LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa...

26
LTC5576 1 5576fa For more information www.linear.com/LTC5576 TYPICAL APPLICATION FEATURES DESCRIPTION 3GHz to 8GHz High Linearity Active Upconverting Mixer The LTC ® 5576 is a high linearity active mixer optimized for upconverting applications requiring wide input bandwidth, low distortion and low LO leakage. The integrated output transformer is optimized for 4GHz to 6GHz applications, but is easily retuned for output frequencies as low as 3GHz, or as high as 8GHz, with minor performance degradation. The input is optimized for use with 1:1 transmission-line baluns, allowing very wideband impedance matching. The LO input port is single-ended and requires only 0dBm of LO power to achieve excellent distortion and noise per- formance while also reducing circuit requirements. The LTC5576 offers low LO leakage, reducing the demands of output filtering to meet LO suppression requirements. The LTC5576 is optimized for 5V but can also be used with a 3.3V supply with slightly reduced performance. The enable function allows the part to be easily shut down for further power savings. APPLICATIONS n 25dBm OIP3 n –0.6dB Conversion Gain n 14.1dB Noise Figure at 5.8GHz n –154dBm/Hz Output Noise Floor n Low LO-RF Leakage n 0dBm LO Drive n Broadband 50Ω Matched Input n High Input P1dB: 10dBm at 5V n 5V or 3.3V Supply at 99mA n Single-Ended Output and LO Input n Enable Pin n –40°C to 105°C Operation (T C ) n 16-Lead (4mm × 4mm) QFN Package n Wideband Transmitters n 4G and 5G Wireless Infrastructure n Fixed Wireless Access Equipment n Wireless Repeaters L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. IN 50Ω OUT 50Ω LO 50Ω LO EN EN V CC IADJ OUT 2.61k TC1-1-13M 1:1 100pF BIAS 10nF 100pF IN + IN LGND TEMP TEMPERATURE MONITOR 5576 TA01a 1μF 5V 0.2pF 100pF 0.3pF OUTPUT FREQUENCY (MHz) 3000 OIP3 (dBm) 30 20 25 15 5 10 GAIN (dB) 15 5 10 0 –10 –5 5576 TA01b 8000 4000 5000 6000 7000 f IN = 456MHz f IN = 900MHz T C = 25°C, OUTPUT TUNED FOR EACH BAND OIP3 G C OIP3 and Conversion Gain vs Output Frequency (LSLO)

Transcript of LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa...

Page 1: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

15576fa

For more information www.linear.com/LTC5576

Typical applicaTion

FeaTures DescripTion

3GHz to 8GHz High Linearity Active Upconverting Mixer

The LTC®5576 is a high linearity active mixer optimized for upconverting applications requiring wide input bandwidth, low distortion and low LO leakage. The integrated output transformer is optimized for 4GHz to 6GHz applications, but is easily retuned for output frequencies as low as 3GHz, or as high as 8GHz, with minor performance degradation. The input is optimized for use with 1:1 transmission-line baluns, allowing very wideband impedance matching.

The LO input port is single-ended and requires only 0dBm of LO power to achieve excellent distortion and noise per-formance while also reducing circuit requirements. The LTC5576 offers low LO leakage, reducing the demands of output filtering to meet LO suppression requirements.

The LTC5576 is optimized for 5V but can also be used with a 3.3V supply with slightly reduced performance. The enable function allows the part to be easily shut down for further power savings.

applicaTions

n 25dBm OIP3 n –0.6dB Conversion Gain n 14.1dB Noise Figure at 5.8GHz n –154dBm/Hz Output Noise Floor n Low LO-RF Leakage n 0dBm LO Drive n Broadband 50Ω Matched Input n High Input P1dB: 10dBm at 5V n 5V or 3.3V Supply at 99mA n Single-Ended Output and LO Input n Enable Pin n –40°C to 105°C Operation (TC) n 16-Lead (4mm × 4mm) QFN Package

n Wideband Transmitters n 4G and 5G Wireless Infrastructure n Fixed Wireless Access Equipment n Wireless Repeaters

L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

IN50Ω

OUT50Ω

LO50Ω

LO

EN

EN

VCC IADJ

OUT

2.61k

TC1-1-13M1:1

100pF

BIAS

10nF

100pFIN+

IN–

LGND

TEMPTEMPERATUREMONITOR

5576 TA01a

1µF5V

0.2pF

100pF 0.3pF

OUTPUT FREQUENCY (MHz)3000

OIP3

(dBm

)

30

20

25

15

5

10

GAIN (dB)

15

5

10

0

–10

–5

5576 TA01b

80004000 5000 6000 7000

fIN = 456MHz fIN = 900MHz

TC = 25°C, OUTPUT TUNED FOR EACH BAND

OIP3GC

OIP3 and Conversion Gain vs Output Frequency (LSLO)

Page 2: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

25576fa

For more information www.linear.com/LTC5576

pin conFiguraTionabsoluTe MaxiMuM raTings

Supply Voltage (VCC) ..................................................6VEnable Voltage .................................–0.3V to VCC + 0.3VIADJ Pin Voltage ..........................................–0.3 to 2.7VLO Input Power (1GHz to 8GHz) ......................... +10dBmIN+, IN– Input Power (30MHz to 6GHz) .............. +15dBmTEMP Input Current ...............................................10mAOperating Temperature Range (TC) ........ –40°C to 105°CJunction Temperature (TJ) .................................... 150°CStorage Temperature Range .................. –65°C to 150°C

(Note 1)

16 15 14 13

5 6 7 8

TOP VIEW

17

UF PACKAGE16-LEAD (4mm × 4mm) PLASTIC QFN

9

10

11

12

4

3

2

1TEMP

IN+

IN–

LGND

GND

GND

OUT

GND

TP LO GND

GND

EN V CC

V CC

IADJ

TJMAX = 150°C, θJC = 6°C/W

EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB

orDer inForMaTionLEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION CASE TEMPERATURE RANGE

LTC5576IUF#PBF LTC5576IUF#TRPBF 5576 16-Lead (4mm × 4mm) Plastic QFN –40°C to 105°C

Consult LTC Marketing for parts specified with wider operating temperature ranges.For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.

Dc elecTrical characTerisTicsPARAMETER CONDITIONS MIN TYP MAX UNITS

Supply Voltage (VCC) 5V Supply 3.3V Supply

l

l

4.5 3.1

5 3.3

5.3 3.5

V V

Supply Current 5V, R1 = 2.61kΩ 3.3V, R1 = 649Ω Shutdown (EN = Low)

99 85 1.3

112 mA mA mA

Enable Logic Input (EN)

EN Input High Voltage (On) 1.8 V

EN Input Low Voltage (Off) 0.5 V

EN Input Current –0.3V to VCC + 0.3V –20 200 µA

Turn-On Time 0.6 µs

Turn-Off Time 0.6 µs

Current Adjust Pin (IADJ)

Open Circuit DC Voltage 1.8 V

Short Circuit DC Current 1.9 mA

Temperature Sensing Diode (TEMP)

DC Voltage at TJ = 25°C IIN = 10μA IIN = 80μA

697 755

mV mV

Voltage Temperature Coefficient IIN = 10μA IIN = 80μA

–1.80 –1.61

mV/°C mV/°C

The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C, VCC = 5V. Test circuit shown in Figure 1. (Note 2)

(http://www.linear.com/product/LTC5576#orderinfo)

Page 3: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

35576fa

For more information www.linear.com/LTC5576

ac elecTrical characTerisTics

ac elecTrical characTerisTics

The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. VCC = 5V, EN = High, PLO = 0dBm. Test circuit shown in Figure 1. (Notes 2, 3)

The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. VCC = 5V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f = 2MHz), PLO = 0dBm, unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3 and 4)

PARAMETER CONDITIONS MIN TYP MAX UNITS

LO Input Frequency Range External Matching Required l 1 to 8 GHz

Input (IN) Frequency Range External Matching Required l 0.03 to 6 GHz

Output (OUT) Frequency Range External Matching Required l 3 to 8 GHz

Input Return Loss ZO = 50Ω >10 dB

LO Input Return Loss ZO = 50Ω >10 dB

LO Input Power Single-Ended l –6 0 6 dBm

LO to IN Leakage fLO = 1GHz to 8GHz ≤–30 dBm

IN to LO Isolation fIN = 0.1GHz to 6GHz >35 dB

5V Upmixer Application: Low Side LO, PLO, = 0dBm, PIN = –10dBm

PARAMETER CONDITIONS MIN TYP MAX UNITS

Conversion Gain fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz

–1.5

–0.6 –0.6 –2.0

dB dB dB

Conversion Gain vs Temperature TC = –40°C to 105°C, fOUT = 5.8GHz l –0.009 dB/°C

Output 3rd Order Intercept fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz

25 25 25

dBm dBm dBm

SSB Noise Figure fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz

12.4 14.1 17.5

dB dB dB

SSB Noise Floor at PIN = 5dBm fIN = 1GHz, fOUT = 5801MHz, fLO = 4899MHz –154 dBm/Hz

Input 1dB Compression fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz

10.8 10.4 10.3

dBm dBm dBm

LO-OUT Leakage fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz

–36 –35 –28

dBm dBm dBm

IN to OUT Isolation fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz

70 38 35

dB dB dB

(http://www.linear.com/product/LTC5576#orderinfo)

Page 4: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

45576fa

For more information www.linear.com/LTC5576

ac elecTrical characTerisTics

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.Note 2: The LTC5576 is guaranteed functional over the –40°C to 105°C case temperature range.

The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. VCC = 3.3V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f = 2MHz), PLO = 0dBm, unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3 and 4)

3.3V Upmixer Application: Low Side LO, PLO, = 0dBm, PIN = –10dBm

PARAMETER CONDITIONS MIN TYP MAX UNITS

Conversion Gain fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz

–0.6 –0.6 –2.0

dB dB dB

Conversion Gain vs Temperature TC = –40°C to 105°C, fOUT = 5.8 GHz l –0.009 dB/°C

Output 3rd Order Intercept fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz

21 23 19

dBm dBm dBm

SSB Noise Figure fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz

11.5 12.8 17.8

dB dB dB

SSB Noise Floor at PIN = 5dBm fIN = 1GHz, fOUT = 5801MHz, fLO = 4899MHz –154 dBm/Hz

Input 1dB Compression fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO =4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz

8.4 8.5 8.1

dBm dBm dBm

LO-OUT Leakage fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz

–39 –36 –27

dBm dBm dBm

IN to OUT Isolation fIN = 456MHz, fOUT = 3.5GHz, fLO = 3.044GHz fIN = 900MHz, fOUT = 5.8GHz, fLO = 4.9GHz fIN = 900MHz, fOUT = 8GHz, fLO = 7.1GHz

70 38 33

dB dB dB

Note 3: SSB noise figure measured with a small-signal noise source, bandpass filter and 3dB matching pad on IN port, and bandpass filter on the LO input.Note 4: Specified performance includes all external component and evaluation PCB losses.

Page 5: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

55576fa

For more information www.linear.com/LTC5576

Typical Dc perForMance characTerisTics

Typical ac perForMance characTerisTics

Conversion Gain Distribution OIP3 Distribution Noise Figure Distribution

5V Supply Current vs Supply Voltage

3.3V Supply Current vs Supply Voltage

(Test Circuit shown in Figure 1)

5V, 5800MHz Output Frequency: TC = 25°C. VCC = 5V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f = 2MHz), PLO = 0dBm, fIN = 900MHz, unless otherwise noted. Test circuit shown in Figure 1.

SUPPLY VOLTAGE (V)4.5

SUPP

LY C

URRE

NT (m

A)

110

100

95

105

90

85

80

75

70

5576 G01

5.34.94.7 5.1

R1 = 2.61k

TC = 105°C85°C25°C–40°C

GAIN (dB)–1.5

DIST

RIBU

TION

(%)

35

25

20

30

15

10

5

0

5576 G03

1.5–1 –0.5 0

TC = 105°CTC = 25°CTC = –40°C

OIP3 (dBm)18

DIST

RIBU

TION

(%)

25

20

15

10

5

0

5576 G04

3020 2422 26 28

TC = 105°CTC = 25°CTC = –40°C

NF (dB)12.5

DIST

RIBU

TION

(%)

25

20

30

15

10

5

0

5576 G05

15.513.5 14.5

TC = 105°CTC = 25°CTC = –40°C

SUPPLY VOLTAGE (V)3

SUPP

LY C

URRE

NT (m

A)

110

100

95

105

90

85

80

75

70

5576 G02

3.63.23.1 3.3 3.4 3.5

R1 = 649Ω TC = 105°C85°C25°C–40°C

Page 6: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

65576fa

For more information www.linear.com/LTC5576

Conversion Gain, OIP3 and NF vs LO Input Power Output Noise Floor vs Input Power

Conversion Gain, OIP3 and NF vs Supply Voltage

2-Tone IM3 Level vs Output Power Level

IN-OUT Isolation vs Input Frequency

Conversion Gain, OIP3, NF and IP1dB vs Case Temperature

Conversion Gain, OIP3 and NF vs Input Frequency

Conversion Gain and OIP3 vs Output Frequency LO Leakage vs LO Frequency

Typical ac perForMance characTerisTics 5V, 3500MHz Output Frequency: TC = 25°C. VCC = 5V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f = 2MHz), PLO = 0dBm, fIN = 456MHz, fLO = fOUT – fIN, unless otherwise noted. Test circuit shown in Figure 1.

INPUT FREQUENCY (MHz)0

GAIN

AND

NF

(dB)

, OIP

3 (d

Bm)

35

30

25

15

20

10

5

0

–5

5576 G06

30001000500 1500 2000 2500

OIP3

NF

TC = 105°C85°C25°C–40°CGC

OUTPUT FREQUENCY (MHz)3000

GAIN

(dB)

, OIP

3 (d

Bm)

30

25

15

20

10

5

0

–5

5576 G07

400034003200 3600 3800

OIP3

GC

TC = 105°C85°C25°C–40°C

LO FREQUENCY (MHz)500

LO L

EAKA

GE (d

Bm)

0

–10

–30

–20

–40

–50

–60

–70

–80

5576 G08

350015001000 2000 2500 3000

LO-IN

LO-OUT

TC = 25°C

LO POWER (dBm)–6

GAIN

AND

NF

(dB)

, OIP

3 (d

Bm)

35

30

25

15

20

10

5

0

–5

5576 G09

6–2–4 0 2 4

OIP3

GC

TC = 105°C85°C25°C–40°C

NF

INPUT POWER (dBm)–20

NOIS

E FL

OOR

(dBm

/Hz)

–150

–154

–152

–156

–158

–160

–162

5576 G10

5–10–15 –5 0

PLO = –6dBm–4dBm–2dBm0dBm6dBm

fOUT = 3663MHzfNOISE = 3581MHzfLO = 3201MHz

SUPPLY VOLTAGE (V)4.5

GAIN

AND

NF

(dB)

, OIP

3 (d

Bm)

30

25

15

20

10

5

0

–5

5576 G11

5.34.74.6 4.8 4.9 5 5.1 5.2

GC

TC = 105°C85°C25°C–40°C

NF

OIP3

OUTPUT POWER (dBm/TONE)–15

IM3

LEVE

L (d

Bc)

0

–10

–30

–20

–40

–50

–60

–70

–80

–90

5576 G12

5–10 –5 0

TC = 105°C85°C25°C–40°C

INPUT FREQUENCY (MHz)0

ISOL

ATIO

N (d

B)

100

80

90

60

70

50

40

30

20

10

0

5576 G13

30002000 2500500 1000 1500

TC = 105°C85°C25°C–40°C

CASE TEMPERATURE (°C)–45

GAIN

AND

NF

(dB)

, OIP

3 AN

D IP

1dB

(dBm

)

30

25

15

20

10

5

0

–5

5576 G14

105–15 15 45 75

GC

NF

IP1dB

OIP3

Page 7: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

75576fa

For more information www.linear.com/LTC5576

Conversion Gain, OIP3 and NF vs LO Input Power Output Noise Floor vs Input Power

Conversion Gain, OIP3 and NF vs Supply Voltage

2-Tone IM3 Level vs Output Power Level

IN-OUT Isolation vs Input Frequency

Conversion Gain, OIP3, NF and IP1dB vs Case Temperature

Conversion Gain, OIP3 and NF vs Input Frequency

Conversion Gain and OIP3 vs Output Frequency LO Leakage vs LO Frequency

Typical ac perForMance characTerisTics 5V, 5800MHz Output Frequency: TC = 25°C. VCC = 5V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f = 2MHz), PLO = 0dBm, fIN = 900MHz, fLO = fOUT – fIN, unless otherwise noted. Test circuit shown in Figure 1.

INPUT FREQUENCY (MHz)0

GAIN

AND

NF

(dB)

, OIP

3 (d

Bm)

35

30

25

15

20

10

5

0

–5

5576 G15

2400800400 1200 1600 2000

OIP3

NF

TC = 105°C85°C25°C–40°C

GC

OUTPUT FREQUENCY (MHz)4500

GAIN

(dB)

, OIP

3 (d

Bm)

35

30

25

15

20

10

5

0

–5

5576 G16

750055005000 6000 6500 7000

OIP3

TC = 105°C85°C25°C–40°C

GC

LO FREQUENCY (MHz)3300

LO L

EAKA

GE (d

Bm)

0

–10

–30

–20

–40

–50

–60

5576 G17

580043003800 4800 5300

LO-OUT

TC = 25°C

LO-IN

LO POWER (dBm)–6

GAIN

AND

NF

(dB)

, OIP

3 (d

Bm)

35

30

25

15

20

10

5

0

–5

5576 G18

6–2–4 0 2 4

OIP3

NF

TC = 105°C85°C25°C–40°C

GC

INPUT POWER (dBm)–20

NOIS

E FL

OOR

(dBm

/Hz)

–150

–154

–152

–156

–158

–160

–162

5576 G19

5–10–15 –5 0

PLO = –6dBm–4dBm–2dBm0dBm6dBm

fOUT = 5899MHzfNOISE = 5801MHzfLO = 4899MHz

SUPPLY VOLTAGE (V)4.5

GAIN

AND

NF

(dB)

, OIP

3 (d

Bm)

35

30

25

15

20

10

5

0

–5

5576 G20

5.34.74.6 4.8 4.9 5 5.1 5.2

OIP3

NF

TC = 105°C85°C25°C–40°C

GC

OUTPUT POWER (dBm/TONE)–15

IM3

LEVE

L (d

Bc)

0

–10

–30

–20

–40

–50

–60

–70

–80

–90

5576 G21

5–10 –5 0

TC = 105°C85°C25°C–40°C

INPUT FREQUENCY (MHz)0

ISOL

ATIO

N (d

B)

70

60

50

40

30

20

10

0

5576 G22

25001500 2000500 1000

TC = 105°C85°C25°C–40°C

CASE TEMPERATURE (°C)–45

GAIN

AND

NF

(dB)

, OIP

3 AN

D IP

1dB

(dBm

)

35

25

30

15

20

10

5

0

–5

5576 G23

105–15 15 45 75

GC

IP1dB

NF

OIP3

Page 8: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

85576fa

For more information www.linear.com/LTC5576

Typical ac perForMance characTerisTics 5V, 8000MHz Output Frequency: TC = 25°C. VCC = 5V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f = 2MHz), PLO = –4dBm, fIN = 900MHz, fLO = fOUT – fIN, unless otherwise noted. Test circuit shown in Figure 1.

Conversion Gain, OIP3 and NF vs LO Input Power Output Noise Floor vs Input Power

Conversion Gain, OIP3 and NF vs Supply Voltage

2-Tone IM3 Level vs Output Power Level

IN-OUT Isolation vs Input Frequency

Conversion Gain, OIP3, NF and IP1dB vs Case Temperature

Conversion Gain, OIP3 and NF vs Input Frequency

Conversion Gain and OIP3 vs Output Frequency LO Leakage vs LO Frequency

INPUT FREQUENCY (MHz)0

GAIN

AND

NF

(dB)

, OIP

3 (d

Bm)

30

25

15

20

10

5

0

–5

5576 G24

2400800400 1200 1600 2000

TC = 105°C85°C25°C–40°C

OIP3

NF

GC

OUTPUT FREQUENCY (MHz)7400

GAIN

(dB)

, OIP

3 (d

Bm)

30

25

15

20

10

5

0

–5

5576 G25

860078007600 8000 8200 8400

TC = 105°C85°C25°C–40°C

OIP3

GC

LO FREQUENCY (MHz)5600

LO L

EAKA

GE (d

Bm)

0

–10

–30

–20

–40

–50

–60

5576 G26

800064006000 6800 7200 7600

LO-OUT

TC = 25°C

LO-IN

LO POWER (dBm)–6

GAIN

AND

NF

(dB)

, OIP

3 (d

Bm)

30

25

15

20

10

5

0

–5

5576 G27

6–2–4 0 2 4

TC = 105°C85°C25°C–40°C

OIP3

NF

GC

INPUT POWER (dBm)–20

NOIS

E FL

OOR

(dBm

/Hz)

–148

–152

–150

–154

–156

–158

5576 G28

5–10–15 –5 0

PLO = –6dBm–4dBm–2dBm0dBm6dBm

fOUT = 8094MHzfNOISE = 7997MHzfLO = 7094MHz

SUPPLY VOLTAGE (V)4.5

GAIN

AND

NF

(dB)

, OIP

3 (d

Bm)

30

25

15

20

10

5

0

–5

5576 G29

5.34.74.6 4.8 4.9 5 5.1 5.2

OIP3

TC = 105°C85°C25°C–40°C

NF

GC

OUTPUT POWER (dBm/TONE)–15

IM3

LEVE

L (d

Bc)

0

–10

–30

–20

–40

–50

–60

–70

–80

–90

5576 G30

5–10 –5 0

TC = 105°C85°C25°C–40°C

CASE TEMPERATURE (°C)–45

GAIN

AND

NF

(dB)

, OIP

3 AN

D IP

1dB

(dBm

)

25

30

15

20

10

5

0

–5

5576 G32

105–15 15 45 75

IP1dB

NF

OIP3

GC

INPUT FREQUENCY (MHz)0

ISOL

ATIO

N (d

B)

50

45

40

35

30

25

20

15

10

5

0

5576 G31

24001200 1600 2000400 800

TC = 105°C85°C25°C–40°C

Page 9: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

95576fa

For more information www.linear.com/LTC5576

Typical ac perForMance characTerisTics 3.3V, 3500MHz Output Frequency: TC = 25°C. VCC = 3.3V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f = 2MHz), PLO = 0dBm, fIN = 456MHz, fLO = fOUT – fIN, unless otherwise noted. Test circuit shown in Figure 1.

Conversion Gain, OIP3 and NF vs LO Input Power Output Noise Floor vs Input Power

Conversion Gain, OIP3 and NF vs Supply Voltage

2-Tone IM3 Level vs Output Power Level

IN-OUT Isolation vs Input Frequency

Conversion Gain, OIP3, NF and IP1dB vs Case Temperature

Conversion Gain, OIP3 and NF vs Input Frequency

Conversion Gain and OIP3 vs Output Frequency LO Leakage vs LO Frequency

INPUT FREQUENCY (MHz)0

GAIN

AND

NF

(dB)

, OIP

3 (d

Bm) 25

30

15

20

10

5

0

–5

5576 G33

3000500 1000 1500 2000 2500

OIP3

GC

TC = 105°C85°C25°C–40°C

NF

OUTPUT FREQUENCY (MHz)

GAIN

(dB)

, OIP

3 (d

Bm)

25

30

15

20

10

5

0

–5

5576 G34

40003000 3200 3400 3600 3800

OIP3

GC

TC = 105°C85°C25°C–40°C

LO FREQUENCY (MHz)

LO L

EAKA

GE (d

Bm) –20

0

–10

–40

–30

–50

–60

–70

–80

5576 G35

3500500 1000 1500 2000 2500 3000

TC = 25°C

LO-IN

LO-OUT

LO POWER (dBm)–6

GAIN

AND

NF

(dB)

, OIP

3 (d

Bm)

25

15

20

10

5

0

–5

5576 G36

6–4 –2 0 2 4

OIP3

GC

TC = 105°C85°C25°C–40°C

NF

INPUT POWER (dBm)–20

NOIS

E FL

OOR

(dBm

/Hz)

–152

–156

–154

–158

–160

–162

–164

5576 G37

5–15 –10 –5 0

PLO = –6dBm–4dBm–2dBm0dBm6dBm

fOUT = 3663MHzfNOISE = 3581MHzfLO = 3201MHz

INPUT FREQUENCY (MHz)0

ISOL

ATIO

N (d

B)

100

80

90

70

60

50

40

30

20

10

0

5576 G39

3000500 1500 2000 25001000

TC = 105°C85°C25°C–40°C

CASE TEMPERATURE (°C)–45

GAIN

AND

NF

(dB)

, OIP

3 AN

D IP

1dB

(dBm

)

25

15

20

10

5

0

–5

5576 G41

105–15 15 45 75

OIP3

GC

IP1dB

NF

SUPPLY VOLTAGE (V)3

GAIN

AND

NF

(dB)

, OIP

3 (d

Bm)

25

15

20

10

5

0

–5

5576 G38

3.63.1 3.2 3.3 3.4 3.5

OIP3

GC

TC = 105°C85°C25°C–40°C

NF

OUTPUT POWER (dBm/TONE)–15

IM3

LEVE

L (d

Bc)

0

–30

–10

–20

–40

–50

–60

–70

–80

–90

5576 G39

5–10 –5 0

TC = 105°C85°C25°C–40°C

Page 10: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

105576fa

For more information www.linear.com/LTC5576

Typical ac perForMance characTerisTics 3.3V, 5800MHz Output Frequency: TC = 25°C. VCC = 3.3V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f = 2MHz), PLO = 0dBm, fIN = 900MHz, fLO = fOUT – fIN, unless otherwise noted. Test circuit shown in Figure 1.

Conversion Gain, OIP3 and NF vs LO Input Power Output Noise Floor vs Input Power

Conversion Gain, OIP3 and NF vs Supply Voltage

2-Tone IM3 Level vs Output Power Level

IN-OUT Isolation vs Input Frequency

Conversion Gain, OIP3, NF and IP1dB vs Case Temperature

Conversion Gain, OIP3 and NF vs Input Frequency

Conversion Gain and OIP3 vs Output Frequency LO Leakage vs LO Frequency

INPUT FREQUENCY (MHz)0

GAIN

AND

NF

(dB)

, OIP

3 (d

Bm) 25

30

15

20

10

5

0

–5

5576 G42

2400400 800 1200 1600 2000

OIP3

GC

TC = 105°C85°C25°C–40°C

NF

OUTPUT FREQUENCY (MHz)

GAIN

(dB)

, OIP

3 (d

Bm)

25

30

15

20

10

5

0

–5

5576 G43

75004500 5000 5500 6000 6500 7000

OIP3

GC

TC = 105°C85°C25°C–40°C

LO FREQUENCY (MHz)

LO L

EAKA

GE (d

Bm)

0

–10

–30

–20

–40

–50

–60

5576 G44

58003300 3800 4300 4800 5300

TC = 25°C

LO-IN

LO-OUT

LO POWER (dBm)–6

GAIN

AND

NF

(dB)

, OIP

3 (d

Bm)

30

15

20

25

10

5

0

–5

5576 G45

6–4 –2 0 2 4

OIP3

GC

TC = 105°C85°C25°C–40°C

NF

INPUT POWER (dBm)–20

NOIS

E FL

OOR

(dBm

/Hz)

–150

–154

–152

–156

–158

–160

–162

5576 G46

5–15 –10 –5 0

PLO = –6dBm–4dBm–2dBm0dBm6dBm

fOUT = 5899MHzfNOISE = 5801MHzfLO = 4899MHz

SUPPLY VOLTAGE (V)3

GAIN

AND

NF

(dB)

, OIP

3 (d

Bm)

30

15

20

25

10

5

0

–5

5576 G47

3.63.1 3.2 3.3 3.4 3.5

OIP3

GC

TC = 105°C85°C25°C–40°C

NF

OUTPUT POWER (dBm/TONE)–15

IM3

LEVE

L (d

Bc)

0

–20

–10

–30

–40

–50

–60

–70

–80

–90

5576 G48

5–10 –5 0

TC = 105°C85°C25°C–40°C

INPUT FREQUENCY (MHz)0

ISOL

ATIO

N (d

B)

70

60

50

40

30

20

10

0

5576 G49

500 1500 2000 25001000

TC = 105°C85°C25°C–40°C

CASE TEMPERATURE (°C)–45

GAIN

AND

NF

(dB)

, OIP

3 AN

D IP

1dB

(dBm

)

30

25

15

20

10

5

0

–5

5576 G50

105–15 15 45 75

OIP3

GC

IP1dB

NF

Page 11: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

115576fa

For more information www.linear.com/LTC5576

Typical ac perForMance characTerisTics 3.3V, 8000MHz Output Frequency: TC = 25°C. VCC = 3.3V, EN = High, PIN = –10dBm (–10dBm/Tone for 2-tone tests, ∆f = 2MHz), PLO = –4dBm, fIN = 900MHz, fLO = fOUT – fIN, unless otherwise noted. Test circuit shown in Figure 1.

Conversion Gain, OIP3 and NF vs LO Input Power Output Noise Floor vs Input Power

Conversion Gain, OIP3 and NF vs Supply Voltage

2-Tone IM3 Level vs Output Power Level

IN-OUT Isolation vs Input Frequency

Conversion Gain, OIP3, NF and IP1dB vs Case Temperature

Conversion Gain, OIP3 and NF vs Input Frequency

Conversion Gain and OIP3 vs Output Frequency LO Leakage vs LO Frequency

INPUT FREQUENCY (MHz)0

GAIN

(dB)

, OIP

3 (d

Bm) NOISE FIGURE (dB)

25

15

20

10

5

0

–5

30

20

25

15

10

5

0

5576 G51

2400400 800 1200 1600 2000

OIP3

TC = 105°C85°C25°C–40°C

NF

GC

OUTPUT FREQUENCY (MHz)

GAIN

(dB)

, OIP

3 (d

Bm)

25

15

20

10

5

0

–5

5576 G52

86007400 7600 7800 8000 8200 8400

OIP3

GC

TC = 105°C85°C25°C–40°C

LO FREQUENCY (MHz)

LO L

EAKA

GE (d

Bm)

0

–10

–30

–20

–40

–50

–60

5576 G53

80005600 6000 6400 6800 7200 7600

LO-IN

LO-OUT

TC = 25°C

LO POWER (dBm)–10

GAIN

(dB)

, OIP

3 (d

Bm) NOISE FIGURE (dB)

15

20

25

10

5

0

–5

20

25

30

15

10

5

0

5576 G54

2–8 –6 –4 –2 0

OIP3

TC = 105°C85°C25°C–40°C

NF

GC

INPUT POWER (dBm)–20

NOIS

E FL

OOR

(dBm

/Hz)

–148

–152

–150

–154

–156

–158

5576 G55

5–15 –10 –5 0

PLO = –6dBm–4dBm–2dBm0dBm6dBm

fOUT = 8094MHzfNOISE = 7997MHzfLO = 7094MHz

SUPPLY VOLTAGE (V)3

GAIN

(dB)

, OIP

3 (d

Bm)

15

20

25

10

5

0

–5

NOISE FIGURE (dB)

20

25

30

15

10

5

0

5576 G56

3.63.1 3.2 3.3 3.4 3.5

OIP3

TC = 105°C85°C25°C–40°CGC

NF

OUTPUT POWER (dBm/TONE)–15

IM3

LEVE

L (d

Bc)

0

–20

–10

–30

–40

–50

–60

–70

–80

–90

5576 G57

5–10 –5 0

TC = 105°C85°C25°C–40°C

INPUT FREQUENCY (MHz)0

ISOL

ATIO

N (d

B)

50

45

40

35

30

25

20

15

10

5

0

5576 G58

400 1200 1600 2000 2400800

TC = 105°C85°C25°C–40°C

CASE TEMPERATURE (°C)–45

GAIN

AND

NF

(dB)

, OIP

3 AN

D IP

1dB

(dBm

)

25

15

20

10

5

0

–5

5576 G59

105–15 15 45 75

GC

NF

OIP3

IP1dB

Page 12: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

125576fa

For more information www.linear.com/LTC5576

pin FuncTionsTEMP (Pin 1): Temperature Monitor. This pin is connected to the anode of a diode through a 30Ω resistor. It may be used to measure the die temperature by forcing a current into the pin and measuring the resulting pin voltage.

IN+, IN– (Pins 2, 3): Differential Signal Input. For optimum performance these pins should be driven with a differential signal. The input can be driven single-ended with some performance degradation by connecting the unused pin to RF ground through a capacitor. An internally generated 1.6V DC bias voltage is present on these pins, thus DC blocking is required.

LGND (Pin 4): DC Ground Return for the Input Amplifier. This pin must be connected to a good DC and RF ground. The typical current from this pin is 64mA. In some ap-plications, an external chip inductor may be used, though any DC resistance will reduce current in the mixer core, which could affect performance.

EN (Pin 5): Enable Pin. The IC is enabled when the applied voltage on this pin is greater than 1.8V. An applied voltage less than 0.5V will disable the IC. An internal 300k resistor pulls this pin low if it is left floating.

VCC (Pins 6, 7): Power Supply Pin: These pins should be connected together on the circuit board and bypassed with

a 10nF capacitor located close to the IC. (See the Auto Supply Voltage Detection and Supply Voltage Ramping sections for additional information).

IADJ (Pin 8): Bias Current Adjust Pin: This pin allows adjustment of the internal mixer current by adding an external pull-down resistor. The typical DC voltage on this pin is 1.8V. If not used, this pin must be left floating.

GND (Pins 9, 11, 12, 13, 14, 17 (Exposed Pad)): Ground. These pins must be soldered to the RF ground plane on the circuit board. The exposed pad on the package provides both electrical contact to the ground and a good thermal contact to the printed circuit board.

OUT (Pin 10): Single-Ended Output Pin. This pin is con-nected internally to a single-ended transformer output. A DC voltage should not be applied to this pin. External components may be needed for impedance matching.

LO (Pin 15): Single-Ended LO Input. This pin is impedance matched over a broad frequency range. It is internally biased at 1.7V, thus a DC blocking capacitor is required.

TP (Pin 16): Test Pin: This pin is used for production test purposes only and must be connected to ground.

block DiagraM

LOTP GNDGNDEXPOSEDPAD

GND

DOUBLE-BALANCED

MIXER

LINEARAMP

LOAMP

IN+

IN–

LGND

EN VCC IADJ

GND

OUT

VCC

TEMP

5576 BD01

1

2

17 16 15 14 13

3

4

12

11

10

9

5 6 7 8

BIAS

GND

GND

Page 13: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

135576fa

For more information www.linear.com/LTC5576

TesT circuiT

REF DES VALUE SIZE VENDOR

C1, C2 1000pF 0402 Murata GRM

C3 See Table 0402 Murata GJM

C4 100pF 0402 Murata GRM

C5 0.3pF 0402 AVX Accu-P

C6 See Table 0402 AVX Accu-P

C7 10nF 0402 Murata GRM

C8 1µF 0603 Murata GRM

L1 See Table 0402 Coilcraft HP

L2 0Ω 0402 Vishay

R1 See Table 0402 Vishay

T1 1:1, 4.5MHz to 3000MHz AT224-1 Mini-Circuits

Figure 1. Test Circuit Schematic

IN50Ω

LTC5576IN+C1

T11:1

C2

L2

C3

IN–

LGND

EN

EN

C7 C8

C6

VCC

VCC

IADJ

R1

GND

GND

OUT

VCC

TEMP

5576 TC01

1

2

3

4

12

11

10

9

5 6 7 8

OUT50Ω

GND

LOTP GND GND16 15 14 13

L1

C5

C4

LO50Ω

RF

0.016˝

0.016˝

0.062˝GND

BIASGND

DC2322AEVALUATION BOARDSTACK-UP(NELCO 4000-13EP)

OUTPUT FREQUENCY C3 C6 L1 R1 (5V) R1 (3.3V)

3500MHz 0.7pF 6.8nH (L) 0.5pF (C ) 2.61kΩ, 1% 511Ω, 1%

5800MHz - 0.2pF 0Ω 2.61kΩ, 1% 649Ω, 1%

8000MHz - 0.2pF 1nH 2.61kΩ, 1% 649Ω, 1%

Page 14: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

145576fa

For more information www.linear.com/LTC5576

Introduction

The LTC5576 uses a high performance LO buffer amplifier driving a double-balanced mixer core to achieve frequency conversion with high linearity. A differential common-emitter stage at the mixer input allows very broad band matching of the input. The Block Diagram and Pin Func-tions sections provide additional details. The LTC5576 is primarily intended for upmixer applications, however, due to its broadband input capability, it could be used as a downmixer as well.

The test circuit schematic in Figure 1 shows the external component values used for the IC characterization. The evaluation board layout is shown in Figure 2. Additional components may be used to optimize performance for different applications.

The single-ended LO port is impedance matched over a very broad frequency range for ease of use. Low side or high side LO injection can be used, though the value of R1 may need to be adjusted accordingly for best performance. The IC includes an internal RF balun at the mixer output, thus the OUT port is single-ended. External components are required to optimize the impedance match for the desired frequency range.

applicaTions inForMaTionIN Port

A simplified schematic of the mixer’s input path is shown in Figure 3. The IN+ and IN– pins drive the bases of the input transistors while internal R-C networks are used for impedance matching. The input pins are internally biased to a common-mode voltage of 1.6V, thus external DC block-ing capacitors, C1 and C2 are required. A small value of C3 can be used to extend the impedance match to higher frequencies. The 1:1 transformer provides single-ended to differential signal conversion for optimum performance.

Single-ended operation is possible by driving one input pin and connecting the unused input pin to RF ground through a capacitor. The performance will be degraded but may be acceptable at lower frequencies.

Figure 2. LTC5576 Evaluation Board Layout

Figure 3. IN Port with External Matching

IN

VCC

T1

1:1

5576 F03

C3

C2

VBIAS

LGND

VBIAS

LTC5576

C1IN+

IN–3

4

2

VCC VCC

5576 F02

Page 15: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

155576fa

For more information www.linear.com/LTC5576

applicaTions inForMaTionFigure 4 shows the typical return loss at the IN port of the evaluation board with C1 and C2 values of 1000pF. The curves illustrate that adding a C3 value of 0.7pF improves the return loss at higher frequencies.

Differential reflection coefficients and impedances for the IN port are listed vs frequency in Table 1.

Table 1. IN Port Differential Impedance vs Frequency

FREQUENCY (MHz)

IMPEDANCE (Ω) REFL. COEFF.

REAL* IMAG* MAG ANG (°)

0.2 823 –j3971 0.89 –1.4

1 751 –j800 0.88 –7.2

10 133 –j154 0.50 –41

30 78.1 –j248 0.25 –36

50 73.3 –j378 0.20 –27

100 71.3 –j665 0.18 –17

200 70.7 –j961 0.17 –12

500 70.0 –j832 0.17 –14

1000 67.9 –j509 0.16 –24

1200 66.7 –j439 0.16 –28

1500 64.6 –j367 0.15 –35

2000 60.4 –j302 0.13 –49

2200 58.5 –j289 0.12 –55

2500 55.5 –j280 0.11 –66

3000 50.6 –j303 0.08 –91

4000 42.9 –j7460 0.08 –178

5000 42.7 j155 0.17 126

6000 55.9 j89 0.29 96

*Parallel Equivalent Impedance

Figure 4. IN Port Return Loss

Figure 5. LO Port with External Matching

The tail current of the input amplifier stage flows through pin 4 (LGND). Typically, this pin should be connected directly to a good RF ground; however, at lower input frequencies, it may be beneficial to insert an inductor to ground for improved IP2 performance. To minimize the inductors effect on DC current, the inductor should have low DC resistance. The expected current from this pin is approximately 64mA and any DC resistance on this pin will reduce the current in the mixer core which could adversely impact performance. The value of R1 can be adjusted to account for L1's DC resistance.

LO Port

The LTC5576 uses a single-ended LO signal to drive an input of a bipolar differential amplifier, as shown in Figure 5. The diff-pair provides single-ended to differential conver-sion to drive the mixer core. Internal resistors provide a broad band impedance match of 50Ω that is maintained when the part is disabled. The LO pin is biased internally to 1.7V, thus an external DC blocking capacitor (C4) is required. Optional capacitor, C5, can be used to improve the return loss at higher frequencies if needed.

LO50Ω

VCC

5576 F05

LTC5576

C4

C5

LO50Ω

15

50Ω

15pF

FREQUENCY (MHz)0

RETU

RN L

OSS

(dB)

0

–10

–5

–15

–20

–25

5576 F04

40001000 2000 3000

T1 = TC1-1-13M+

C3 = 0pFC3 = 0.7pF

Page 16: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

165576fa

For more information www.linear.com/LTC5576

applicaTions inForMaTion

Figure 6. LO Port Return Loss

Measured return loss of the LO port is shown in Figure 6 for a C4 value of 100pF. Without C5, the return loss is bet-ter than 10dB from 100MHz to beyond 4GHz. The addition of 0.3pF at C5 extends the 10dB match to beyond 8GHz.

Figure 7. OUT Port with External Matching

External components C6 and L2 are used to optimize the impedance for the desired frequency range. High-Q com-ponents should be used here to minimize the impact on conversion gain. Table 2 lists the single-ended reflection coefficients and impedances of the OUT port and Table 3 lists component values for several application frequencies. In Figure 8, return loss is plotted for several of these values.

Table 2. OUT Port Impedance vs FrequencyFREQ (MHz)

IMPEDANCE (Ω) REFL COEFF

REAL* IMAG* MAG ANGLE

2500 12.8 51.8 0.78 86

3000 24.9 68.1 0.72 68

3500 50.7 80.7 0.63 51

4000 94.6 61.6 0.48 31

4500 89.5 4.7 0.29 5

5000 55.8 –8.0 0.09 –50

5500 38.7 –2.0 0.13 –169

6000 32.0 6.6 0.23 155

6500 30.6 16.5 0.31 128

7000 34.1 27.9 0.36 101

7500 41.2 39.4 0.41 79

8000 51.1 51.7 0.46 62

8500 62.5 57.7 0.47 51

*Series Impedance: Z = REAL + jIMAG

Table 3. Output Component ValuesFREQ (MHz)

12dB RL BAND (MHz)

VALUES

C6 L2

3000 2800 to 3200 Open 0.5pF (C)

3500 3360 to 3830 6.8nH (L) 0.5pF (C)

5000 4000 to 6700 3.3nH (L) 0.6pF (C)

5200 4700 to 5800 Open 0Ω

5800 4870 to 7040 0.2pF 0Ω

8000 7500 to 8700 0.2pF 1nHOUT50Ω

5576 F07

LTC5576

C6

L210

VCC

OUT

FREQUENCY (MHz)0

RETU

RN L

OSS

(dB)

0

–10

–5

–15

–20

–25

5576 F06

80002000 4000 6000

EN = ON

C5 = 0.3pF

EN = OFF

OUT Port

The LTC5576 uses an on-chip balun to provide a single-ended output, as shown in Figure 7. The output is opti-mized for 4GHz to 6GHz applications, but may be used for output frequencies as low as 3GHz, and as high as 8GHz.

Page 17: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

175576fa

For more information www.linear.com/LTC5576

Figure 10. Current Adjust Pin Interface

applicaTions inForMaTion

DC and RF Grounding

The LTC5576 relies on the backside ground of the package for both RF and thermal performance. The exposed pad must be soldered to the low impedance topside ground plane of the board. The topside ground should also be con-nected to other ground layers to aid in thermal dissipation and ensure a low inductance RF ground. The LTC5576 evaluation board (Figure 2) utilizes a four by four array of vias under the exposed pad for this purpose.

Enable Interface

Figure 9 shows a simplified schematic of the EN interface. To enable the part, the applied EN voltage must be greater than 1.8V. Setting the voltage to below 0.5V will disable the IC. If the enable function is not required, the enable pin can be connected directly to VCC. If the enable pin is left floating, an internal 300k pull-down resistor will disable the IC.

The voltage at the enable pin should never exceed the power supply voltage (VCC) by more than 0.3V, otherwise supply current may be sourced through the upper ESD diode. Under no circumstances should voltage be applied to the enable pin before the supply voltage is applied to the VCC pin. If this occurs, damage to the IC may result.

Figure 8. OUT Port Return Loss Tuned for (A) 3000MHz, (B) 3500MHz, (C) 5200MHz, (D) 5800MHz, (E) 8000MHz

Figure 9. EN Pin Interface

Current Adjust Pin (IADJ)

The IADJ pin (Pin 8) can be used to optimize the perfor-mance of the mixer. The nominal open-circuit DC voltage on this pin is 1.8V and the typical short-circuit current is 1.9mA. As shown in Figure 10, an internal 4mA reference sets the current in the mixer core. Connecting R1 to the IADJ pin shunts some of this current to ground, thus reducing the mixer core current. The optimum value of R1 depends on the supply voltage and LO injection (low side or high side). Some recommended values are shown in Table 4 but the values can be optimized as required for individual applications.

5576 F09

LTC5576

5

300k

50k

VCC

EN

5576 F10

LTC5576

R1

VCC

4mAIADJ 715Ω

8

BIAS

FREQUENCY (MHz)2500

RETU

RN L

OSS

(dB)

0

–10

–5

–15

–20

5576 F08

850055003500 4500 6500 7500

A

B

C

D

E

Page 18: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

185576fa

For more information www.linear.com/LTC5576

Figure 11. TEMP Pin Voltage vs Junction Temperature

applicaTions inForMaTionTable 4. Recommended R1 Values

VCC (V) fIN (MHz) fOUT (MHz) fLO (MHz) R1 (Ω)

3.3 456 3500 3044 511

3.3 900 5800 4900 649

3.3 900 8000 7100 649

5.0 456 3500 3044 2.61k

5.0 900 5800 4900 2.61k

5.0 1300 5000 6300 2.61K

Temperature Monitor Pin (TEMP)

The TEMP pin (pin 1) is connected to an on-chip diode that can be used as a coarse temperature monitor by forcing current into it and measuring the resulting voltage. The temperature diode is protected by a series 30Ω resistor and additional ESD diodes to ground. The TEMP pin voltage is shown as a function of junction temperature in Figure 11.

Given the voltage at the pin, VTEMP, (in mV) the junction temperature in °C can be estimated for forced input cur-rents of 10µA and 80µA using the following equations:

TJ(10µA) = (742.4 – VTEMP)/1.796

TJ(80µA) = (795.6 – VTEMP)/1.609

Supply Voltage Ramping

Fast ramping of the supply voltage can cause a current glitch in the internal ESD protection circuits. Depending on the supply inductance, this could result in a supply volt-age transient that exceeds the maximum rating. A supply voltage ramp time of greater than 1ms is recommended.

It is recommended that the EN pin be used to enable or disable the LTC5576 with VCC held constant. However, if the EN pin and VCC are switched simultaneously, then the configuration shown in Figure 12 is recommended. A maximum VCC ramp rate at pins 6 and 7 of 20V/ms is recommended.

JUNCTION TEMPERATURE (°C)–50

TEM

P PI

N VO

LTAG

E (m

V) 800

850

750

700

650

600

9070503010–10–30 110

550

500

900

5576 F11

IIN = 80µA

IIN = 10µA

Figure 12. Suggested Configuration for Simultaneous VCC and EN Switching

Auto Supply Voltage Detection

An internal circuit automatically detects the supply volt-age and configures internal components for 3.3V or 5V operation. The DC current is affected when the auto-detect circuit switches at approximately 4.1V. To avoid undesired operation, the mixer should only be operated in the 3.1V to 3.5V or 4.5V to 5.3V supply ranges.

Spurious Output Levels

Mixer spurious output levels vs harmonics of the IN and LO frequencies are tabulated in Tables 5 and 6 for the 5V, 5800MHz application. Results are shown for spur frequen-cies up to 18GHz. The spur frequencies can be calculated using the following equation:

fSPUR = |M • fIN ± N • fLO|

Table 5 lists the difference spurs (fSPUR = |M • fIN – N • fLO|) and Table 6 lists the sum spurs (fSPUR = |M • fIN + N • fLO|). The spur levels were measured on a standard evaluation board at room temperature using the test circuit of Figure 1.

The spurious output levels for any application will be de-pendent on the external matching circuits and the particular application frequencies.

5576 F12

LTC5576

5 6 7

220µF

0.5Ω

10k

10nF

VCCSUPPLY

VCCVCCEN

Page 19: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

195576fa

For more information www.linear.com/LTC5576

applicaTions inForMaTionTable 5. Output Spur Levels (dBc), fSPUR = |M • fIN – N • fLO|(fIN = 900MHz, fOUT = 5.8GHz, Low Side LO at 0dBm)

N

0 1 2 3 4 5

M

0 – –22.4 2.3 –24.6

1 –56.3 –0.8 –38.5 –34.6

2 –72.3 –51.9 –49.7 –68.6 –81.1

3 –81.9 –75.7 –76.7 –69.7 *

4 * * * * *

5 * * * * *

6 * * * * *

7 * * * * *

8 * * * * * *

9 * * * * * *

10 * * * * * *

*Less Than –90dBc

Table 6. Output Spur Levels (dBc), fSPUR = |M • fIN + N • fLO|(fIN = 900MHz, fOUT = 5.8GHz, Low Side LO at 0dBm)

N

0 1 2 3 4 5

M

0 – –22.4 2.3 –24.7

1 –56.3 0.0 –39.3 –39.5

2 –72.2 –49.2 –45.6 –73.4

3 -81.9 –71.7 –82.6 *

4 * * –87.0

5 * * *

6 * * *

7 * * *

8 * * *

9 * * *

10 * *

*Less Than –90dBc

Typical applicaTions

IN100MHz TO

2400MHzLTC5576

IN+

1000pF

1:1TC1-1-13M+

1000pF

IN–

LGND

EN

EN

10nF 1µF

0.2pF

VCC

5V

IADJ

2.61k

GND

GND

OUT

VCC

TEMPTEMP

5576 TA02a

1

2

3

4

12

11

10

9

5 6 7 8

OUT4700MHz TO7000MHz

GND

LOTP GND GND16 15 14 13

0.3pF

100pF

LO4600MHz

OUTPUT FREQUENCY (MHz)4500

GAIN

(dB)

, OIP

3 (d

Bm)

25

30

15

20

10

5

0

–5

5576 TA02b

70005000 5500 6000 6500

TC = 105°C85°C25°C–40°C

fLO = 4.6GHz

1.2GHz to 5.8GHz Upmixer with 2.3GHz Bandwidth Conversion Gain and OIP3 vs Output Frequency

Page 20: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

205576fa

For more information www.linear.com/LTC5576

Typical applicaTions

Conversion Gain and OIP3 vs Input Frequency

Noise Figure vs Input Frequency

LO-OUT Leakage vs LO Frequency

IN, OUT and LO Port Return Loss vs Frequency

Upmixer with Broadband Input and 3GHz Output

IN100MHz TO

1200MHzLTC5576

IN+

1000pF

1:1TC1-1-13M+

1000pF

IN–

LGND

EN

EN

10nF 1µF

0.5pF

VCC

5V

IADJ

2.61k

GND

GND

OUT

VCC

TEMPTEMP

5576 TA03a

1

2

3

4

12

11

10

9

5 6 7 8

OUT3000MHz

GND

LOTP GND GND16 15 14 13

0.3pF

100pF

LO 1800MHzTO 4200MHz

0.7pF

INPUT FREQUENCY (MHz)0

OIP3

(dBm

) GAIN (dB)

25

30

15

20

10

5

0

3

4

1

2

0

–1

–2

5576 TA03b

1200200 400 600 800 1000

LSLOHSLO

TC = 25°C

LO FREQUENCY (MHz)1800

LO L

EAKA

GE (d

Bm)

–10

0

–30

–20

–40

–50

–60

–70

5576 TA03c

42002200 2600 3000 3400 3800

LSLOHSLO

TC = 25°C

INPUT FREQUENCY (MHz)0

NOIS

E FI

GURE

(dB)

15

16

13

14

12

11

10

9

8

5576 TA03d

1200200 400 600 800 1000

LSLOHSLO

TC = 25°C

FREQUENCY (MHz)0

RETU

RN L

OSS

(dB)

0

–10

–5

–15

–20

–25

5576 TA03e

4000

IN

OUT

LO

1000 2000 3000

Page 21: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

215576fa

For more information www.linear.com/LTC5576

Typical applicaTions

OIP3 vs Input FrequencyConversion Gain vs Input Frequency

IN, OUT and LO Return Loss vs Frequency

Broadband 4GHz to 6GHz Output Matching with Fixed LO Frequency (High Side LO)

IN300MHz TO

2300MHzLTC5576

IN+

1000pF

1:1TC1-1-13M+

1000pF

IN–

LGND

EN

EN

10nF 1µF

0.6pF

3.3nH

VCC

5V

IADJ

2.61k

GND

GND

OUT

VCC

TEMPTEMP

5576 TA04a

1

2

3

4

12

11

10

9

5 6 7 8

OUT4GHz TO 6GHz

GND

LOTP GND GND16 15 14 13

0.3pF

100pF

LO 6.3GHz

0.7pF

INPUT FREQUENCY (MHz)0

OIP3

(dBm

)

30

25

35

15

20

10

5

0

5576 TA04b

2500500 1000 1500 2000

fLO = 6300MHz

TC = 105°C85°C25°C–40°C

INPUT FREQUENCY (MHz)0

GAIN

(dB)

4

3

5

1

2

0

–1

–2

–3

5576 TA04c

2500500 1000 1500 2000

fLO = 6300MHzTC = 105°C85°C25°C–40°C

FREQUENCY (MHz)0

RETU

RN L

OSS

(dB)

0

–10

–5

–15

–20

–25

5576 TA04d

8000

IN

OUT

LO

2000 4000 6000

Page 22: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

225576fa

For more information www.linear.com/LTC5576

Typical applicaTions

IN100MHz TO

6000MHzLTC5576

IN+

1000pF

1:1TCM1-63AX+

1000pF

IN–

LGND

EN

EN

10nF 1µF

0.2pF

VCC

5V

IADJ

1.7k

GND

GND

OUT

VCC

TEMPTEMP

5576 TA05a

1

2

3

4

12

11

10

9

5 6 7 8

OUT6500MHz

GND

LOTP GND GND16 15 14 13

0.3pF

100pF

LO 500MHz TO6400MHz

0.3pF 0.05pF

Very Broadband 100MHz to 6GHz Input Matching with 6.5GHz Output and Low Side LO

INPUT FREQUENCY (MHz)0

GAIN

(dB)

, OIP

3 (d

Bm) RETURN LOSS (dB)

30

20

25

15

10

5

0

–5

5

–5

0

–10

–15

–20

–25

–30

5576 TA05b

8000

OIP3

GC

2000 4000 6000

IN RET LOSS

TC = 25°CfOUT = 6.5GHzfLO = fOUT –fIN

Conversion Gain, OIP3 and IN Return Loss vs Input Frequency

Page 23: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

235576fa

For more information www.linear.com/LTC5576

Typical applicaTions

IN5.5GHz TO

6GHzLTC5576

IN+

1000pF

1:1TCM1-63AX+

1000pF

IN–

LGND

EN

EN

10nF 1µF

0.5pF

6.8nH

VCC

5V

IADJ

OPEN

GND

GND

OUT

VCC

TEMPTEMP

5576 TA06a

1

2

3

4

12

11

10

9

5 6 7 8

OUT 3.2GHzTO 3.7GHz

GND

LOTP GND GND16 15 14 13

0.3pF

100pF

LO 2300MHz

0.3pF 0.05pF

INPUT FREQUENCY (MHz)5500

GAIN

(dB)

, OIP

3 (d

Bm)

25

15

20

10

5

–5

0

5576 TA06b

60005600 5700 5800 5900

fLO = 2300MHzfOUT = fIN – fLO

TC = 105°C85°C25°C–40°C

Downmixer Applications, 5.8GHz to 3.5GHz with Low Side LO

Conversion Gain and OIP3 vs Input Frequency

Page 24: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

245576fa

For more information www.linear.com/LTC5576

package DescripTionPlease refer to http://www.linear.com/product/LTC5576#packaging for the most recent package drawings.

4.00 ±0.10(4 SIDES)

NOTE:1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)2. DRAWING NOT TO SCALE3. ALL DIMENSIONS ARE IN MILLIMETERS4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE5. EXPOSED PAD SHALL BE SOLDER PLATED6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

PIN 1TOP MARK(NOTE 6)

0.55 ±0.20

1615

1

2

BOTTOM VIEW—EXPOSED PAD

2.15 ±0.10(4-SIDES)

0.75 ±0.05 R = 0.115TYP

0.30 ±0.05

0.65 BSC

0.200 REF

0.00 – 0.05

(UF16) QFN 10-04

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

0.72 ±0.05

0.30 ±0.050.65 BSC

2.15 ±0.05(4 SIDES)2.90 ±0.05

4.35 ±0.05

PACKAGE OUTLINE

PIN 1 NOTCH R = 0.20 TYPOR 0.35 × 45° CHAMFER

UF Package16-Lead Plastic QFN (4mm × 4mm)

(Reference LTC DWG # 05-08-1692 Rev Ø)

Page 25: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

255576fa

For more information www.linear.com/LTC5576

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.

revision hisToryREV DATE DESCRIPTION PAGE NUMBER

A 02/16 Delete Conversion Gain Maximum value 3

Page 26: LTC5576 – 3GHz to 8GHz High Linearity Active Upconverting Mixer · 2020-02-01 · LTC5576 5576fa For more information  CC, NF NF NF NF

LTC5576

265576fa

For more information www.linear.com/LTC5576 LINEAR TECHNOLOGY CORPORATION 2015

LT 0216 REV A • PRINTED IN USALinear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417(408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com/LTC5576

relaTeD parTs

Typical applicaTion

PART NUMBER DESCRIPTION COMMENTSMixers and ModulatorsLTC5510 1MHz to 6MHz, Wideband High Linearity Active

Mixer1.5dB Gain, Up and Downconversion, 3.3V or 5V Supply

LT®5578 400MHz to 2.7GHz Upconverting Mixer 27dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Output TransformerLT5579 1.5GHz to 3.8GHz Upconverting Mixer 27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF PortsLTC5577 300MHz to 6GHz High Signal Level Active

Downconverting Mixer0dB Gain, 30dBm IIP3 and 15dBm Input P1dB, 3.3V/180mA Supply

LTC5551 300MHz to 3.5GHz Ultra High Dynamic Range Downconverting Mixer

36dBm IIP3, 2.4dB Gain, 9.7dB NF, 0dBm LO Drive, 18dBm P1dB

LTC5544 4GHz to 6GHz, 3.3V High Gain Downconverting Mixer

24dB Gain, 25.9dBm IIP3 and 11.3dB NF at 5.25GHz, 3.3V/194mA Supply

LTC5588-1 200MHz to 6GHz I/Q Modulator 31dBm OIP3 at 2.14GHz, –160.6dBm/Hz Noise FloorLTC5585 700MHz to 3GHz Wideband I/Q Demodulator >530MHz Demodulation Bandwidth, IIP2 Tunable to >80dBm, DC Offset NullingAmplifiersLTC6430-15 High Linearity Differential IF Amp 20MHz to 2GHz Bandwidth, 15.2dB Gain, 50dBm OIP3, 3dB NF at 240MHzLTC6431-15 High Linearity Single-Ended IF Amp 20MHz to 1.7GHz Bandwidth, 15.5dB Gain, 47dBm OIP3, 3.3dB NF at 240MHzLTC6412 31dB Linear Analog VGA 35dBm OIP3 at 240MHz, Continuous Gain Range –14dB to 17dBLT5554 Ultralow Distortion IF Digital VGA 48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain StepsRF Power DetectorsLT5538 40MHz to 3.8GHz Log Detector ±0.8dB Accuracy Over Temperature, –72dBm Sensitivity, 75dB Dynamic RangeLT5581 6GHz Low Power RMS Detector 40dB Dynamic Range, ±1dB Accuracy Over Temperature, 1.5mA Supply CurrentLTC5582 40MHz to 10GHz RMS Detector ±0.5dB Accuracy Over Temperature, ±0.2dB Linearity Error, 57dB Dynamic RangeLTC5583 Dual 6GHz RMS Power Detector Up to 60dB Dynamic Range, ±0.5dB Accuracy Over Temperature, >50dB IsolationADCsLTC2208 16-Bit, 130Msps ADC 78dBFS Noise Floor, >83dB SFDR at 250MHzLTC2153-14 14-Bit, 310Msps Low Power ADC 68.8dBFS SNR, 88dB SFDR, 401mW Power ConsumptionRF PLL/Synthesizer with VCOLTC6948 Low Noise, Low Spurious Fractional-N PLL with

Integrated VCO373MHz to 6.39GHz, –157dBc/Hz WB Phase Noise Floor, –108dBc/Hz Closed-Loop Phase Noise

IN100MHz TO

1200MHz LTC5576IN+

1000pF

IN–

LGND

EN

EN

10nF 1µF

0.5pF

6.8nH

VCC

5V

IADJ

3k

GND

GND

OUT

VCC

TEMPTEMP

5576 TA07a

1

2

3

4

12

11

10

9

5 6 7 8

OUT 3.5GHz

GND

LOTP GND GND16 15 14 13

100pF

LO 3600MHzTO 4700MHz

1000pF

INPUT FREQUENCY (MHz)0

GAIN

(dB)

, OIP

3 (d

Bm)

30

25

15

20

10

5

–5

0

5576 TA07b

1200200 400 600 800 1000

fOUT = 3500MHzfLO = fOUT – fIN

TC = 105°C85°C25°C–40°C

Single-Ended Input with 3.5GHz Output

Gain and OIP3 vs Input Frequency