Machine Vision and Dig. Image Analysis 1 Prof. Heikki Kälviäinen CT50A6100 Lectures 3: Image...

43
Machine Vision and Dig. Image Analys is 1 Prof. Heikki Kälviäinen CT50A6100 Lectures 3: Image Transforms Professor Heikki Kälviäinen Machine Vision and Pattern Recognition Laboratory Department of Information Technology Faculty of Technology Management Lappeenranta University of Technology (LUT) [email protected] http://www.lut.fi/~kalviai http://www.it.lut.fi/ip/research/mvpr/
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    215
  • download

    0

Transcript of Machine Vision and Dig. Image Analysis 1 Prof. Heikki Kälviäinen CT50A6100 Lectures 3: Image...

Machine Vision and Dig. Image Analysis

1 Prof. Heikki Kälviäinen CT50A6100

Lectures 3:Image Transforms

Professor Heikki Kälviäinen

Machine Vision and Pattern Recognition Laboratory Department of Information Technology

Faculty of Technology ManagementLappeenranta University of Technology (LUT)

[email protected]://www.lut.fi/~kalviai

http://www.it.lut.fi/ip/research/mvpr/

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

2

Content

• Fourier Transform. – Discrete Fourier Transform. – Properties of 2-D Fourier Transform.

• Separability, periodicity, translation, rotation, scaling, convolution, correlation.

– Fast Fourier Transform. – Fourier Transform for image processing and analysis.

• Gabor filtering. – 2-D Gabor filter.– Applications.

• Other transforms.

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

3

Image Transforms

Fourier TransformCosineSineHadamardHaarSlantKarhunen-LoeveFast KLSinusoidal SDVetc.

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

4

Fourier Transform

• Jean Baptiste Joseph Fourier. • In 1807:

Any periodic function can be expressed as the sum of sines and/or cosines of different frequencies, each multiplied by a different coefficient. • The sum is nowadays called a Fourier series.• An image is a 2D signal.

From: R.C. Gonzalez and R.E. Woods: Digital Image Processing, 3rd edition, 2008.

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

5

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

6

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

7

Images and Their Fourier Spectra

i = sqrt(-1)F(k) also denoted F(u)

F(x,y) also denoted F(u,v)

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

8

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

9

Discrete Fourier Transform (DFT)

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

10

Properties of 2-D Fourier Transform

• Separability.– 2-D can be computed as series of 1-D.

• Periodicity.• Translation, rotation, and scaling.

– Invariant features. • Convolution and correlation.

– Spatial filtering in the frequency domain. • Etc.

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

11

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

12

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

13

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

14

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

15

Fast Fourier Transform (FFT)

• Brute-force implementation of Fourier Transform requires on the order of (MN)^2 summations and additions.

• 1024 x 1024 pixels => the order of a trillion multiplications and summations for one DFT

=> computationally too heavy. • FFT => the order of MN log_2 MN. • Based on the successive doubling method.

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

16

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

17

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

18

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

19

Fourier Transform for Image Processing and Analysis

Properties of Fourier Transform offer for example the following use:• Feature extraction.

– Frequency domain features. • Image compression. • Image filtering.

– Image enhancement in the frequency domain. – Preprocessing.

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

20

Fourier Transform: Feature Extraction

• Fourier transforms of texture.• Regular patterns. • Feature extraction.

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

21

Fourier Transform: Image Compression

Radius (pixels) % Image power

8 95

16 97

32 98

64 99.4

128 99.8

Not so many coefficients needed => image compression.

Lossy/lossless compression?

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

22

Fourier Transform: Image Filtering

• Enhancement in the frequency domain. • Convolution: f(x)*g(x) F(u) G(u).• Ideal low pass filter: Original (left) and filtered image (right).

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

23

Enhancement in the Frequency Domain

• Ideal high pass filter:– Original (left) and filtered image (right).

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

24

Image Processing Using Gabor Filtering

• For local and global feature extraction. • Filtering in time (spatial) space and frequency space.• For image processing and analysis two important parameters:

– Frequency f. – Orientation theta.

• Application example: – Face detection and recognition.– FACEDETECT project (http://www.it.lut.fi/project/facedetect/):

• Machine Vision and Pattern Recognition Laboratory (MVPR), Department of Information Technology, LUT, Finland.

• Centre for Vision, Speech and Signal Processing (CVSSP), University of Surrey, UK.

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

25

Feature Detector: 2-D Gabor Filter

cossin'

sincos'

),( '2''22

2

22

2

2

yxy

yxx

eef

yx fxjy

fx

f

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

26

Gabor Features

• Maximal joint localization in the spatial and frequency domain.• Smooth and noise tolerant.• Parameters for invariance manipulation:Frequency Envelope sharpness Orientation

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

27

Constructing Response Matrix

Filter response r(x,y; f,) can be calculated for variousfrequencies f and orientations to construct a response matrix.

columns represent orientationsrows represent frequenciesimage rotation appears as acircular shift of the columns

image scaling appears as ashift of the rows (highfrequencies may vanish)

A SCALE AND ROTATION INVARIANTTREATMENT OF THE RESPONSE MATRIXCAN BE ESTABLISHED, AND THUS, WECAN CONCENTRATE ONLY HOW TOCLASSIFY THEM IN THE STANDARD POSE

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

28

2-D Gabor Features

discrete frequency [u]

dis

cre

te fr

eq

ue

ncy

[v]

-1/2 -1/4 0 1/4 1/2

-1/2

-1/4

0

1/4

1/2

What do they ”see”?

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

29

Face verification (authentication) Validating a claimed identity based on the image of a face: are you Mr./Ms. X?

Face recognition (identification)Identifying a person based on an image of his/her face: who are you?

Face detection/localizationLocation of human faces in images at different positions, scales, orientations, and lighting conditions.

Face Detection and Recognition

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

30

Proposed Algorithm

• Avoiding a scanning window.• Using feature detectors.• Shape-free texture model for the final decision.

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

31

Evidence Extraction

Requirements

• Scale invariant extraction.• Rotation invariant extraction.• Provides sufficiently small amount of correct candidate points. (n best points from each class; needs confidence measure).

Preferred

• Estimation of evidence scale and orientation.• Fast extraction (scalability).

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

32

Classifier Construction

eye

eye

nostrilnostril

eyeeye

Gaussian mixturemodel densities(EM estimation)

• Stability property guarantees approximately the Gaussian form of classes in the feature space.

• One class may still consist of several sub-clusters (open eye, closed eye, etc.).

Bayesianclassificationof features

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

33

Affine Learned Correspondences

Aligned images of objects andmanually selected features Variability and correspondences

1 2

3 4

5 6

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

34

Affine Hypothesis Search

2

2

3 11 12

4

5

2

2

1

1. Evidence extraction.

2. Affine search and match to correspon- dence model.

Instanceapproved

False alarms occur and hypothesisverification is needed

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

35

Face Space

• Normalization of space where shape variations and capture effects are removed from patterns.

• Based on three points on the face -> affine registration.

• Optimal with regard to the photometric variance over a big set of faces.

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

36

Features & Feature Detectors

• Features = salient parts of face.

• Small localization variance and frequent occurrence over population.

• Illumination, scale, rotation, and translation invariance.

• Automatic analysis using the face space desirable.

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

37

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

38

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

39

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

40

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

41

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

42

Other transforms

• DFT, Cosine, Sine, Hadamar, Haar, Slant, Karhunen-Loeve, Fast KL, Sinusoidal transform, SVD transform.

• Basis images: Haar (wavelets) (left), Hadamard (right).– Haar values: positive-black, negative-white, zero-gray– Hadamard values: one – black, minus one – white.

Machine Vision and Dig. Image Analysis

Prof. Heikki Kälviäinen CT50A6100

43

Summary

• Image transforms from the spatial domain into the frequency domain.• Fourier Transform.

– For overall image processing and analysis. – Feature extraction, image compression, and image filtering

(enhancement). – Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT). – Properties of 2-D Fourier Transform.

• Separability, periodicity, translation, rotation, scaling, convolution, correlation.

• Gabor filtering. – For local and global feature extraction. – Orientation and frequency.– 2-D Gabor filter.

• Other transforms. – For example, Cosine Transform for image compression. – More detailed information later in the course.