Magnetoresistance and spin-transfer torque in magnetic tunnel

70
S. Yuasa Magnetoresistance and spin-transfer torque in magnetic tunnel junctions IEEE Distinguished Lecturer 2012 E-mail: [email protected]

Transcript of Magnetoresistance and spin-transfer torque in magnetic tunnel

Page 1: Magnetoresistance and spin-transfer torque in magnetic tunnel

S. Yuasa

Magnetoresistance and spin-transfer torque

in magnetic tunnel junctions

IEEE Distinguished Lecturer 2012

E-mail: [email protected]

Page 2: Magnetoresistance and spin-transfer torque in magnetic tunnel
Page 3: Magnetoresistance and spin-transfer torque in magnetic tunnel
Page 4: Magnetoresistance and spin-transfer torque in magnetic tunnel

Toshiba Corp. (H. Yoda) (STT-MRAM)

Osaka University (Y. Suzuki) (rf & high-speed experiments)

Collaborations

Canon Anelva Corp. (sputtering deposition process)

CNRS/Thales (A.Fert, V.Cros, J.Grollier) (spin-torque oscillator)

Page 5: Magnetoresistance and spin-transfer torque in magnetic tunnel

Outline

(1) Spintronics

(2) Tunnel magnetoresistance (TMR)

・Magnetoresistance

・Tunnel magnetoresistancein magnetic tunnel junction(MTJ)

・Giant TMR in MgO-based MTJ

・CoFeB/MgO/CoFeB structure for device applications

(3) Spin-transfer torque (STT)

・Physics of spin-transfer torque

・Spin-transfer torque MRAM (STT-RAM or Spin-RAM)

・Microwave applications

Page 6: Magnetoresistance and spin-transfer torque in magnetic tunnel

SpintronicsBoth charge and spin of electrons are utilized for

new functions.

Electronics・power amplification・logic operation basically volatile

Transistor, LSI

Magnetics・magnetic recording

non-volatile

Hard Disk Drive (HDD)

Electron

Electric Charge -e Spin (a small magnet)

N

S

What is spintronics ?

TMR & STT

Page 7: Magnetoresistance and spin-transfer torque in magnetic tunnel

-e

N

S

SpintronicsCoupling between charge and spin by quantum mechanical effects (e.g. tunnel magnetoresistance, spin-transfer torque)

Highly efficient !

Magnetics Coupling between charge and spin by induction coilMost of the energy is wasted.

Difference between conventional magnetics and spintronics ?

Page 8: Magnetoresistance and spin-transfer torque in magnetic tunnel

Outline

(1) Spintronics

(2) Tunnel magnetoresistance (TMR)

・Magnetoresistance

・Tunnel magnetoresistancein magnetic tunnel junction(MTJ)

・Giant TMR in MgO-based MTJ

・CoFeB/MgO/CoFeB structure for device applications

(3) Spin-transfer torque (STT)

・Physics of spin-transfer torque

・Spin-transfer torque MRAM (STT-RAM or Spin-RAM)

・Microwave applications

Page 9: Magnetoresistance and spin-transfer torque in magnetic tunnel

Change in electric resistance induced by magnetic field.

Res

ista

nce,

R

Magnetic field, H 0

Magnetic field Hrequired to induce MR

Magneto-resistance ratio(MR ratio)

MR ratio at RT & a low H (~1 mT) is important for device applications.

Magneto-Resistance (MR)

MR converts magnetic signals into electric signals.(cf. STT converts electric signals into magnetic signals.)

Page 10: Magnetoresistance and spin-transfer torque in magnetic tunnel

Year

1995

2000

2005

2010

Magnetoresistance MR ratio @ RT& low H

1857

1985

1990

AMR effect MR = 1 - 2% Lord Kelvin

GMR effectMR = 5 - 15%

A. Fert, P. Grünberg (Nobel Prize 2007)

T. Miyazaki, J. Moodera TMR effect

(Al-O barrier)MR = 20 - 70%

Page 11: Magnetoresistance and spin-transfer torque in magnetic tunnel

Outline

(1) Spintronics

(2) Tunnel magnetoresistance (TMR)

・Magnetoresistance

・Tunnel magnetoresistancein magnetic tunnel junction(MTJ)

・Giant TMR in MgO-based MTJ

・CoFeB/MgO/CoFeB structure for device applications

(3) Spin-transfer torque (STT)

・Physics of spin-transfer torque

・Spin-transfer torque MRAM (STT-RAM or Spin-RAM)

・Microwave applications

Page 12: Magnetoresistance and spin-transfer torque in magnetic tunnel

Insulator (nm –thick)(tunnel barrier)

Ferromagnetic electrode

Resistance RP : low

MR ratio (RAP – RP) / RP×100% (performance index)

Ferromagnetic electrode

Tunnel MagnetoResistance(TMR) effect in magnetic tunnel junction (MTJ)

ee ee

Parallel (P) state

Resistance RAP : high

Antiparallel (AP) state

ee

3d ferromagnet

3d ferromagnetAmorphous Al-O MR ratios of 20 – 70% at RT

Page 13: Magnetoresistance and spin-transfer torque in magnetic tunnel

Recording media

Read head (magnetic sensor)

Magnetic field signal

Sense current

Head Medium

GMRヘッドの出現

0.01

0.1

1

10

100

1000

■■

■ ■

■■

■■■■ ■■

■■

■ ■

■■

■■■■ ■■

AMR GMR TMR

■■

1990 1992 1994 1996 1998 2000 2002 2004 2006 20081990 1992 1994 1996 1998 2000 2002 2004 2006 2008Year

GMR head

TMR head (amorphous tunnel barrier)

■■■

Reco

rdin

g de

nsity

(G

bit/

in2 )

Higher MR ratiois required for

> 200 Gbit/inch2.

Read head of hard disk drive (HDD)

Page 14: Magnetoresistance and spin-transfer torque in magnetic tunnel

Read out Writing

Review: Science 294, 1488 (2001).

Non-volatile Magnetoresistive Random Access Memory (MRAM)

MTJBit line

Digit line

n+ p n+

CMOS

Write line MTJ

Digit line

CMOS

Bit line

or Parallel : “0”

Antiparallel:“1”

Non-volatile magnetic memory

Page 15: Magnetoresistance and spin-transfer torque in magnetic tunnel

<Advantages> Non-volatile, high speed, write endurance > 1016

<Disadvantage> High-density MRAM is difficult to develop.

Non-volatile Magnetoresistive Random Access Memory (MRAM)

Freescale (US)’s 4 Mbit – MRAM based on Al-O MTJs (volume production since 2006)

Page 16: Magnetoresistance and spin-transfer torque in magnetic tunnel

Density (bit /chip)

PRAM

1 Mbit 1 Gbit

1

10

100

1000

Acc

ess

spee

d (n

sec)

FeRAM

Write endurance > 1016

(virtually unlimited)

1 Tbit

Write endurance <1012

Non-volatile

Volatile

Storage

Work memory SRAM

DRAMMRAM

NOR

NAND

HDD

Three important properties for memory device:speed, density, and write endurance

Page 17: Magnetoresistance and spin-transfer torque in magnetic tunnel

Density (bit /chip)

PRAM

1 Mbit 1 Gbit

1

10

100

1000

Acc

ess

spee

d (n

sec)

FeRAM

Write endurance > 1016

(virtually unlimited)

1 Tbit

Write endurance <1012

Non-volatile

Volatile

Storage

Work memory SRAM

DRAMMRAM

NOR

NAND

HDD

Three important properties for memory device:speed, density, and write endurance

Gbit-scale MRAM

High-speed MRAM

Page 18: Magnetoresistance and spin-transfer torque in magnetic tunnel

How can we develop Gbit-scale MRAM ?

Cap

acity

(bi

t)

・Large output voltageMR ratio >> 100%・Reduction of writing power spin-torque switching

Major requirement for Gbit-MRAM

MRAM

DRAM

Year

Capacity of MRAM cannot go beyond 64 Mbit.

2000 2002 2004 2006 2008

1 K

1 M

1 G

Breakthrough

Page 19: Magnetoresistance and spin-transfer torque in magnetic tunnel

Year

1995

2000

2005

2010

1857

1985

1990

MR effects MR ratio (RT & low H)

Device applications

MR head

GMR head

TMR head

HDD head

Inductivehead

MRAM

Memory

Much higher MR ratio is required for next-generation devices.

AMR effect MR = 1 ~ 2 %

TMR effect(Al-O barrier)

MR = 20 ~ 70 %

GMR effectMR = 5 ~ 15 %

Page 20: Magnetoresistance and spin-transfer torque in magnetic tunnel

Simple model for TMR effect : Julliere’s model

Spin Polarization, P

TunnelBarrierFM 1

e

FM 2

e

TunnelBarrierFM 1 FM 2

D1D1

DOS

D2 D2

DOS

EF EF

D1 D1

DOS

D2 D2

DOS

EF EF

P alignment AP alignment

≡21 , ↑ ↓

↑ ↓, 1,2

Page 21: Magnetoresistance and spin-transfer torque in magnetic tunnel

How can we attain giant MR ratio ?

(1) Electrode material with full spin-polarization |P | = 1

“Half Metal”

(E.g.) some Heusler alloys, Fe3O4, CrO2, LaSrMnO3 perovskite

EF

Energy

Room-temperature MR ratios for half-metal electrodes have never exceeded those for simple 3d alloys such as Co-Fe.

(2) Crystalline tunnel barrier such as MgO(001)

Page 22: Magnetoresistance and spin-transfer torque in magnetic tunnel

Outline

(1) Spintronics

(2) Tunnel magnetoresistance (TMR)

・Magnetoresistance

・Tunnel magnetoresistancein magnetic tunnel junction(MTJ)

・Giant TMR in MgO-based MTJ

・CoFeB/MgO/CoFeB structure for device applications

(3) Spin-transfer torque (STT)

・Physics of spin-transfer torque

・Spin-transfer torque MRAM (STT-RAM or Spin-RAM)

・Microwave applications

Page 23: Magnetoresistance and spin-transfer torque in magnetic tunnel

Incoherent tunneling ofvarious Bloch states.

MR < 100% at RT MR >> 1000% (theory)

Fe(001)2 5

Amorphous Al-O

1

Amorphous Al-O barrier (conventional MTJ) Crystal MgO(001) barrier

Amorphous Al-O barrier vs. crystal MgO barrier (theory)

Butler et al. PRB 2001; Mathon ibid 2001.

Fe(001)

Fe(001)

2 51

1

MgO(001) 1

Dominant tunneling of fully spin-polarized 1 Bloch states

Page 24: Magnetoresistance and spin-transfer torque in magnetic tunnel

What we learn about “tunneling effect” at an undergraduate course

Barrier height

Barrier width, t

Tunnel barrier

Electrode Electrode

EF

Free-electron wave exp( i k·z )

Potential barrier is assumed to be vacuum.

Exponential decay of DOS

Tunneling transmittance (T) decays exponentially as a function of t.

m: effective mass (WKB approx.) )/8exp( 2 tmT ×

Page 25: Magnetoresistance and spin-transfer torque in magnetic tunnel

Realistic tunneling effect

Both Bloch states and evanescent states have (i) specific orbital symmetry & (ii) specific band dispersion.

(complex wave vector k =kr + i )

Bloch states and evanescent states couple at interface.

Barrier Electrode

EFBand gap

Conduction band

Evanescent states in the band gap

Bloch states

Valence band

Electrode

Page 26: Magnetoresistance and spin-transfer torque in magnetic tunnel

1 (spd)

5 (pd)

2’ (d)

Fe FeMgO

Butler (2001).

Decay of evanescent state largely depends on orbital symmetry.

1 : s + pz + d 2z2 – x2 – y2

Page 27: Magnetoresistance and spin-transfer torque in magnetic tunnel

MgO(001)

1

5

2’

1

5

2

Fe(001)

1

5

2

Fe(001)

Coupling between Bloch states and evanescent states

Ideal coherent tunneling for k// = 0 direction

k//

k

Page 28: Magnetoresistance and spin-transfer torque in magnetic tunnel

Fully spin-polarized 1 band in bcc Fe(001)

Fully spin-polarized 1 bandGiant MR ratio is theoretically expected.

Not only bcc Fe but also many other bcc alloys based on Fe or Co have fully spin-polarized 1 band.

(e.g. bcc Fe1-xCox , some Heusler alloys)

minority spin

majority spin1

1.5

1.0

0.5

0.0

-0.5

E-E

F( e

V )

H

1

(001) direction

EF

Page 29: Magnetoresistance and spin-transfer torque in magnetic tunnel

X.-G. Zhang, et al., PRB 68, 092402 (2003).

Ideal interface Oxidized interface

Fe- 1 states couple withMgO-1 states at k// .

Fe- 1 states do not couple with MgO-1 states at k// = 0.

LDOS of1 states

MR ratio > 1000% MR ratio < 100%

k//

k

ExcessO atom

Importance of interface (theory)

Page 30: Magnetoresistance and spin-transfer torque in magnetic tunnel

Fully epitaxial Fe/MgO/Fe MTJ grown by MBE

Fe(001)(Pinned layer)

MgO(001)

Fe(001)(Free layer)

TEM image2 nm

Yuasa et al., Nature Mater. 3, 868 (2004).

Page 31: Magnetoresistance and spin-transfer torque in magnetic tunnel

Experimental demonstrations of giant TMR

Yuasa et al., Nature Mater. 3, 868 (2004).

MR = 247%

MR = 180%

-200 -100 0 100 2000

100

200

300

T = 20 K

T = 293 K

MR

ratio

(%)

H ( Oe) -1000 -500 0

H ( Oe) 0

2040

6080

100120140160180

MR

ratio

(%)

Parkin (IBM), Nature Mater. 3, 862 (2004).

Single-crystal MgO(001) barrier Textured MgO(001) barrier

Page 32: Magnetoresistance and spin-transfer torque in magnetic tunnel

1995 2000 2005

MR

ratio

at R

T (%

)

Year0

100

200

300

400

500

600

[1] Yuasa, Jpn.J.Appl.Phys.43,L558 (2004). [2] Yuasa, Nature Mater.3, 868 (2004).[3] Parkin, Nature Mater.3, 862 (2004).

Amorphous Al-O tunnel barrier

AIST [1]

AIST [2]IBM [3]

Crystal MgO(001) tunnel barrier

“Giant TMR effect”

Fe(001)MgO(001)

Fully epitaxialMTJ

Textured MTJFeCo(001)MgO(001)

Page 33: Magnetoresistance and spin-transfer torque in magnetic tunnel

Fundamental problem on thin film growth

MgO(001) cannot be grown on fcc (111).4-fold symmetry 3-fold symmetry

Ru

Tunnel barrier

Free layer

Pinned layer

FM (Co-Fe)

AF layer (Pt-Mn or Ir-Mn)for exchange biasing

This structure is based on fcc (111).

or

MTJ structure for practical applications

MTJ

Page 34: Magnetoresistance and spin-transfer torque in magnetic tunnel

1995 2000 20050

100

200

300

400

500

600

Crystal MgO(001) barrier: Single crystal MgO(001): Poly-crystal MgO(001)

: CoFeB/MgO/CoFeB

AIST [1]

AIST [2]IBM [3]

AmorphousAl-O tunnel barrier

MR

ratio

at R

T (%

)

Year

Canon-Anelva& AIST [4]

Fe(001)MgO(001)

Fully epitaxialMTJ

Textured MTJFeCo(001)MgO(001)

[1] Yuasa, Jpn.J.Appl.Phys.43,L558 (2004). [2] Yuasa, Nature Mater.3, 868 (2004).[3] Parkin, Nature Mater.3, 862 (2004). [4] Djayaprawira, SY, APL 86,092502 (2005).

Page 35: Magnetoresistance and spin-transfer torque in magnetic tunnel

Outline

(1) Spintronics

(2) Tunnel magnetoresistance (TMR)

・Magnetoresistance

・Tunnel magnetoresistancein magnetic tunnel junction(MTJ)

・Giant TMR in MgO-based MTJ

・CoFeB/MgO/CoFeB structure for device applications

(3) Spin-transfer torque (STT)

・Physics of spin-transfer torque

・Spin-transfer torque MRAM (STT-RAM or Spin-RAM)

・Microwave applications

Page 36: Magnetoresistance and spin-transfer torque in magnetic tunnel

Amorphous CoFeB

Poly-crystal MgO(001)

1 nm Amorphous

CoFeB

As-grown state

Crystal-lization

Annealing above 250ºC

Canon-Anelva, AIST

After annealing

Poly-crystal bcc CoFeB(001)

Poly-crystal MgO(001)

Poly-crystal bcc CoFeB(001) 1 nm

CoFeB/MgO/CoFeB structure for device applications

Core technology for device applications Practical bottom

structure:fcc(111)(3-fold symmetry)

MgO-MTJ(4-foldsymmetry)

Djayaprawira, SY, Appl. Phys. Lett. 86, 092502 (2005). Yuasa & Djayaprawira, J. Phys. D: Appl. Phys. 40, R337 (2007).

Page 37: Magnetoresistance and spin-transfer torque in magnetic tunnel

All the HDD manufacturers use this type of sputtering machine for the production of HDD magnetic heads.

Canon-Anelva C-7100 sputtering system

Load lock

RF

RF

Etching Oxidation

Sputtering

Load lock

DC

DC

Sputtering

Sputtering Sputtering

200– 300 mm wafer

Mass-manufacturing technology for HDD industry

Page 38: Magnetoresistance and spin-transfer torque in magnetic tunnel

Year

1990

1995

2000

2005

2010

MR head

GMR head

HDD head

MgO-TMR head

Inductivehead

Industrial applications

MRAM

Memory

STT-RAM(Spin-RAM)

Novel devices

Microwave

AMR effect MR = 1 - 2 %

TMR effectAl-O barrier

MR = 20 - 70 %

Giant TMR effectMgO(001) barrierMR = 150 - 600 %

1857

GMR effectMR = 5 - 15 %

1985

TMR head

MR effects MR ratio (RT & low H)

: commercialized

: R & D level

Page 39: Magnetoresistance and spin-transfer torque in magnetic tunnel

◆Volume production since 2007.

◆700 Gbit/ inch2 achieved (5 increase).

◆Applicable up to 1 – 2 Tbit / inch2.

◆World market of HDD: 25 billion USD head: 5 billion USD TEM image

MgO-TMR head

20 nm

Top lead

MgO MTJ

Bottom lead

MgO-TMR head for ultrahigh-density HDD

Page 40: Magnetoresistance and spin-transfer torque in magnetic tunnel

Ultrathin CoFeB electrode can have perpendicular magnetization.

S. Ikeda, H. Ohno et al., Nature Mater. 9, 721 (2010).Since Djayaprawira, SY, et al.,

APL 86, 092502 (2005).

MgO barrier

CoFeB

CoFeB

0H (T)

M(T

)H planeH // plane

tCoFeB = 1.3 nm

1.5 nm

1.5 nm or

< 1.5 nm

< 1.5 nmor

In-plane magnetization Perpendicular magnetization

Page 41: Magnetoresistance and spin-transfer torque in magnetic tunnel

Outline

(1) Spintronics

(2) Tunnel magnetoresistance (TMR)

・Magnetoresistance

・Tunnel magnetoresistancein magnetic tunnel junction(MTJ)

・Giant TMR in MgO-based MTJ

・CoFeB/MgO/CoFeB structure for device applications

(3) Spin-transfer torque (STT)

・Physics of spin-transfer torque

・Spin-transfer torque MRAM (STT-RAM or Spin-RAM)

・Microwave applications

Page 42: Magnetoresistance and spin-transfer torque in magnetic tunnel

Spin-transfer torque in magnetic nano-pillar

NM spacer layer

FM2 Free layer

NM

FM1 (pinned layer) S1

S2

Local spin

Spin momentum transfer

I

Conduction electron

Spin-transfer torque

Page 43: Magnetoresistance and spin-transfer torque in magnetic tunnel

21222222 ˆ)ˆˆ(ˆˆ ssssSsHSS eFTeSTeff II

Theory of spin-transfer torque

S1

Heff

S2Spin-transfer

torque

Precession

Damping

2s

J. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996). L. Berger, Phys. Rev. B 54, 9353 (1996).

Current IS1 S2

Pinned Free

Damping Spin-transferPrecession

When spin torque>damping torque, the precession angle is amplified, and the free-layer moment (S2) switches.

S2

Page 44: Magnetoresistance and spin-transfer torque in magnetic tunnel

Outline

(1) Spintronics

(2) Tunnel magnetoresistance (TMR)

・Magnetoresistance

・Tunnel magnetoresistancein magnetic tunnel junction(MTJ)

・Giant TMR in MgO-based MTJ

・CoFeB/MgO/CoFeB structure for device applications

(3) Spin-transfer torque (STT)

・Physics of spin-transfer torque

・Spin-transfer torque MRAM (STT-RAM or Spin-RAM)

・Microwave applications

Page 45: Magnetoresistance and spin-transfer torque in magnetic tunnel

Gbit-MRAM

0

0.1

0.2

0.3

10 100 1000

Writ

ing

pow

er

Cell size (nm)

Ipulse

Switching by field

Ideal for high-density MRAM cells

Switching current densityJC0 = 5105 A/cm2

is required for application.

Writing (magnetization switching) by spin-transfer torque

Not scalable !

Ipulse

Switching by Spin torque

Page 46: Magnetoresistance and spin-transfer torque in magnetic tunnel

In-plane magnetization vs. Perpendicular magnetization

In-planemagnetization

Perpendicularmagnetization

<Materials>・CoFeB・Co-Fe・Ni-Fe

<Materials>・L10-ordered alloy (e.g. FePt)・Multilayer, superlattice・RE-TM alloy (e.g. Tb-Co) ・HCP alloy (e.g. Co-Cr)・ultrathin CoFeB

Page 47: Magnetoresistance and spin-transfer torque in magnetic tunnel

2005 Sony (IEDM 2005)- in-plane MTJ cells- 4 kb

2007 Hitachi/Tohoku U. (ISSCC 2007)- in-plane MTJ cells- 2 Mb

2010 Toshiba (ISSCC 2010)- p-MTJ cells- 64 Mb, 65 nm

2008 Toshiba, AIST etc. (IEDM 2008)- p-MTJ cells- 1 kb

Development of Spin-RAM

Page 48: Magnetoresistance and spin-transfer torque in magnetic tunnel

LL LL8PVD ・RT – 250ºC ・Co-sputtering from 3 targets.

8PVD・RT – 350ºC ・Co-sputtering from 3 targets.

4PVD

Plasma oxidation/

Etching

DC

RF

Canon-Anelva C-7100 sputtering system installed at AIST

Page 49: Magnetoresistance and spin-transfer torque in magnetic tunnel

fcc(111) or hcp-cbuffer

fcc(111)-based superlattice film cf. conventional magnetic multilayer

with thick Pt(Pd) layers

Co (2-3 ML)

Pt(Pd) (6-8 ML)

Co (~1 ML)Pt(Pd) (~1 ML)

New perpendicular magnetic material : superlattice film

Yakushiji, SY et al., Appl. Phys. Express3, 053003 (2010). Yakushiji, SY et al., Appl. Phys. Lett., 97, 232508 (2010).

Ru buffer

Ru cap

[Co/Pt]6 CoPt

TEM HAADF-STEM

3 nm

Page 50: Magnetoresistance and spin-transfer torque in magnetic tunnel

Superlatticefilm

Conventional multilayer film

Origin of perp. magnetic anisotroy

Thickness of total stack

Structure

Ku

Annealing stability

Ultra-thin( < 1.2 nm possible)

Relatively thick(> 3 nm)

Artifical alloy Mutilayer

Up to 12 Merg/cc(tunable) ~ 5 Merg/cc

Very good> 370ºC

Poor~ 200ºC

Magneto-crystalline anisotropy

Interfacial anisotropy

Magnetic superlattice vs. conventional multilayer

Page 51: Magnetoresistance and spin-transfer torque in magnetic tunnel

Basic requirements for Gbit-scale Spin-RAM

(1) / kBT > 60–80 for cell size < 50 nm

(2) MR ratio > 100 – 150% and low RA product

(3) Switching current density, JC0 = 5105 A/cm2

(4) Switching speed < 20 ns to replace DRAM< 1 – 3 ns to replace SRAM

Page 52: Magnetoresistance and spin-transfer torque in magnetic tunnel

Thermal stability of MTJ, = KuV/kBT

HDD 500 Gbit/inch2

TEM image of HDD media

> 80 for the grain size < 10 nm

7nm

CoPtCrO

Perpendicular magnetic recording

When cell size is smaller than 50 nm, the uniaxial shape anisotropy cannot yield > 60.

MTJ with in-plane magnetization is hopeless !

Page 53: Magnetoresistance and spin-transfer torque in magnetic tunnel

(1) / kBT > 60–80 for cell size < 50 nm

(2) MR ratio > 100 – 150% and low RA product

(3) Switching current density, JC0 = 5105 A/cm2

(4) Switching speed < 20 ns to replace DRAM< 1 – 3 ns to replace SRAM

Basic requirements for Gbit-scale Spin-RAM

Page 54: Magnetoresistance and spin-transfer torque in magnetic tunnel

◆MR > 100 – 150% is required to attain a high read-out signal (voltage) with a small read-out current.

MRA ratio and RA product required for Gbit Spin-RAM

◆Low RA is required to satisfy the impedance matching with the pass transistor (CMOS).

The MTJ resistance should be about 10 k.

5 Gbit (F = 30 nm) RA < 7 m2, MR > 100%RA < 7 m2, MR > 100%

10 Gbit (F = 20 nm) RA < 3.5 m2, MR > 100%RA < 3.5 m2, MR > 100%

1 Gbit (F = 65 nm) RA < 30 m2, MR > 100%RA < 30 m2, MR > 100%

Page 55: Magnetoresistance and spin-transfer torque in magnetic tunnel

How to achieve high MR with perpendicular electrodes ?

<Issues>(i) The 1 band of perpendicular materials are not fully spin-polarized.

(ii) Lattice matching between perp. materials and MgO(001) is not good.

Insertion of CoFeB between MgO and PMA layer

MgO(001)

PMA material

・Lattice mismatch ・Band mismatch

PMA material

MgO(001)

PMA material

CoFe/CoFeB

CoFe/CoFeB

PMA material

Page 56: Magnetoresistance and spin-transfer torque in magnetic tunnel

Typical structure of p-MgO-MTJ

TbFeCo

Co/Pt

CoFe/CoFeB

CoFeB/CoFeMgO

5 nm

Yakushiji, SY et al., Appl. Phys. Express3, 053003 (2010). Yakushiji, SY et al., Appl. Phys. Lett., 97, 232508 (2010).

Page 57: Magnetoresistance and spin-transfer torque in magnetic tunnel

RA product (m2)

MR

rati

o (%

)

10 Gbit

The p-MTJs basically satisfy the requirements for10 Gbit Spin-RAM (RA < 3.5 m2, MR > 100%).

Can we simultaneously attain high MR & low RA ? – Yes !

Page 58: Magnetoresistance and spin-transfer torque in magnetic tunnel

0.1 1 100

50

100

150

200M

R ra

tio a

t RT

(%)

RA ( ·m2 )

w/o in-situannealing of

MgO layer (APL 2006)

MR = 102% & RA = 0.9 ·m2

Nagamine, SY et al., Appl. Phys. Lett. 89, 162507 (2006). Maehara, SY et al., Appl. Phys. Express 4, 033002 (2011).

with in-situannealing of

MgO layer (APEX 2011)

MR = 175% & RA = 1.0 ·m2

The best properties attained with in-plane magnetization

Page 59: Magnetoresistance and spin-transfer torque in magnetic tunnel

(1) / kBT > 60–80 for cell size < 50 nm

(2) MR ratio > 100 – 150% and low RA product

(3) Switching current density, JC0 = 5105 A/cm2

(4) Switching speed < 20 ns to replace DRAM< 1 – 3 ns to replace SRAM

Basic requirements for Gbit-scale Spin-RAM

Page 60: Magnetoresistance and spin-transfer torque in magnetic tunnel

In-planeIn-plane PerpendicularPerpendicular

Easy

Axi

s

TkBtherm22e damp g

Ic =

E

Easy Axis

2e damp g

2222 tFMTk SBtherm Ic =

E

Potential barrier for magnetization switching

therm

STT

STT ~ 30therm

60kBT 60kBT

STTtherm

STT ~ therm

Page 61: Magnetoresistance and spin-transfer torque in magnetic tunnel

Our latest data (Courtesy of Toshiba)

NEDO – Spintronics Non-Volatile Devices Project(Toshiba, AIST, etc.)

30 nm MgO-MTJ with perp. magnetization

0

50

100

150

200

250

MR

ratio

(%)

Magnetic field (a.u.)

MR ratio = 200% at RT

MgOElectrode

Electrode

30 nm Jc0 = 5105 A/cm2

= 45

Page 62: Magnetoresistance and spin-transfer torque in magnetic tunnel

(1) / kBT > 60–80 for cell size < 50 nm

(2) MR ratio > 100 – 150% and low RA product

(3) Switching current density, JC0 = 5105 A/cm2

(4) Switching speed < 20 ns to replace DRAM< 1 – 3 ns to replace SRAM

Basic requirements for Gbit-scale Spin-RAM

Page 63: Magnetoresistance and spin-transfer torque in magnetic tunnel

CMOS-integrated MTJ array

TEM image

-1 -0.5 0 0.5 1Voltage (V)

R (a

. u.)

4 nsec10 nsec30 nsec

0 10 20 30 40 50time (nsec)

Volta

ge (a

. u.)

4 nsec

10 nsec

30 nsec MTJ 50 nm

Write pulses

Spin-torque writing

Kishi, SY et al. IEDM 2008, 12.6.(Toshiba, AIST, etc.)

Demonstration of high-speed switching

Page 64: Magnetoresistance and spin-transfer torque in magnetic tunnel

WRITE (Ic) <drive current of CMOS

READ (MR & RA) MR ratio > 100–150%& low RA

STABILITY for MTJ size < 50 nm

> 60 – 80

SPEED < 20 ns writing

ENDURANCE > 1016 write cycles

Perp.MTJ

In-planeMTJ

Summary on Spin-RAM

Page 65: Magnetoresistance and spin-transfer torque in magnetic tunnel

Toshiba – Hynix alliance to commercialize Spin-RAM

http://www.toshiba.co.jp/about/press/2011_07/pr1302.htm

Page 66: Magnetoresistance and spin-transfer torque in magnetic tunnel

Outline

(1) Spintronics

(2) Tunnel magnetoresistance (TMR)

・Magnetoresistance

・Tunnel magnetoresistancein magnetic tunnel junction(MTJ)

・Giant TMR in MgO-based MTJ

・CoFeB/MgO/CoFeB structure for device applications

(3) Spin-transfer torque (STT)

・Physics of spin-transfer torque

・Spin-transfer torque MRAM (STT-RAM or Spin-RAM)

・Microwave applications

Page 67: Magnetoresistance and spin-transfer torque in magnetic tunnel

~100 nm

Steady-state precession induced by spin torque

NM

FM1 (pinned layer)

FM2 (free layer) Spin

torque Steady-state precession can be induced by adjusting I and H.

(ferromag. resonance (FMR) )

DC current & voltage

AC current & voltage(FMR frequency)

Spin torque

Giant MR ratio

MgO-MTJ is expected to act as a microwave oscillator and detector.

Steady-stateprecession

Microwave power (MR ratio)2

Page 68: Magnetoresistance and spin-transfer torque in magnetic tunnel

Power: 2.4 WLine width: 12 MHzQ factor: 350

2 4 6 8 100

20

40

60

80

100

120

PS

D (

W/G

Hz)

Frequency (GHz)

Microwave functions of MgO-based MTJs

Tulapurkar, SY, Nature 438, 339 (2005).Kubota, SY et al., Nature Phys. 4, 37 (2008). Deac, SY et al., Nature Physic 4, 803-809 (2008). Dussaux, SY et al.,Nature Comm. 1, 8 (2010). H. Maehara, SY et al., MMM 2010.

Frequency (GHz)

dc v

olta

ge (

V)

Spin-torque diode effect(microwave detection)

Spin-torque oscillator (STO)(microwave emission)

Page 69: Magnetoresistance and spin-transfer torque in magnetic tunnel

Ferromagnetic resonance No resonance circuit is necessary.

Large !

~1 cm

Small (100 nm), cheap, easily integrated in Silicon LSI

CoFeBMgOCoFeB

100 nm

MgO-MTJ-based STO

MMIC: Monolithic Microwave IC

Klystron

~10 cm

Gunn diodeoscillator

スピントルク発振器の特徴Advantages of STO over conventional microwave oscillators

MMIC: low efficiency

Page 70: Magnetoresistance and spin-transfer torque in magnetic tunnel

Year

1990

1995

2000

2005

2010

MR head

GMR head

HDD head

MgO-TMR head

Inductivehead

Industrial applications

MRAM

Memory

STT-RAM(Spin-RAM)

Novel devices

Microwave

AMR effect MR = 1 - 2 %

TMR effectAl-O barrier

MR = 20 - 70 %

Giant TMR effectMgO(001) barrierMR = 150 - 600 %

1857

GMR effectMR = 5 - 15 %

1985

TMR head

MR effects MR ratio (RT & low H)

: commercialized

: R & D level