LS-DYNA Smoothed Particle Galerkin Method for Severe...

33
LS-DYNA ® Smoothed Particle Galerkin Method for Severe Deformation and Failure Analyses in Solids C. T. Wu, Y. Guo and W. Hu Livermore Software Technology Corporation

Transcript of LS-DYNA Smoothed Particle Galerkin Method for Severe...

Page 1: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

LS-DYNA®Smoothed Particle Galerkin

Method for Severe Deformation and Failure

Analyses in Solids

C. T. Wu, Y. Guo and W. Hu

Livermore Software Technology Corporation

Page 2: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

2

OutlineOutline

1. Methods in LS-DYNA for solids and structure

analyses.

2. Numerical issues in conventional particle methods.

3. Smoothed particle Galerkin method for solid

applications.

4. Benchmarks and numerical examples.

5. Keyword input format.

6. Conclusions and future plans.

Page 3: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

3

Methods for Solid and Structural Methods for Solid and Structural

Analyses in LSAnalyses in LS--DYNADYNA®®

Rubber Materials: FEM, EFG; MEFEM

Foam materials: FEM, SPH, EFG, SPG

Metal materials: FEM, SPH, EFG, MEFEM, Adaptive FEM and EFG

Quasi-brittle material fracture: FEM, SPH, EFG, State-based Peridynamic

method

E.O.S. materials and high speed applications: ALE, SPH, SPG

State-based Peridynamic method

Shells: FEM, EFG, SFEM

Soil: ALE, SPH, EFG, SPG

Discrete materials: discrete element method

Composites and Unit cell analysis: FEM, EFG, Immersed Particle Galerkin

method

Page 4: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

4

Lack of approximation consistency

Impose first-order reproducing condition

Tension instability

Ensure material failure occurs before numerical fracture

Material diffusion

Use higher-order integration scheme

Presence of spurious or zero-energy modes

Need stabilization

Difficulty in enforcing the boundary conditions

Special treatments (Convex approximation…)

Numerical Issues in Conventional Particle Numerical Issues in Conventional Particle

Analysis of Solids and StructuresAnalysis of Solids and Structures

Page 5: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

5

3D Smoothed Particle 3D Smoothed Particle GalerkinGalerkin MethodMethod

FEM

SPG

• Solid applications

• Read all FEM input formats

• A purely particle computation

• Handle severe deformation + failure

Page 6: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

6

Smoothed Particle Galerkin (SPG) Method

Has explicit/implicit versions. Currently only explicit method

implemented.

A pure particle integration method without integration cell.

Removes low-energy modes due to rank deficiency in nodal

integration.

Related to residual-based Galerkin meshfree method.

Can be related to non-local or gradient types inelasticity.

Without stabilization control parameters.

Stability analysis via Variational Multi-scale analysis.

First-order convergence in energy norm.

Capable of providing a physical-based failure analysis.

Has the trial version (will be formally released in this year).

Main FeaturesMain Features

Page 7: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

7

Residual-based Meshfree Galerkin Principle

Wu et. al submitted to J.

Comput. Physics. (2014)

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )

ˆ ˆ

ˆ

ˆ ˆ

ˆ

(2)2(2)

(2)2(2)

Ψ ; dΩ Ψ ; dΩ

1Ψ ; dΩ

2!

Ψ ; dΩ Ψ ; dΩ Ψ ; dΩ

1Ψ ; dΩ

2!

Ω Ω

Ω

Ω Ω Ω

Ω

≈ + ⋅

+ ⋅

= + −

+ ⋅

∫ ∫

∫ ∫ ∫

ɶ ɶ

ɶ

ɶ ɶ ɶ

ɶ

u X Y X u X Y X u X Y - X

Y X u X Y - X

u X Y X u X Y X Y X Y X

u X Y X Y - X

∇∇∇∇

∇∇∇∇

∇∇∇∇

∇∇∇∇

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ))

ˆ ˆ

ˆ ˆ

(2)2(2)

2(2

1Ψ ; dΩ Ψ ; dΩ

2!Ω Ω

= + ⋅

= + ⋅

∫ ∫ɶ ɶu X Y X u X Y X Y - X

u X u X η X

∇∇∇∇

∇∇∇∇

( ) ( ) ( ) ( ) ( )( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ, : : : :

ˆ ˆ ˆ ˆ , ,

(2) (2)h s s

h h

stan stab

a d d

a a

δ δ δ

δ δ

Ω Ω= Ω+ Ω

= +

∫ ∫u u u C u u C u

u u u u

∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇

( ) ( ) hh la Vuuuu ∈∀= ˆ ˆˆ,ˆ δδδ

( ) ( ) ( )( )

ˆ ˆ ˆ ˆ, : :

1ˆ ˆ ˆ: :

2

(2) (2)h

stab

(2)(2) (2)

a dδ δΩ

= Ω

= +

∫u u u C u

u η u u η

∇ ∇∇ ∇∇ ∇∇ ∇

∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇∇ ∇ ∇ ∇ ∇

( ) ( )( )ˆ ˆ ˆ ˆ :N

2l d d dδ δ δ δ

Ω Γ Ω= ⋅ Ω+ ⋅ Γ − ∇ ⋅ Ω∫ ∫ ∫u u f u t u η f

Displacement approximation

Variational formulation

Gradient type nonlocal strain

Page 8: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

8

Well-defined Mathematical Property

( )( ) ( )( )

( )

22 22

1 11 0 00

1

min

2 1 2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ , ,

ˆ ˆ ˆ , , , 0,

(2)s s

h h

stan stab

h h

c c

ca a

c a c c

γ

≤ ≤ +

≤ +

= > ∈

u u u u

u u u uC

u u u V

∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇∇ ∇ ∇

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( )( )

1/ 2 1/ 22 2

max 0 0

1/ 2 1/ 22 2

3 0 0

max 4 51 1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ, : : : :

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ,

(2) (2)h s s

3 4 5

a d d

d d

c h d h d

c c c ,c ,c

γ

γ

Ω Ω

Ω Ω

Ω Ω

≤ Ω+ Ω

≤ Ω + Ω

+ Ω + Ω

≤ ≤

∫ ∫

∫ ∫

∫ ∫

u v u C v u C v

C ε u ε v

ε u ε v

C u v u v

∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇∇ ∇ ∇ ∇

∇ ∇∇ ∇∇ ∇∇ ∇

ˆ ˆ

h0 , > ∀ ∈u v V

Coercivity

Continuity

Unique solution !

Page 9: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

9

( ) ( ) ( ) hhhbhhhhh laa Vvvuvuv ∈∀=+ ,,

( ) ( ) ( ) hbbbbhhbh laa Bvvuvuv ∈∀=+ ,,

Error Estimation via Variational Multi-scale Method

( ) Γ=∈=Ω ,:: 1 onbbbh 0vHvvB

( ) ( )

( ) ( )

( ) ( )

( )∑

∑∑

∑ ∑

=

= =

= =

=

=

=

=

=

NP

1K

KK

NP

1K

NP

1J

KJJK

NP

1J

NP

1K

KJKJ

NP

1J

JJ

h

ΨΨ

ΨΨ

Ψ

ux

uxx

uxx

uxxu

~

~~

~~

ˆ~

φ

( ) ( )( ) ( ) ( ) ( ) b

III

BP

1I

b

I

b

I

BP

I

I

b

III

b ZΨΨ ∈∀=

−≈ ∑∑

==

xxuxxuxxu ,~~

1

φ

RKΨRRKKKΨuuu~~~~~ 111 −−− +

+−=+=

TbbTbhh T

( ) ( ) ( )( )

( ) ( ) ( )2

,2

2

,

2

,2

2

,

2

,2

2

,

22

2

~

,,,

ΩΩΩ≤+≤

−∆+−≤

−−+−−=−−

uuu

uuuu

uuuuuuuuuuuu h

hchchc

h

aaa

e

h

e

h

hh

stab

hhhhhh

λµλµλµError estimation in energy-norm

fine-scale approximation

coarse-scale equation

fine-scale equation

global residual-free fine-scale space

Page 10: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

10

Nonlinear SPG Implementation

,, Γ∆−Ω∆−Ω∆+Ω∆=Π∆ ∫∫∫∫ ΓΩΩΩdtudfuduTudC

Nxxxiiiilkijkljiklijklij δδδεδεδ

( ) v

1n

Tv

n

v

1n

T δδ +

+

++ =∆ RUUKU~~~ 1

1

( ) v

1n

-Tv

n

v

1n

-T

+

+

+−

+ =∆ RAUAKA1

1

1

UAU-1=

~

( ) ( ) ( )IXXIXA ∑=

==NP

1K

KJIKIJIJ ΨΨφ

( )int1ffAUMAA −=− ext-T-T ɺɺ

( )intffAUM −= ext-Tɺɺ

∑ ∑ −−==NP

J

MLKM

T

IK

NP

J

IJ

RS

I

1AMAMM

Explicit dynamic formulation

( ) ( )∑=

⋅−=⋅∇−=NP

J

IJJIIII Ψ

dt

d

1

,

~~ xuu xɺɺ ρρ

ρ

Implicit formulation

Corresponding coordinate

systems in SPG computation

Currently implemented in LS-DYNA©

Page 11: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

11

( )1+− k

IΨ x

( )1++ k

IΨ x

( )k

IΨ x+

Updated Lagrangain /Eulerian Kernels

( ) ( ) ( ) 1

1

+

+

+

++

∂∂

=∂

∂∂

=∂

∂= k

jik

j

I

k

j

k

j

k

j

1k

I

1k

i

1k

I1k

iI, fx

x

x

x

x

-Ψ-Ψxx

x

( ) ( )i

1k

I1k

iI,x

ΨΨ

+∂=+

++ x

x

Consistency Stability Convergence

First-order rate of convergence in energy norm !

Page 12: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

12

Material fracture v.s. Numerical fracture

physical material fracture before numerical fracture Enlarge numerical support !

Reference configuration

Deformed configuration

Page 13: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

13

Prandtl’s punch problem

zV

Dimension: 4x2x1

Particles: 21x11x6

Elastic material: E=6.9x104

v=0.3

Vz=2

ρ0=2.7×103

Updated

Lagrangian

Eulerian

Page 14: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

14

Updated Lagrangian

Eulerian

t=0.2 0.4 0.6 0.8 1.0

Fixed ∆t=3.0×10-5

Prandtl’s punch problem

Page 15: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

15

Nodal force comparison with different kernel

approximations

Prandtl’s punch problem

Page 16: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

16

Taylor Bar Impact

R=3.91 mm

H=23.46 mm

ρ0=2.7×10-6 kg/mm3

E=78.2GPa

v=0.3

σy=0.29(1+125ep)0.1

V0=373 mm/ms

Particles: 2263

DX=DY=DZ=1.4 SMSTEP=25

Final H=18.07mm

Exp. H=16.51mm

Page 17: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

17

t=0.004 0.012 0.020 0.028

∆t=1.76×10-5 1.72×10-5 1.66×10-5 1.66×10-5

Progressive deformation with effective plastic strain contour

Bottom

view

Taylor Bar Impact

Page 18: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

18

Plate Impact (Ductile Material)

Ball: rigid, R=5.0

Plate: R=20.0, thickness=5.0

Particles: 25721, updated Lagrangian

Elastic perfectly-plastic material:

ρ0=7.85×10-3

E=6.9x104

v=0.3

σy=200.0

Vz=-600.0, -400.0, -300.0

Page 19: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

19

Plate Impact

t=0.02

∆t=7.47×10-6

t=0.04

∆t=7.44×10-6

t=0.06

∆t=7.44×10-6 t=0.08

∆t=7.39×10-6

t=0.10

∆t=7.36×10-6

Bottom

view

Page 20: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

20

Front view

Bottom view

Lagrangian Eulerian Eulerian CMD Eulerian PSD

Effective plastic strain (v=600, t=0.06)

Page 21: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

21

t=0.02

∆t=7.48×10-6

t=0.04

∆t=7.44×10-6

t=0.06

∆t=7.47×10-6t=0.08

∆t=7.48×10-

6

t=0.09

∆t=7.44×10-

6

Bottom

view

Progressive effective plastic strain plots with phenomenological

strain-based damage (v=400)

Page 22: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

22

v=300

t=0.12

v=400

t=0.09

v=600

t=0.06

Effective plastic strain with phenomenological strain-based damage

Bottom

view

Top

view

Front

view

Page 23: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

23

v=300 v=400 v=600

Page 24: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

24

Plate Impact (Brittle Material)

Front View

Back View

Final Crack Pattern

Damage Indicator

(movie)

Page 25: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

25

Metal cutting analysis (1)

Cutting Speed = 10 m/s

Fixed ∆t=3.0×10-5

Aluminum

ρ0=2.7×10-6 kg/mm3

E=78.2GPa

v=0.3

σy=0.29(1+125ep)0.1

Strain-based failure criteria εfail = 0.5

Page 26: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

26

Metal cutting analysis (2)

Cutting Speed = 10 m/s

with different cutting

angle

Fixed ∆t=3.0×10-5

Page 27: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

27

Metal cutting analysis (3)

Cutting Speed = 10 m/s

with different depth

Fixed ∆t=3.0×10-5

Page 28: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

28

Metal cutting analysis (4)

Cutting Speed = 100 m/s

Fixed ∆t=3.0×10-5

Page 29: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

29

Page 30: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

30

Metal shearing analysis

Effective plastic strain is monotonically increased w/o diffusion !

Page 31: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

31

Card1 1 2 3 4 5 6 7 8

Variable SECID ELFORM AET

Type I 47 I

Default

*SECTION_SOLID_SPG

Keyword Input FormatKeyword Input Format

Card2 1 2 3 4 5 6 7 8

Variable DX DY DZ ISPLINE KERNEL LSCALE SMSTEP SWTIME

Type F F F I I F I F

Default 1.5 1.5 1.5 0 3 15

Card3 1 2 3 4 5 6 7 8

Variable IDAM FS STRETCH

Type I F

Default 0

Page 32: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

32

Failure strain if IDAM=1; maximum principal strain if IDAM=2FS

Damage option.

EQ.0: Continuum damage mechanics (default)

EQ.1: Phenomenological strain damage

EQ.2: Maximum principal strain damage

IDAM

VARIABLE DESCRIPTION

SECID Section ID.

ELFORM Element formulation options. Set to 47 to active SPG method.

DX, DY, DZ Normalized dilation parameters of the kernel functions in X, Y and Z directions.

ISPLINE Option for kernel functions.

EQ.0: Cubic spline function (default).

EQ.1: Quadratic spline function.

EQ.2: Cubic spline function with circular shape.

KERNEL Type of kernel approximation.

EQ.0: updated Lagrangian kernel.

EQ.1: Eulerian kernel.

EQ.2: Semi-Lagrangian kernel.

EQ.3: Pseudo-Lagrangian kernel.

LSCALE Length scale for displacement regularization.

SMSTEP Interval of time steps to conduct displacement regularization.

SWTIME Time to switch from updated Lagrangian kernel to Eulerian kernel.

STRETCH Stretching parameter if IDAM=1

Page 33: LS-DYNA Smoothed Particle Galerkin Method for Severe ...ftp.lstc.com/anonymous/outgoing/support/... · 3 Methods for Solid and Structural Analyses in LS -DYNA ® Rubber Materials:

33

Conclusions and Future PlansConclusions and Future Plans

1. Smoothed Particle Galerkin (SPG) Method is implemented in LS-DYNA®

and a SMP trial version is available.

2. Mathematical and numerical properties have been provided.

3. The method is able to handle severe deformation involving material

failure for various solid applications.

4. The application to compressible fluids or fluid-type solids is currently

excluded.

5. Official SMP and MPP versions will be released in this year.

6. The extension to adaptive FEM/EFG method will be considered.

7. The switch from FEM to SPG method for severe deformation analysis

will be implemented.