Spintronic device structuresinfo.ifpan.edu.pl/spintech5/presentations/fabian...diodes • spin...

44
Spintronic device structures Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Spintech V Krakow 7.7.2009

Transcript of Spintronic device structuresinfo.ifpan.edu.pl/spintech5/presentations/fabian...diodes • spin...

  • Spintronic device structures

    Jaroslav Fabian

    Institute for Theoretical PhysicsUniversity of Regensburg

    Spintech V Krakow 7.7.2009

  • Giant Magnetoresistance (GMR) magnetoelectronics

    "for the discovery of giant magnetoresistance"Grunberg; Fert (1988)

    F F

    Julliere

    1975; Moodera

    et al. 1995

    Tunneling Magnetoresistance (TMR)

    applications: HDD, MRAM

    I

  • :outline: what can we do with (ensemble) spin in semiconductors

    road map issues: injection, detection, relaxation•

    spin transistors

    bipolar spintronic

    devices•

    magnetic resonant tunneling diodes

    closing

    I. Zutic, J. Fabian, and S. Das

    Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76, 323 (2004)

    J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic,Semiconductor spintronics, Acta

    Physica

    Slovaca, 57, 565-907 (2007)

  • spintronics drive

    technology fundamental discoveries

  • SPINTRONICS GOALSspin control of electrical properties

    (I-V characteristics)

    electrical control of spin(magnetization)

  • :semiconductor spintronics devices: spin something

    spin Zener

    diodes•

    spin resonant diodes

    spin field-effect transistors•

    magnetic semiconductor tunnel junction devices

    magnetic unipolar and bipolar junction diodes and transistors•

    spin optoelectronic devices

    spin galvanics devices•

    spin Hall polarizers

    spin-polarized semiconductor lasers•

    spin pumping batteries

    spin-torque devices•

    spin ratchets

    spin memrams•

    spin quantum computers

    ...

  • International Technology Roadmap for Semiconductors:

    Emerging Research Logic Devices

    risk

    RSFQ1-D

    structuresresonanttunneling SET molecular QCA

    spin transistor

    2004

    2005, 2006

  • International Technology Roadmap for Semiconductors:

    Emerging Research Logic Devices

    risk

    RSFQ1-D

    structuresresonanttunneling SET molecular QCA

    spin transistor

    2004

    2007, 2008

  • Intl. Technol. Roadmap for Semiconductor will we have a useful spin transistor?

  • SPINTRONICS’

    3 REQUIREMENTS

    EFFICIENT SPIN INJECTION

    (slow) SPIN RELAXATION @ (efficient) SPIN CONTROL

    RELIABLE SPIN DETECTION

    Silsbee-Johnson spin-charge coupling

    F N

    spin accumulation

  • S. A. Crooker et al., JAP, 101,081716 (2007)

    S. A. Crooker at al., Science 309, 2191 (2005)

    :spin injection: made visible

  • :spin injection: all-semiconductor all-electrical spin injection/detection

    cbvbAu/Ti

    (Ga,Mn)As

    n+-GaAsn+n-GaAs

    n-GaAs

    x/[010]

    -y/[100]

    z

    Iinj V V V

    2 3 4 5 61

    L

    non-local spin injection/detection device magnetic Esaki diode contacts

    Spininjection

    M. Ciorga et al., PRB

    79,165321 (2009); see poster 161

    Pinj 50%

  • Silsbee-Johnson spin-charge coupling

    Q: Suppose there is a source of nonequilibrium spin accumulation

    at the far right of N. What is the emf due to the proximity with the equilibrium spin polarization Pj

    in F?

    spin accumulation

    R. H. Silsbee, Bull. Magn. Reson.2, 284 (1980); M. Johnson and R. H. Silsbee, Phys. Rev.

    Lett. 55, 1790 (1985)

    J. Fabian and I. Zutic, The standard model of spin injection, in book From GMR to Quantum Information, (Forschungszentrums Juelich, 2009), Eds. S. Blügel

    et al; also in arXiv:0903.2500

  • :spin relaxation: GaAs, Si

    J. L. Chang, M. W. Wu, and J. Fabian, arXiv:0906.4054

    Si

    (non-degenerate densities)GaAs

    (low temperature)

    see also poster 264 (Jiang

    and Wu)

  • :spin relaxation: persistent spin helix: engineering spin lifetime

    increased spin injection efficiencyJ. L. Cheng, M. W. Wu,, and I. C. da

    Cunha

    Lima, Phys. Phys. B 75, 205328 (2007)

    individual spin components: short spin lifetime

    spin helix: 100-times longer spin lifetime

    From J. Fabian, Nature (N&V) 458, 580 (2009)

    Theory: B. A. Bernevig, J. O. Orenstein, and S. C. Zhang, Phys. Rev. Lett. 97, 236601 (2006).

    Experiment:J. D. Koralek, C. P. Weber, J O. Orenstein,

    B. A. Bernevig, S. Z. Zhang, S. Mack, D. D. Awschalom, Nature, 458, 610 (2009).

  • :materials issues:room temperature ferromagnetic semiconductors?

    • 1-15 % Mn• p-doped (Mn

    replaces Ga)

    • degenerate: p = 1020

    - 1021/cm3• Tc

    up to 180 K

    • fm and p-density coupled• impurity band or not?

    T. Jungwirth et al., Rev. Mod. Phys. 78, 809 (2006)

    (Ga,Mn)As Fe Au

    • above room-temperature fm• a few nm of GaMnAs

    involved

    • bias control?• anisotropies?

    GaMnAs Fe/GaMnAs

    F. Maccherozzi et al., Phys. Rev. Lett. 101, 267201 (2008)See also poster 234 for related work S. Mark et al.

  • intl. Semiconductor roadmap 2007 emerging research logic devices

  • J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic, Semiconductor spintronics, Acta

    Phys. Slov, 57, 566 (2007)

    :spin transistors:

    Datta-Das

    Sugahara-Tanaka

    Johnson

    Magnetic bipolar transistor

    hot-electron spin transistors

    PresenterPresentation NotesSugahara-tanaka

  • Bipolar spintronic devices with I. Zutic and S. Das Sarma

    Spin-polarized pn

    junction diode, spin capacitanceI. Zutic, J. Fabian and S. Das

    Sarma, Phys. Rev. B 64, 121201 (2001)

    Spin-polarized solar cellI. Zutic, J. Fabian and S. Das

    Sarma, Appl. Phys. Lett. 79, 1558 (2001)

    Magnetic bipolar diode (MBD), GMR, spinvoltaic

    effect, spin injection, spin extractionI. Zutic, J. Fabian and S. Das

    Sarma, Phys. Rev. Lett. 88, 066603 (2002)

    General theory of magnetic bipolar devicesJ. Fabian. I. Zutic, and S. Das

    Sarma, Phys. Rev. B 66, 165301 (2002)•

    Magnetic bipolar transistor (MBT), magnetoamplificationJ. Fabian, I. Zutic, and S. Das

    Sarma, cond-mat/0211639; Appl. Phys. Lett. 84, 85 (2004)J. Fabian and I. Zutic, Phys. Rev. B 69, 115314 (2004); Appl. Phys. Lett. (2005)

    Spin injection into silicon: bipolar modeI. Zutic, J. Fabian, and S. Erwin, Phys. Rev. Lett. 97, 026602 (2006)

    “he is bipolar”

  • Bipolar spintronic devices with I. Zutic and S. Das Sarma

    Spin-polarized pn

    junction diode, spin capacitanceI. Zutic, J. Fabian and S. Das

    Sarma, Phys. Rev. B 64, 121201 (2001)

    Spin-polarized solar cellI. Zutic, J. Fabian and S. Das

    Sarma, Appl. Phys. Lett. 79, 1558 (2001)

    Magnetic bipolar diode (MBD), GMR, spinvoltaic

    effect, spin injection, spin extractionI. Zutic, J. Fabian and S. Das

    Sarma, Phys. Rev. Lett. 88, 066603 (2002)

    General theory of magnetic bipolar devicesJ. Fabian. I. Zutic, and S. Das

    Sarma, Phys. Rev. B 66, 165301 (2002)•

    Magnetic bipolar transistor (MBT), magnetoamplificationJ. Fabian, I. Zutic, and S. Das

    Sarma, cond-mat/0211639; Appl. Phys. Lett. 84, 85 (2004)J. Fabian and I. Zutic, Phys. Rev. B 69, 115314 (2004); Appl. Phys. Lett. (2005)

    Spin injection into silicon: bipolar modeI. Zutic, J. Fabian, and S. Erwin, Phys. Rev. Lett. 97, 026602 (2006)

    “he is bipolar”

  • CONVENTIONAL DIODE 101

  • ratchet and paw analog of a pn

    junction diode

    pn

    generation current recombination current

  • :magnetic diode: spin-voltaic effect: spin-charge coupling

  • GiantMagnetoResistance

    in MDs

    Spin-charge coupling: proximity of equilibrium (Pp

    ) and nonequilibrium

    (δPn

    )spin

  • what is in the numerics?

  • drift-diffusion

    n-emitter p-m-base

    n-collector

    think of Stern-Gerlach

  • charge and spin continuity

    spin relaxation

  • self-consistency with electrostatics

  • :analytical modeling: generalized Shockley theory

    carrier and spin quasiequilibrium in space-charge regions

    (constant spin-resolved chemical potentials)

    +

    continuity of spin current through space-charge regions

    J. Fabian, I. Zutic, S. Das Sarma, Phys. Rev. B 66, 165301 (2002)

  • :magnetic pn

    junctions: qualitative statements

    Impossibility of spin injection at low biases•

    Spin injection of nonequilibrium

    spin only (beyond the

    standard spin injection model)•

    Spin-charge coupling

    J. Fabian, A. Matos-Abiague, C. Ertler, and P. Stano, Semiconductor spintronics, Acta

    Phys. Slov, 57, 566 (2007)

    Magnetic pn

    junction arrays (matrix theory):

  • experimental observation of spin-voltaic effect in a paramagnetic

    pn junction

    T. Kondo, J. Hayafuji, and H. Munekata,Investigation of spin-voltaic effect in a p-n

    heterojunctions,Jpn. J. Appl. Phys. 45, L663 (2006)

  • experimental observation of spin-voltaic effect in a ferromagnetic pn junctionP. Chen, J. Moser, P. Kotissek, J. Sadowski, M. Zenger, D. Weiss, and W. WegscheiderAll electrical measurement of spin injection in a magnetic p-n

    junction diode,Phys. Rev. B 74, 24302 (R) (2006)

  • :spin-injection Hall effect:spin-polarized pn junction & local extraordinary Hall transport

    J. Wunderlich

    et al, Nature Phys. (in press); arXiv:0811.3486 (see poster 288)

    • Local (50-100 nm) nondistructive

    electric measurement of spin polarization

    • high-temperature (200 K) operation• probe of fundamental spin-orbit (spin helix) physics

  • bipolar junction transistor

    ultra high speed digital circuits•

    small-signal amplification

    high frequency analog circuits (SiGe, GaAs

    HBTs)•

    integrated Circuits market: 20% BJT, 75% MOSFET

    microphone

    base

    emitter

    collector

    ee

    e

  • :magnetic bipolar transistor (MBT):J. Fabian, I. Zutic and S. Das Sarma, cond-mat/0211639 (2002); Appl. Phys. Lett. 84, 85 (2004);J. Fabian and I. Zutic, Phys. Rev. B 69, 115314 (2004).

    • all semiconductor• magnetic semiconductor active region• versatile design• materials restricted

    M. Flatte, Z. G. Yu, E. Johnston-Halperin, and D. D. Awschalom, Appl. Phys. Lett. 82, 4740 (2003)N. Lebedeva

    and P. Kuivalainen, J. Appl. Phys. 93, 9845 (2003)

  • :spin-polarized bipolar lasers: reducing the threshold power

    J. Rudolph et al., APL 87, 241117 (2005); 82, 4516 (2003)

    M. Holub

    et al., PRL 98, 146603 (2007)

    optical injection of spin-polarized carriers provides a threshold current reduction for the lasing operation

    • Limited theoretical understanding

    • Threshold strongly depends on the recombination mechanism

    • Maximum threshold

    reduction larger than previously thought possible

    • Very short spin relaxation time of holes is advantageous

    electrical spin injection threshold reduction

    I. Vurgaftman

    et al., APL 93, 031102 (2008)

    C. Gothgen, R. Oszwaldowski, A. Petrou, I. Zutic, APL 93, 042513 (2008)

  • Magnetic

    Resonant

    Tunnel

    Diodes A. Slobodskyy

    et al, Phys. Rev. Lett. 90, 246601 (2003)

    C. Ertler

    and J. Fabian, Appl. Phys. Lett. 89, 193507 (2006)

    C. Ertler

    and J. Fabian, Phys. Rev. B 75 195323 (2007)

    • efficient spin filtering• spin detection• fast switching times• coherence issues• RT operation?

    6T

    3T

    0T

    8% Mn

    T=1.3K

    a)

    b)

    BeZnSe

    ZnMnSeZnSe

    ZnSe

    BeZnSeBeZnSe

    ZnMnSeZnSe

    ZnSe

    BeZnSe

    ZnSeZnMnSe

    ZnSe

    B

    1.3

    K

    Voltage (0-0.2 V)

    Cur

    rent

    (0-1

    50 μ

    A)

    0 0.05 0.1 0.15 0.2 0.250

    0.5

    1

    1.5

    2

    2.5

    3x 10

    5

    Voltage (V)

    Cur

    rent

    Den

    sity

    (A

    /cm

    2 )

    0 10 20 300

    50

    100

    z (nm)

    Ene

    rgy

    (meV

    )

    Δ E = 0Δ E = 5 meVΔ E = 10 meVΔ E = 15 meVΔ E = 20 meVΔ E = 25 meVΔ E = 40 meV

    T = 4.2 K

    ΔV2out

    ΔV3out

    ΔV1out

    see posters 168 –

    174, 176, 177, 181, 219, 242, 284

  • :Digital Magneto

    Resistance (DMR): Ertler and Fabian, Appl. Phys. Lett. 89, 193507 (2006)

    mono-to-bistable logic element (mobile) (multi-valued logic roadmap, up to 100 GHz demo)

    Maezawa and Mizutani, Jpn. J. Appl. Phys. 32, L42 (1993)

    Driver mRTD

    Load RTD

    Vin

    B

    Vout

    I

    Vout

    Vin Vinmono

    mono

    low

    high

    Vload

    = Vin

    – Vout

    , Iload

    =Idriver

    load driver

  • operational principle of DMR

    Vout

    Vin

    mRTD

    RTD

    B

    Vin

    B

    Vout

    threshold

    mono mono

    lowhigh high

    mono mono

    C. Ertler

    and J. Fabian, Appl. Phys. Lett. 89, 193507 (2006); Phys. Rev. B 75, 195323 (2007)

  • :self-sustained magneto-electric oscillations in MRTDs: C. Ertler

    and J. Fabian, Phys. Rev. Lett. 101, 077 202 (2008) ; poster 168

    see also poster 169, Carretero

    et al. for related work

    0 10 20 300

    5

    10

    x 1015

    Voltage (mV)

    j (a.

    u.)

    jmaxjmin

    I

    II

    (a)

    0 10 20 300

    5

    10

    15

    20

    Voltage (mV)

    Δ (m

    eV)

    Δmax

    Δmin

    (b)

    II

    I

    50 100 150 2000

    5

    10

    x 1015

    Time (t*)

    j (a.

    u.)

    jtot

    j↑j↓

    (c)

    50 100 150 2002

    4

    6

    8

    10

    12

    14x 1011

    Time (t*)

    n (1

    /cm

    2 )

    ntotn↑n↓

    (d)

    Non-linear coupling of charge, magnetization, and current leads to temporal oscillations of the current etc under dc bias

  • Intl. Technol. Roadmap for Semiconductor will we have a useful spin transistor?

  • Intl. Technol. Roadmap for Semiconductor will we have a useful spin transistor?

    too ea

    rly to

    say

  • :conclusions:

    demonstrate spintronic

    device schemes •

    new fm materials/materials combinations

    new physical principles for spin-based devices•

    involve electrical engineers

    SFB 689

    SPP 1285

    DFG Collaborative Research Center (Regensburg)“Spin phenomena in reduced dimensions”

    DFG Priority Program “Semiconductor Spintronics”

    Spintronic device structures�Giant Magnetoresistance (GMR)�magnetoelectronics:outline:�what can we do with (ensemble) spin in semiconductorsspintronics drive�SPINTRONICS GOALS:semiconductor spintronics devices:�spin somethingInternational Technology Roadmap for Semiconductors:�Emerging Research Logic DevicesInternational Technology Roadmap for Semiconductors:�Emerging Research Logic DevicesIntl. Technol. Roadmap for Semiconductor�will we have a useful spin transistor?SPINTRONICS’ 3 REQUIREMENTS�Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16intl. Semiconductor roadmap 2007�emerging research logic devicesSlide Number 18Slide Number 19Bipolar spintronic devices� with I. Zutic and S. Das SarmaBipolar spintronic devices� with I. Zutic and S. Das SarmaSlide Number 22ratchet and paw analog of a pn junction diode:magnetic diode:�spin-voltaic effect: spin-charge couplingGiantMagnetoResistance in MDswhat is in the numerics?drift-diffusioncharge and spin continuityself-consistency with �electrostatics:analytical modeling:�generalized Shockley theorySlide Number 31experimental observation of �spin-voltaic effect in a paramagnetic pn junctionexperimental observation of �spin-voltaic effect in a ferromagnetic pn junctionSlide Number 34bipolar junction transistor:magnetic bipolar transistor (MBT)::spin-polarized bipolar lasers:�reducing the threshold power�Magnetic Resonant Tunnel Diodes�A. Slobodskyy et al, Phys. Rev. Lett. 90, 246601 (2003)�C. Ertler and J. Fabian, Appl. Phys. Lett. 89, 193507 (2006)�C. Ertler and J. Fabian, Phys. Rev. B 75 195323 (2007) �:Digital Magneto Resistance (DMR):�Ertler and Fabian, Appl. Phys. Lett. 89, 193507 (2006) �mono-to-bistable logic element (mobile) �(multi-valued logic roadmap, up to 100 GHz demo)�Maezawa and Mizutani, Jpn. J. Appl. Phys. 32, L42 (1993)�operational principle of DMR:self-sustained magneto-electric oscillations in MRTDs:�C. Ertler and J. Fabian, Phys. Rev. Lett. 101, 077 202 (2008) ; poster 168�see also poster 169, Carretero et al. for related work Intl. Technol. Roadmap for Semiconductor�will we have a useful spin transistor?Intl. Technol. Roadmap for Semiconductor�will we have a useful spin transistor?:conclusions: