indonesian volcano, Krakatoa, in 1883[156]

    [157]

    1018 Exa-(EJ) 1.4×1018 J Yearly electricity consumption of South Korea as of 2009 [146][158]

    1019 1.4×1019 J Yearly electricity consumption in the U.S. as of 2009 [146][159]

    1.4×1019J Yearly electricity production in the U.S. as of 2009 [160][161]

    5×1019 JEnergy released in 1-day by an average hurricane in producing rain (400 times greater thanthe wind energy) [144]

    6.4×1019 J Yearly electricity consumption of the world as of 2008 [162][163]

  • 8/18/2019 Magnitudes of Energy

    7/12

    6.8×1019 J Yearly electricity generation of the world as of 2008 [162][164]

    10205x1020 J Total world annual energy consumption in 2010 [165][166]

    8×1020 J Estimated global uranium resources for generating electricity 2005 [167][168][169][170]

    1021Zetta-(ZJ)

    6.9×1021 J Estimated energy contained in the world's natural gas reserves as of 2010 [165][171]

    7.9×1021 J Estimated energy contained in the world's petroleum reserves as of 2010 [165][172]

    1022

    1.5×1022J Total energy from the Sun that strikes the face of the Earth each day [152][173]

    2.4×1022 J Estimated energy contained in the world's coal reserves as of 2010 [165][174]

    2.9×1022 J Identified global uranium-238 resources using fast reactor technology [167]

    3.9×1022 J Estimated energy contained in the world's fossil fuel reserves as of 2010 [165][175]

    4×1022 J Estimated total energy released by the magnitude 9.1–9.3 2004 Indian Ocean earthquake [176]

    10232.2×1023 J Total global uranium-238 resources using fast reactor technology [167]

    5×1023 JApproximate energy released in the formation of the Chicxulub Crater in the YucatánPeninsula[177]

    1024Yotta-(YJ) 5.5×10

    24 J Total energy from the Sun that strikes the face of the Earth each year [152][178]

    1025

    10261.3×1026 J Conservative estimate of the energy released by the impact that created the Caloris basin onMercury

    3.8×1026 J Total energy output of the Sun each second [179]

    1027

    1028 3.8×1028 JKinetic energy of the Moon in its orbit around the Earth (counting only its velocity relativeto the Earth)[180][181]

    1029 2.1×1029 J Rotational energy of the Earth[182][183][184]

    1030 1.8×1030 J Gravitational binding energy of Mercury

    1031 3.3×1031 J Total energy output of the Sun each day [179][185]

    1032 2×1032 J Gravitational binding energy of the Earth [186]

    1033 2.7×1033 J Earth's kinetic energy in its orbit[187]1034 1.2×1034 J Total energy output of the Sun each year [179][188]

    1039 6.6×1039 J Theoretical total mass-energy of the Moon

    10415.4×1041 J Theoretical total mass-energy of the Earth [189][190]

    6.87×1041 J Gravitational binding energy of the Sun [191]

    1043 5×1043 J Total energy of all gamma rays in a typical gamma-ray burst [192][193]

    10441–2×1044 J Estimated energy released in a supernova, [194] sometimes referred to as a foe

    1.2 ×1044 J Approximate lifetime energy output of the Sun.

    1045(1.1 ±0.2) ×1045 J Brightest observed hypernova ASASSN-15lh[195]

    few times×1045

    JBeaming-corrected 'True' total energy (Energy in gamma rays+relativistic kinetic energy) of hyper-energetic Gamma Ray Burst [196][197][198][199][200]

    1046 1×1046 J Estimated energy released in a hypernova [201]

    1047

    1.8×1047 J Theoretical total mass-energy of the Sun [202][203]

    5.4×1047 JMass-energy emitted as gravitational waves during the merger of two black holes, originallyabout 30 Solar masses each, as observed by LIGO [204]

    8.8×1047 JGRB 080916C - the most powerful Gamma-Ray Burst (GRB) ever recorded - total'apparent'/isotropic (not corrected for beaming) energy output estimated at 8.8 × 10 47 joules(8.8 × 1054 erg), or 4.9 times the sun’s mass turned to energy. [205]

    1053 6x1053 J Total mechanical energy or enthalpy in the powerful AGN outburst in the RBS 797 [206]

  • 8/18/2019 Magnitudes of Energy

    8/12

    1054 3x1054 J Total mechanical energy or enthalpy in the powerful AGN outburst in the Hercules A (3C348)[207]

    1055 1055 J Total mechanical energy or enthalpy in the powerful AGN outburst in the MS 0735.6+7421

    1058 4×1058 J Visible mass-energy in our galaxy, the Milky Way [208][209]

    1059 1×1059 J Total mass-energy of our galaxy, the Milky Way, including dark matter and dark energy[210]

    [211]

    1062 1–2×1062 JTotal mass-energy of the Virgo Supercluster including dark matter, the Supercluster whichcontains the Milky Way [212]

    1069 4×1069 J Estimated total mass-energy of the observable universe [213]

    SI multiples

    SI multiples for joule (J)Submultiples Multiples

    Value SI symbol Name Value SI symbol Name

    10−1 J dJ decijoule 101 J daJ decajoule

    10−2 J cJ centijoule 102 J hJ hectojoule

    10−3

    J mJ millijoule 103

    J kJ kilojoule10−6 J µJ microjoule 106 J MJ megajoule

    10−9 J nJ nanojoule 109 J GJ gigajoule

    10−12 J pJ picojoule 1012 J TJ terajoule

    10−15 J fJ femtojoule 1015 J PJ petajoule

    10−18 J aJ attojoule 1018 J EJ exajoule

    10−21 J zJ zeptojoule 1021 J ZJ zettajoule

    10−24 J yJ yoctojoule 1024 J YJ yottajoule

    This SI unit is named after James Prescott Joule. As with every International System of Units (SI) unit named for a person, the firstletter of its symbol is upper case (J). However, when an SI unit is spelled out in English, it should always begin with a lower case letter ( joule )—except in a situation where any word in that position would be capitalized, such as at the beginning of a sentence or in materialusing title case. Note that "degree Celsius" conforms to this rule because the "d" is lowercase.— Based on The International System of Units (http://www.bipm.org/en/publications/si-brochure/section5-2.html) , section 5.2.

    See also

    ◾ Conversion of units of energy◾ Energies per unit mass◾ List of energy topics◾ Metric system◾ TNT equivalent◾ Scientific notation◾ Energy conversion efficiency

    Notes

    1. http://www.britannica.com/EBchecked/topic/462917/Plancks-constant2. Calculated: KE_avg ≈ (3/2) * T * 1.38E-23 = (3/2) * 1E-10 * 1.38E-23 ≈ 2.07E-33 J3. Calculated: E_photon = hv = 6.626e-34 J-s * 1e6 Hz = 6.6e-28 J. In eV: 6.6e-28 J / 1.6e-19 J/eV = 4.1e-9 eV.4. "Frequency of a Microwave Oven". The Physics Factbook . Retrieved 15 November 2011.5. Calculated: E_photon = hv = 6.626e-34 J-s * 2.45e8 Hz = 1.62e-24 J. In eV: 1.62e-24 J / 1.6e-19 J/eV = 1.0e-5 eV.6. "Boomerang Nebula boasts the coolest spot in the Universe". JPL. Retrieved 13 November 2011.7. Calculated: KE_avg ≈ (3/2) * T * 1.38E-23 = (3/2) * 1 * 1.38E-23 ≈ 2.07E-23 J8. "Wavelength, Frequency, and Energy". Imagine the Universe . NASA. Retrieved 15 November 2011.9. Calculated: 1e3 J / 6.022e23 entities per mole = 1.7e-21 J per entity

  • 8/18/2019 Magnitudes of Energy

    9/12

    10. Calculated: 1.381e-23 J/K * 298.15 K / 2 = 2.1e-21 J11. "Bond Lengths and Energies". Chem 125 notes . UCLA. Retrieved 13 November 2011.12. Calculated: 2 to 4 kJ/mol = 2e3 J / 6.022e23 molecules/mol = 3.3e-21 J. In eV: 3.3e-21 J / 1.6e-19 J/eV = 0.02 eV. 4e3 J / 6.022e23

    molecules/mol = 6.7e-21 J. In eV: 6.7e-21 J / 1.6e-19 J/eV = 0.04 eV.13. Ansari, Anjum. "Basic Physical Scales Relevant to Cells and Molecules".Physics 450 . Retrieved 13 November 2011.14. Calculated: 4 to 13 kJ/mol. 4 kJ/mol = 4e3 J / 6.022e23 molecules/mol = 6.7e-21 J. In eV: 6.7e-21 J / 1.6e-19 eV/J = 0.042 eV. 13 kJ/mol =

    13e3 J / 6.022e23 molecules/mol = 2.2e-20 J. In eV: 13e3 J / 6.022e23 molecules/mol / 1.6e-19 eV/J = 0.13 eV.15. Thomas, S.; Abdalla, F.; Lahav, O. (2010). "Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey".

    Physical Review Letters 105 (3): 031301. arXiv:0911.5291. Bibcode:2010PhRvL.105c1301T. doi:10.1103/PhysRevLett.105.031301.PMID 20867754.

    16. Calculated: 0.28 eV * 1.6e-19 J/eV = 4.5e-20 J17. "CODATA Value: electron volt". NIST. Retrieved 4 November 2011.18. "BASIC LAB KNOWLEDGE AND SKILLS". Retrieved 5 November 2011. "Visible wavelengths are roughly from 390 nm to 780 nm"19. Calculated: E = h * c / lambda. E_780_nm = 6.6e-34 kg-m^2/s * 3e8 m/s / (780e-9 m) = 2.5e-19 J. E_390 _nm = 6.6e-34 kg-m^2/s * 3e8 m/s /

    (390e-9 m) = 5.1e-19 J20. Calculated: 50 kcal/mol * 4.184 J/calorie / 6.0e22e23 molecules/mol = 3.47e-19 J. (3.47e-19 J / 1.60e-19 eV/J = 2.2 eV.) and 200 kcal/mol *

    4.184 J/calorie / 6.0e22e23 molecules/mol = 1.389e-18 J. (7.64e-19 J / 1.60e-19 eV/J = 8.68 eV.)21. Thomas J Bowles (2000). P. Langacker, ed. Neutrinos in physics and astrophysics: from 10–33 to 1028 cm: TASI 98 : Boulder, Colorado, USA,

    1–26 June 1998 . World Scientific. p. 354. ISBN 978-981-02-3887-2. Retrieved 11 November 2011. "an upper limit ov m_v_u < 170 keV"22. Calculated: 170e3 eV * 1.6e-19 J/eV = 2.7e-14 J23. "electron mass energy equivalent". NIST. Retrieved 4 November 2011.24. "Conversion from eV to J". NIST. Retrieved 4 November 2011.25. Muller, Richard A. (2002). "The Sun, Hydrogen Bombs, and the physics of fusion". Retrieved 5 November 2011. "The neutron comes out with

    high energy of 14.1 MeV"26. "Conversion from eV to J". NIST. Retrieved 4 November 2011.27. "Energy From Uranium Fission". HyperPhysics . Retrieved 8 November 2011.28. "Conversion from eV to J". NIST. Retrieved 4 November 2011.29. "proton mass energy equivalent". NIST. Retrieved 4 November 2011.30. "neutron mass energy equivalent". NIST. Retrieved 4 November 2011.31. "Conversion from eV to J". NIST. Retrieved 4 November 2011.32. "deuteron mass energy equivalent". NIST. Retrieved 4 November 2011.33. "alpha particle mass energy equivalent". NIST. Retrieved 4 November 2011.34. "Conversion from eV to J". NIST. Retrieved 4 November 2011.35. Myers, Stephen. "The LEP Collider". CERN. Retrieved 14 November 2011. "the LEP machine energy is about 50 GeV per beam"36. Calculated: 50e9 eV * 1.6e-19 J/eV = 8e-9 J37. "W". PDG Live . Particle Data Group. Retrieved 4 November 2011.38. "Conversion from eV to J". NIST. Retrieved 4 November 2011.39. Amsler, C.; Doser, M.; Antonelli, M.; Asner, D.; Babu, K.; Baer, H.; Band, H.; Barnett, R.; Bergren, E.; Beringer, J.; Bernardi, G.; Bertl, W.;

    Bichsel, H.; Biebel, O.; Bloch, P.; Blucher, E.; Blusk, S.; Cahn, R. N.; Carena, M.; Caso, C.; Ceccucci, A.; Chakraborty, D.; Chen, M. -C.;Chivukula, R. S.; Cowan, G.; Dahl, O.; d'Ambrosio, G.; Damour, T.; De Gouvêa, A.; Degrand, T. (2008). "Review of Particle Physics ⁎ ".Physics Letters B 667 : 1–6. Bibcode:2008PhLB..667....1P. doi:10.1016/j.physletb.2008.07.018.

    40. "Conversion from eV to J". NIST. Retrieved 4 November 2011.41. "Conversion from eV to J". NIST. Retrieved 4 November 2011.42. ATLAS; CMS (26 March 2015). "Combined Measurement of the Higgs Boson Mass in pp Collisions at √s=7 and 8 TeV with the ATLAS and

    CMS Experiments". arXiv:1503.07589.43. Adams, John. "400 GeV Proton Synchrotron". Excertp from the CERN Annual Report 1976 . CERN. Retrieved 14 November 2011. "A

    circulating proton beam of 400 GeV energy was first achieved in the SPS on 17 June 1976"44. Calculated: 400e9 eV * 1.6e-19 J/eV = 6.4e-8 J45. "Appendix B8—Factors for Units Listed Alphabetically". NIST Guide for the Use of the International System of Units (SI) . NIST. Retrieved

    4 November 2011. "1.355818"46. "Conversion from eV to J". NIST. Retrieved 4 November 2011.47. "Chocolate bar yardstick". Retrieved 24 January 2014. "A TeV is actually a very tiny amount of energy. A popular analogy is to a flying

    mosquito."48. "First successful beam at record energy of 6.5 TeV". Retrieved 28 April 2015.49. Calculated: 6.5e12 eV per beam * 1.6e-19 J/eV = 1.04e-6 J50. "Coin specifications". United States Mint. Retrieved 2 November 2011. "11.340 g"51. Calculated: m*g*h = 11.34e-3 kg * 9.8 m/s^2 * 1 m = 1.1e-1 J52. "Apples, raw, with skin (NDB No. 09003)". USDA Nutrient Database . USDA. Retrieved 8 December 2011.53. Calculated: m*g*h = 1e-1 kg * 9.8 m/s^2 * 1 m = 1 J54. "Specific Heat of Dry Air". Engineering Toolbox. Retrieved 2 November 2011.55. "Footnotes". NIST Guide to the SI . NIST. Retrieved 4 November 2011.56. "Physical Motivations". ULTRA Home Page (EUSO project) . Dipartimento di Fisica di Torino. Retrieved 12 November 2011.57. Calculated: 5e19 eV * 1.6e-19 J/ev = 8 J58. "The Fly's Eye (1981–1993)". HiRes. Retrieved 14 November 2011.59. Bird, D. J. (March 1995). "Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave

    radiation". Astrophysical Journal, Part 1 (ISSN 0004-637X), vol. 441, no. 1, p. 144-150. Retrieved February 14, 2014.60. "Notes on the Troubleshooting and Repair of Electronic Flash Units and Strobe Lights and Design Guidelines, Useful Circuits, and

    Schematics". Retrieved 8 December 2011. "The energy storage capacitor for pocket cameras is typically 100 to 400 uF at 330 V (charged to 300V) with a typical flash energy of 10 W-s."

    61. "Teardown: Digital Camera Canon PowerShot |". electroelvis.com. 2012-09-02. Retrieved 6 June 2013.62. "Ionizing Radiation". General Chemistry Topic Review: Nuclear Chemistry . Bodner Research Web. Retrieved 5 November 2011.

  • 8/18/2019 Magnitudes of Energy

    10/12

    63. "Vertical Jump Test". Topend Sports. Retrieved 12 December 2011. "41–50 cm (males) 31–40 cm (females)"64. "Mass of an Adult". The Physics Factbook . Retrieved 13 December 2011. "70 kg"65. Kinetic energy at start of jump = potential energy at high point of jump. Using a mass of 70 kg and a high point of 40 cm => energy = m*g*h =

    70 kg * 9.8 m/s^2 * 40e-2 m = 274 J66. "Latent Heat of Melting of some common Materials". Engineering Toolbox. Retrieved 10 June 2013. "334 kJ/kg"67. "Javelin Throw – Introduction". IAAF. Retrieved 12 December 2011.68. Young, Michael. "Developing Event Specific Strength for the Javelin Throw" (PDF). Retrieved 13 December 2011. "For elite athletes, the

    velocity of a javelin release has been measured in excess of 30m/s"69. Calculated: 1/2 * 0.8 kg * (30 m/s)̂ 2 = 360 J70. Greenspun, Philip. "Studio Photography". Retrieved 13 December 2011. "Most serious studio photographers start with about 2000 watts-

    seconds"71. "Discus Throw – Introduction". IAAF. Retrieved 12 December 2011.72. Calculated: 1/2 * 2 kg * (24.4 m/s)̂ 2 = 595.4 J73. "Shot Put – Introduction". IAAF. Retrieved 12 December 2011.74. Calculated: 1/2 * 7.26 kg * (14.7 m/s) 2̂ = 784 J75. Kopp, G.; Lean, J. L. (2011). "A new, lower value of total solar irradiance: Evidence and climate significance" (PDF). Geophysical Research

    Letters 38 : n/a. Bibcode:2011GeoRL..38.1706K. doi:10.1029/2010GL045777.76. "Intermediate power ammunition for automatic assault rifles". Modern Firearms . World Guns. Retrieved 12 December 2011.77. "Fluids - Latent Heat of Evaporation". Engineering Toolbox. Retrieved 10 June 2013. "2257 kJ/kg"78. powerlabs.org – The PowerLabs Solid State Can Crusher! (http://www.powerlabs.org/pssecc.htm), 200279. "Hammer Throw – Introduction". IAAF. Retrieved 12 December 2011.80. Otto, Ralf M. "HAMMER THROW WR PHOTOSEQUENCE – YURIY SEDYKH" (pdf). Retrieved 4 November 2011. "The total release

    velocity is 30.7 m/sec"81. Calculated: 1/2 * 7.26 kg * (30.7 m/s) 2̂ = 3420 J82. 4.2e9 J/ton of TNT-equivalent * (1 ton/1e6 grams) = 4.2e3 J/gram of TNT-equivalent83. ".458 Winchester Magnum" (pdf). Accurate Powder . Western Powders Inc. Retrieved 7 September 2010.84. "Battery energy storage in various battery sizes". AllAboutBatteries.com. Retrieved 15 December 2011.85. "Energy Density of Carbohydrates". The Physics Factbook . Retrieved 5 November 2011.86. "Energy Density of Protein". The Physics Factbook . Retrieved 5 November 2011.87. "Energy Density of Fats". The Physics Factbook . Retrieved 5 November 2011.88. "Energy Density of Gasoline". The Physics Factbook . Retrieved 5 November 2011.89. Calculated: E = 1/2 m*v̂ 2 = 1/2 * (1e-3 kg) * (1e4 m/s)^2 = 5e4 J.90. "List of Car Weights". LoveToKnow. Retrieved 13 December 2011. "3000 to 12000 pounds"91. Calculated: Using car weights of 1 ton to 5 tons. E = 1/2 m*v^2 = 1/2 * (1e3 kg) * (55 mph * 1600 m/mi / 3600 s/hr) = 3.0e5 J. E = 1/2 * (5e3

    kg) * (55 mph * 1600 m/mi / 3600 s/hr) = 15e5 J.92. Muller, Richard A. "Kinetic Energy in a meteor". Old Physics 10 notes .93. Calculated: KE = 1/2 * 2e3 kg * (32 m/s) 2̂ = 1.0e6 J94. "Candies, MARS SNACKFOOD US, SNICKERS Bar (NDB No. 19155)". USDA Nutrient Database . USDA. Retrieved 14 November 2011.95. "How to Balance the Food You Eat and Your Physical Activity and Prevent Obesity". Healthy Weight Basics . National Heart Lung and Blood

    Institutde. Retrieved 14 November 2011.96. Calculated: 2000 food calories = 2.0e6 cal * 4.184 J/cal = 8.4e6 J97. Calculated: 1/2 * m * v̂ 2 = 1/2 * 48.78 kg * (655 m/s)^2 = 1.0e7 J.98. Calculated: 2600 food calories = 2.6e6 cal * 4.184 J/cal = 1.1e7 J99. "Table 3.3 Consumer Price Estimates for Energy by Source, 1970–2009". Annual Energy Review . US Energy Information Administration. 19

    October 2011. Retrieved 17 December 2011. "$28.90 per million BTU"100. Calculated J per dollar: 1 million BTU/$28.90 = 1e6 BTU / 28.90 dollars * 1.055e3 J/BTU = 3.65e7 J/dollar 101. Calculated cost per kWh: 1 kWh * 3.60e6 J/kWh / 3.65e7 J/dollar = 0.0986 dollar/kWh102. "Energy in a Cubic Meter of Natural Gas". The Physics Factbook . Retrieved 15 December 2011.103. "The Olympic Diet of Michael Phelps".WebMD . Retrieved 28 December 2011.104. Cline, James E. D. "Energy to Space". Retrieved 13 November 2011. "6.27E7 Joules / Kg"105. "Tour de France Winners, Podium, Times". Bike Race Info. Retrieved 10 December 2011.106. "Watts/kg". Flamme Rouge. Retrieved 4 November 2011.107. Calculated: 90 hr * 3600 seconds/hr * 5 W/kg * 65 kg = 1.1e8 J108. Smith, Chris. "How do Thunderstorms Work?". The Naked Scientists. Retrieved 15 November 2011. "It discharges about 1–10 billion joules of

    energy"109. "Powering up ATLAS's mega magnet". Spotlight on.. . CERN. Retrieved 10 December 2011. "magnetic energy of 1.1 Gigajoules"110. "ITP Metal Casting: Melting Efficiency Improvement" (PDF). ITP Metal Casting . U.S. Department of Energy. Retrieved 14 November 2011.

    "377 kWh/mt"111. Calculated: 380 kW-h * 3.6e6 J/kW-h = 1.37e9 J112. Bell Fuels. "Lead-Free Gasoline Material Safety Data Sheet". NOAA. Retrieved 6 July 2008.113. thepartsbin.com – Volvo Fuel Tank: Compare at The Parts Bin (http://www.thepartsbin.com/guides/volvo/fuel_tank.html), 6 May 2012

    114.

    115. "Power of a Human Heart". The Physics Factbook . Retrieved 10 December 2011. "The mechanical power of the human heart is ~1.3 watts"116. Calculated: 1.3 J/s * 80 years * 3.16e7 s/year = 3.3e9 J117. "U.S. Household Electricity Uses: A/C, Heating, Appliances". U.S. HOUSEHOLD ELECTRICITY REPORT . EIA. Retrieved 13 December

    2011. "For refrigerators in 2001, the average UEC was 1,239 kWh"118. Calculated: 1239 kWh * 3.6e6 J/kWh = 4.5e9 J119. Energy Units (http://www.altenergyaction.org/mambo/index.php?option=com_content&task=view&id=9) , by Arthur Smith, 21 January

    2005

  • 8/18/2019 Magnitudes of Energy

    11/12

    120. "Top 10 Biggest Explosions". Listverse. Retrieved 10 December 2011. "a yield of 11 tons of TNT"121. Calculated: 11 tons of TNT-equivalent * 4.184e9 J/ton of TNT-equivalent = 4.6e10 J122. "Emission Facts: Average Annual Emissions and Fuel Consumption for Passenger Cars and Light Trucks". EPA. Retrieved 12 December 2011.

    "581 gallons of gasoline"123. "200 Mile-Per-Gallon Cars?". Retrieved 12 December 2011. "a gallon of gas ... 125 million joules of energy"124. Calculated: 581 gallons * 125e6 J/gal = 7.26e10 J125. Calculated: 1e6 Watts * 86400 seconds/day = 8.6e10 J126. Calculated: 3.44e-10 J/U-235-fission * 1e-3 kg / (235 amu per U-235-fission * 1.66e-27 amu/kg) = 8.82e-10 J127. "A330-300 Dimensions & key data". Airbus. Retrieved 12 December 2011. "97530 litres"128. http://www.bp.com/liveassets/bp_internet/aviation/air_bp/STAGING/local_assets/downloads_pdfs/a/air_bp_products_handbook_04004_1.pdf 129. Calculated: 97530 liters * 0.804 kg/L * 43.15 MJ/kg = 3.38e12 J130. Calculated: 1e9 Watts * 3600 seconds/hour 131. Weston, Kenneth. "Chapter 10. Nuclear Power Plants" (pdf) . Energy Conversion . Retrieved 13 December 2011. "The thermal efficiency of a

    CANDU plant is only about 29%"132. "CANDU and Heavy Water Moderated Reactors". Retrieved 12 December 2011. "fuel burnup in a CANDU is only 6500 to 7500 MWd per

    metric ton uranium"133. Calculated: 7500e6 Watt-days/tonne * (0.020 tonnes per bundle) * 86400 seconds/day = 1.3e13 J of burnup energy. Electricity = burnup *

    ~29% efficiency = 3.8e12 J134. "747 Classics Technical Specs". Boeing. Retrieved 12 December 2011. "183,380 L"135. Calculated: 183380 liters * 0.804 kg/L * 43.15 MJ/kg = 6.36e12 J136. "A380-800 Dimensions & key data". Airbus. Retrieved 12 December 2011. "320,000 L"137. Calculated: 320,000 l * 0.804 kg/L * 43.15 MJ/kg = 11.1e12 J138. "International Space Station: The ISS to Date". NASA. Retrieved 23 August 2011.139. "The wizards of orbits". European Space Agency. Retrieved 10 December 2011. "The International Space Station, for example, flies at 7.7 km/s

    in one of the lowest practicable orbits"140. Calculated: E = 1/2 m.v² = 1/2 * 417000 kg * (7700m/s)² = 1.2e13 J141. "What was the yield of the Hiroshima bomb?". Warbird's Forum. Retrieved 4 November 2011. "21 kt"142. Calculated: 15 kt = 15e9 grams of TNT-equivalent * 4.2e3 J/gram TNT-equivalent = 6.3e13 J143. "Conversion from kg to J". NIST. Retrieved 4 November 2011.144. "How much energy does a hurricane release?". FAQ : HURRICANES, TYPHOONS, AND TROPICAL CYCLONES . NOAA. Retrieved

    12 November 2011.145. "The Gathering Storms". COSMOS. Retrieved 10 December 2011.146. "Country Comparison :: Electricity – consumption". The World Factbook . CIA. Retrieved 11 December 2011.147. Calculated: 288.6e6 kWh * 3.60e6 J/kWh = 1.04e15 J148. Calculated: 4.2e9 J/ton of TNT-equivalent * 1e6 tons/megaton = 4.2e15 J/megaton of TNT-equivalent149. Calculated: 3.02e9 kWh * 3.60e6 J/kWh = 1.09e16 J150. Calculated: E = mc^2 = 1 kg * (2.998e8 m/s) 2̂ = 8.99e16 J151. "USGS Energy and Broadband Solution". National Earthquake Information Center, US Geological Survey. Retrieved 9 December 2011.152. The Earth has a cross section of 1.274×10 14 square meters and the solar constant is 1361 watts per square meter.153. "The Soviet Weapons Program – The Tsar Bomba". The Nuclear Weapon Archive. Retrieved 4 November 2011.154. Calculated: 50e6 tons TNT-equivalent * 4.2e9 J/ton TNT-equivalent = 2.1e17 J155. Calculated: 115.6e9 kWh * 3.60e6 J/kWh = 4.16e17 J156. Alexander, R. McNeill (1989). Dynamics of Dinosaurs and Other Extinct Giants . Columbia University Press. p. 144. ISBN 0-231-06667-8. "the

    explosion of the island volcano Krakatoa in 1883, had about 200 megatonnes energy."157. Calculated: 200e6 tons of TNT equivalent * 4.2e9 J/ton of TNT equivalent = 8.4e17 J158. Calculated: 402e9 kWh * 3.60e6 J/kWh = 1.45e17 J159. Calculated: 3.741e12 kWh * 3.600e6 J/kWh = 1.347e19 J160. "United States". The World Factbook . USA. Retrieved 11 December 2011.161. Calculated: 3.953e12 kWh * 3.600e6 J/kWh = 1.423e19 J162. "World". The World Factbook . CIA. Retrieved 11 December 2011.163. Calculated: 17.8e12 kWh * 3.60e6 J/kWh = 6.41e19 J164. Calculated: 18.95e12 kWh * 3.60e6 J/kWh = 6.82e19 J165. "Statistical Review of World Energy 2011" (PDF) . BP. Retrieved 9 December 2011.166. Calculated: 12002.4e6 tonnes of oil equivalent * 42e9 J/tonne of oil equivalent = 5.0e20 J167. Global Uranium Resource (http://www.iaea.org/NewsCenter/News/2006/uranium_resources.html)168. U.S. Energy Information Administration, International Energy Generation (http://www.eia.doe.gov/pub/international/iealf/table63.xls)169. U.S. EIA International Energy Outlook 2007. (http://www.eia.doe.gov/oiaf/ieo/electricity.html)170. Final number is computed. Energy Outlook 2007 shows 15.9% of world energy is nuclear. IAEA estimates conventional uranium stock, at

    today's prices is sufficient for 85 years. Convert billion kilowatt-hours to joules then: 6.25×10 19×0.159×85 = 8.01×10 20.171. Calculated: "6608.9 trillion cubic feet" => 6608.9e3 billion cubic feet * 0.025 million tonnes of oil equivalent/billion cubic feet * 1e6 tonnes of

    oil equivalent/million tonnes of oil equivalent * 42e9 J/tonne of oil equivalent = 6.9e21 J172. Calculated: "188.8 thousand million tonnes" => 188.8e9 tonnes of oil * 42e9 J/tonne of oil = 7.9e21 J173. Calculated: 1.27e14 m 2̂ * 1370 W/m^2 * 86400 s/day = 1.5e22 J174. Calculated: 860938 million tonnes of coal => 860938e6 tonnes of coal * (1/1.5 tonne of oil equivalent / tonne of coal) * 42e9 J/tonne of oil

    equivalent = 2.4e22 J175. Calculated: natural gas + petroleum + coal = 6.9e21 J + 7.9e21 J + 2.4e22 J = 3.9e22 J176. "USGS, Harvard Moment Tensor Solution". National Earthquake Information Center. 26 December 2004. Retrieved 9 December 2011.177. Bralower, Timothy J.; Charles K. Paull; R. Mark Leckie (April 1998). "The Cretaceous–Tertiary boundary cocktail: Chicxulub impact triggers

    margin collapse and extensive sediment gravity flows" (PDF) . Geology 26 (4): 331–334. Bibcode:1998Geo....26..331B. doi:10.1130/0091-7613(1998)0262.3.co;2. Retrieved 6 June 2013. "The kinetic energy derived by the impact is estimated at ~5 × 10^30 ergs"

    178. Calculated: 1.27e14 m 2̂ * 1370 W/m^2 * 86400 s/day = 5.5e24 J

  • 8/18/2019 Magnitudes of Energy

    12/12

    179. "Ask Us: Sun: Amount of Energy the Earth Gets from the Sun". Cosmicopia . NASA. Retrieved 4 November 2011.180. "Moon Fact Sheet". NASA. Retrieved 16 December 2011.181. Calculated: KE = 1/2 * m * v^2. v = 1.023e3 m/s. m = 7.349e22 kg. KE = 1/2 * (7.349e22 kg) * (1.023e3 m/s)^2 = 3.845e28 J.182. "Moment of Inertia—Earth". Eric Weisstein's World of Physics . Retrieved 5 November 2011.183. Allain, Rhett. "Rotational energy of the Earth as an energy source". .dotphysics . Science Blogs. Retrieved 5 November 2011. "the Earth takes

    23.9345 hours to rotate"184. Calculated: E_rotational = 1/2 * I * w^2 = 1/2 * (8.0e37 kg m^2) * (2*pi/(23.9345 hour period * 3600 seconds/hour))^2 = 2.1e29 J185. Calculated: 3.8e26 J/s * 86400 s/day = 3.3e31 J186. "Earth's Gravitational Binding Energy". Retrieved 19 March 2012. "Variable Density Method: the Earth's gravitational binding energy is

    −1.711×10^32 J"187. http://www.uwgb.edu/DutchS/pseudosc/flipaxis.htm188. Calculated: 3.8e26 J/s * 86400 s/day * 365.25 days/year = 1.2e34 J189. "Earth: Facts & Figures". Solar System Exploration . NASA. Retrieved 29 September 2011.190. "Conversion from kg to J". NIST. Retrieved 4 November 2011.

    191.

    Chandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure (Chicago: U. of Chicago; reprinted in New York: Dover), section 9,eqs. 90–92, p. 51 (Dover edition)Lang, K. R. 1980, Astrophysical Formulae (Berlin: Springer Verlag), p. 272

    192. Frail, D. A.; Kulkarni, S. R.; Sari, R.; Djorgovski, S. G.; Bloom, J. S.; Galama, T. J.; Reichart, D. E.; Berger, E.; Harrison, F. A.; Price, P. A.;Yost, S. A.; Diercks, A.; Goodrich, R. W.; Chaffee, F. (2001). "Beaming in Gamma-Ray Bursts: Evidence for a Standard EnergyReservoir" (PDF) . The Astrophysical Journal 562 : L55. arXiv:astro-ph/0102282. Bibcode:2001ApJ...562L..55F. doi:10.1086/338119. "thegamma-ray energy release, corrected for geometry, is narrowly clustered around 5 * 10^50 erg"

    193. Calculated: 5e50 erg * 1e-7 J/erg = 5e43 J194. Khokhlov, A.; Mueller, E.; Hoeflich, P.; Mueller; Hoeflich (1993). "Light curves of Type IA supernova models with different explosion

    mechanisms". Astronomy and Astrophysics 270 (1–2): 223–248. Bibcode:1993A&A...270..223K.195. Dong, S.; Shappee, B. J.; Prieto, J. L.; Jha, S. W.; Stanek, K. Z.; Holoien, T. W.- S.; Kochanek, C. S.; Thompson, T. A.; Morrell, N.;Thompson, I. B.; et al. ( January 15, 2016). "ASASSN-15lh: A highly super-luminous supernova". Science 351 (6270): 257–260.arXiv:1507.03010. doi:10.1126/science.aac9613.

    196. url= http://arxiv.org/abs/1003.3885197. url= http://arxiv.org/abs/1004.2900198. url= http://arxiv.org/abs/0905.0690199. url= http://tsvi.phys.huji.ac.il/presentations/Frail_AstroExtreme.pdf 200. url= http://fermi.gsfc.nasa.gov/science/mtgs/grb2010/tue/Dale_Frail.ppt201. "A Hypernova: The Super-charged Supernova and its link to Gamma-Ray Bursts". Imagine the Universe! . NASA. Retrieved 9 December 2011.

    "With a power about 100 times that of the already astonishingly powerful "typical" supernova"202. "Sun Fact Sheet". NASA. Retrieved 15 October 2011.203. "Conversion from kg to J". NIST. Retrieved 4 November 2011.204. Abbott, B.; et al. (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters 116 (6).

    doi:10.1103/PhysRevLett.116.061102.205. "Fermi’s record breaking gamma-ray burst".

    206. url= http://arxiv.org/abs/1103.0630207. url= http://iopscience.iop.org/1538-4357/625/1/L9/fulltext/19121.text.html208. Jim Brau. "The Milky Way Galaxy". Retrieved 4 November 2011.209. "Conversion from kg to J". NIST. Retrieved 4 November 2011.210. Karachentsev, I. D.; Kashibadze, O. G. (2006). "Masses of the local group and of the M81 group estimated from distortions in the local velocity

    field". Astrophysics 49 (1): 3–18. Bibcode:2006Ap.....49....3K. doi:10.1007/s10511-006-0002-6.211. "Conversion from kg to J". NIST. Retrieved 4 November 2011.212. Einasto, M.; et al. (December 2007). "The richest superclusters. I. Morphology". Astronomy and Astrophysics 476 (2): 697–711.

    arXiv:0706.1122. Bibcode:2007A&A...476..697E. doi:10.1051/0004-6361:20078037.213. https://web.archive.org/web/20140819120709/http://imagine.gsfc.nasa.gov/docs/ask_astro/answers/980211b.html

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Orders_of_magnitude_(energy)&oldid=709745755"

    Categories: Energy Units of energy Orders of magnitude

    ◾ This page was last modified on 12 March 2016, at 20:52.◾ Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site,

    you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., anon-profit organization.