Liquid Metal Reactor Design Technology Development ...

539
KR0000195 KAERI/RR-2026/99 M Liquid Metal Reactor Design Technology Development Development of Mechanical Structure Design Technology for LMR A * 7|

Transcript of Liquid Metal Reactor Design Technology Development ...

Page 1: Liquid Metal Reactor Design Technology Development ...

KR0000195

KAERI/RR-2026/99

M

Liquid Metal ReactorDesign Technology Development

Development of Mechanical StructureDesign Technology for LMR

A*

7|

Page 2: Liquid Metal Reactor Design Technology Development ...

Please be aware that all of the Missing Pages in this document wereoriginally blank pages

Page 3: Liquid Metal Reactor Design Technology Development ...

•=]

nf

2000. 5. 4.

: 0|

0|

C 3

AH

Page 4: Liquid Metal Reactor Design Technology Development ...

ofc—i

II.

i f"71

7^1 S

fe 150MWe

-, 1-10

^^ - 51

0.3g

31

Page 5: Liquid Metal Reactor Design Technology Development ...

m.

7]-.

7fl ^

7^^711(182711

- IHTS Ufl^ ofl til -

7} ^ £ 1 ^ SI

Page 6: Liquid Metal Reactor Design Technology Development ...

- % • • % • #

2.

7\.

(530°C/386°C

B(1^2H(SAC-C0RE)

. 7ff3E

4 ^ ( in .^^ ]^ l§ l ]^S^ : SAC- COREK-NONSTA)

IV.

fe ^ ?]] 7fl

in

Page 7: Liquid Metal Reactor Design Technology Development ...

7] ^ ofl U] 7V

V. 45

I&C, ^:

: IDEAS* 7]

w

Page 8: Liquid Metal Reactor Design Technology Development ...

S U M M A R Y

I . Project Title

Development of Mechanical Structure Design Technology of KALIMER

II. Objectives and Importance of the Project

The main objectives of the project during the period of '97-'99 project

fiscal years are to develop a conceptual design and computer code systems

for mechanical structure design technology of 150MWe, pool type Liquid

Metal Reactor.

This project is essential since it provides the fundamental skeleton of

reactor system made by systematically implementing the complex interfaces

among core design, fluid system design, instrumentation & control design,

safety analysis and sodium technology.

Reactor structure design development consisting PHTS, containment

system, IHTS, and refueling system needs the design simplicity to meet the

various design requirements developed for the systems, structures and

components (SSC) with effective performance, easiness for inspection and

maintenance, prevention and mitigation of accidents.

Under the sodium operational environments in high temperature of 530°C,

low pressure range of 1 — 10 bars, high temperature structure design against

creep fatigue, ratcheting and thermal striping etc. should be developed for the

thin shell structure to keep sufficiently low thermal stress. On the other hand,

under design basis earthquake of 0.3g ground acceleration, an innovative

seismic design against buckling, seismic sloshing and safe shutdown of reactor

control rods should also be developed to keep the structural integrity for such

thin shell structures, introducing the seismic base isolation design which

remarkably reduces the earthquake loads on whole reactor systems to be more

Page 9: Liquid Metal Reactor Design Technology Development ...

economic and safer.

In developments of computer code schemes and analysis codes for

designs and analyses of reactor systems, structures, and components, following

four areas are needed;

1) Structural design code scheme for design, links of interfaces and

general arrangements of the 3-dimensional reactor structures

2) Structural analysis code system for the evaluation of structural

integrity of concept design developed

3) High temperature structural analysis codes for the evaluation of

nonlinear behavior of high temperature structures in the creep

fatigue, thermal striping and ratcheting conditions

4) Seismic analysis codes for the core seismic analysis, the

sloshing analysis of reactor vessel, and the buckling analysis of

thin vessels.

HI. Scope and Contents of the Project

1. Conceptual Design of Mechanical System

1) Main Systems, Components, Structures and Piping System of Reactor

System

- Preliminary Conceptual Design of Reactor System

- Structure Design Basis and Design Requirements

- Conceptual Design of Containment Vessel and Dome

- Conceptual Design of IHTS Piping

- Conceptual Design of Reactor Head

- Conceptual Design of Control Rod Drive Mechanism

- Conceptual Design of Refueling System

- Prevention and Minimization of Accidents and Faults Related to

Mechanical System

- Case Study of Reactor Vessel Slenderness and Buckling Analysis

VI

Page 10: Liquid Metal Reactor Design Technology Development ...

- Conceptual Design of Reactor Support Structure

- Conceptual Design of Support Structures of SG and EM Pump

2) Reactor Internal Structures

- Conceptual Design of Internal Structures

- Conceptual Design of Upper Internal Structure

- Functional Design of Shielding Structures

3) Seismic Isolation System

- Conceptual Design of Reactor Building

- Conceptual Design of Seismic Isolation System

- Conceptual Design of Piping Connection System

4) Preliminary Structure Analysis of Mechanical System

- Structure Analysis of Reactor Vessel

- Response Analysis of Reactor Vessel Sloshing

- Structure Analysis of Reactor Vessel Lower Head

- Preliminary Structure Analysis of IHTS Piping

- Thermal Stress Analysis of Internal Structures

- Structure Analysis of Upper Internal Structures

- Strength Evaluation of Weldments and Creep Fatigue Analysis

- Residual Stress Analysis of Weldments

- Floor Response Spectrum

2. Development of Computer Code Schemes for Mechanical System

1) Structural Design and Analysis Code

- Development of Structural Design Code Scheme

- Development of Structural Analysis Code Scheme

2) Seismic Analysis Code

- Development of Seismic Core Analysis Code

- Seismic Sloshing Analysis Code

- Setup of Small Capacity Structure Test Facility for Verification of

Analysis Results and Codes

- Seismic Isolation Design Guideline

VII

Page 11: Liquid Metal Reactor Design Technology Development ...

3) High Temperature Structure Analysis Code

- Creep Fatigue and High Temperature Ratcheting Analysis Code

- Setup of Ratcheting Test Facility

4) Code User's Manual

IV. Results of the Project

In this project, fundamentals for conceptual design of mechanical structure

system for LMR were independently established.

- Capability of conceptual design for SSC

- Design integration of interfaces

- Design consistency to keep functions and interfaces by developing

arrangement of reactor system and 3 dimensional concept drawings

- Development and revision of preliminary design requirements and

structural design basis

- Evaluation of structural integrity for SSC following structural design

criteria to check the conceptual design to be proper

- Development of high temperature structure design and analysis

technology and establishment of high temperature structural analysis

codes and scheme

- Development of seismic isolation design concept to reduce seismic

design loads to SSC and establishment of seismic analysis codes and

scheme

V. Proposal for Applications

Design technologies including computer code schemes and analysis codes

developed in this conceptual design for mechanical system for LMR can be

effectively applied for the establishment of concept design and basic design in

the next phases.

- System design to meet design requirements and structural design basis

Vll l

Page 12: Liquid Metal Reactor Design Technology Development ...

Design data to perform structural and stress analyses for SSC

Interface data for core design, fluid system and I/C, and safety

analysis

Maintenance and inspection design for reactor building and SSC, and

optimization of SSC to achieve economic design

Structural design code : production of 3-dimension mechanical system

drawings using IDEAS computer program.

Structural analysis code : evaluation of structural integrity against

normal and transient operational conditions

High temperature structure analysis code : mitigation of conservatism

in elastic analysis method for high temperature structures

Seismic analysis codes : generation of seismic load for SSC and

evaluation of seismic structural integrity

Small capacity structural test facility : verification of analysis model

and improvement of analysis codes

IX

Page 13: Liquid Metal Reactor Design Technology Development ...

Table of Contents

Summary i

Table of Contents xi

Chapter 1 Introduction 1

Chapter 2 States of the Arts 3

Section 1 Introduction 3

Section 2 Level of Technologies 10

Chapter 3 Conceptual Design of Mechanical System 17

Section 1 Introduction 17

Section 2 Main Systems, Components, Structures and Piping System

of Reactor System 21

1. Preliminary Conceptual Design of Reactor System 21

2. Structure Design Basis and Design Requirements 32

3. Conceptual Design of Containment Vessel and Dome 48

4. Conceptual Design of IHTS Piping 56

5. Conceptual Design of Reactor Head 64

6. Conceptual Design of Control Rod Drive Mechanism 85

7. Conceptual Design of Refueling System 89

8. Prevention and Minimization of Accident and Faults Related to

Mechanical System 99

9. Case Study of Reactor Vessel Slenderness and Buckling

Analysis 125

10. Conceptual Design of Reactor Support Structure 136

11. Conceptual Design of Support Structures of SG and

EM Pump 157

xi

Page 14: Liquid Metal Reactor Design Technology Development ...

Section 3 Reactor Internal Structures 160

1. Conceptual Design of Internal Structures 160

2. Conceptual Design of Upper Internal Structure 176

3. Functional Design of Shielding Structures 182

Section 4 Seismic Isolation System 185

1. Conceptual Design of Reactor Building 185

2. Conceptual Design of Seismic Isolation System 191

3. Conceptual Design of Piping Connection System 201

Section 5 Preliminary Structure Analysis of Mechanical System 208

1. Structure Analysis of Reactor Vessel 208

2. Sloshing Analysis of Reactor Vessel 264

3. Structure Analysis of Reactor Vessel Lower Head 271

4. Preliminary Structure Analysis of IHTS Piping 281

5. Thermal Stress Analysis of Internal Structures 288

6. Structure Analysis of Upper Internal Structure 311

7. Strength Evaluation of Weldments and Creep Fatigue Analysis 321

8. Residual Stress Analysis of Weldments 354

9. Floor Response Spectrum 367

Section 6 Conclusion 374

Chapter 4 Development of Computer Code Schemes for Mechanical

System 383

Section 1 Introduction 383

Section 2 Structural Design and Analysis Code 384

1. Development of Structural Design Code Scheme 384

2. Development of Structural Analysis Code Scheme 385

Section 3 Seismic Analysis Code 389

1. Seismic Core Analysis SAC-CORE Code 389

2. Seismic Sloshing Analysis Code 402

3. Setup of Small Structure Test Facility 404

xn

Page 15: Liquid Metal Reactor Design Technology Development ...

4. Seismic Isolation Design Guideline 415

Section 4 High Temperature Structure Analysis Code 420

1. Creep Fatigue and High Temperature Ratcheting Analysis Code 420

2. Setup of Ratcheting Test Facility 437

Section 5 Code User's Manual 452

1. SAC-CORE Code 452

2. NONSTA Code 464

Section 6 Conclusion 490

Chapter 5 Achievements and Contributions 493

Section 1 Achievements 493

Section 2 Contributions 498

Chapter 6 Proposals for Application 499

Chapter 7 References 501

xni

Page 16: Liquid Metal Reactor Design Technology Development ...

$& i

Summary v

Table of Contents xi

• xv

2 %• -ifl • 3 7]^?m ^ % 3

4 i ^ ^ ^ ^ - ^ 7]^?m « 3

*ll 2 7 ] ^ ^ ^ 10

3 ^ 7 l 7 i M l ^ 7 1 ) ^ ^ 7fl^- 17

^ 1 1 ^ 7i\& 17

4 2 ^^S7]]S- ^A7|7l, ^3:1- ^ Bfl^^lf 21

1. ^7,}S7Jl^ itl]7fl^7Jl 21

2. ^2:^^71 § ^ ^TflJl^i 32

3. 3tf-g-7] ^ ^ ^ ^ - ] t i ]7fl^^^ 48

4. IHTS afl^ 7fl^-i7fl 56

5. ^7^«llH. ^|al7fl^^7il 64

6. *\]°\% ^ ^ ^ 1 iHl7fl^^7il 85

7. «!]^S ^^-^741-f- <4|Hl7fl\i^7|| 89

8. 7] Til 2 : ^ ^ 4 J 1 ^ 3.^ ^Sl" -i^l ^ 99

9. ^^S.-g-7l ^Hl-ti} ^ 2f^3zj7} A>3^1^^ 1 2 5

10. ^7}S. 1 ^ 1 ^ S # ^7fl7l]^ - i ^ 136

11. ^ 7 1 ^ ^ 7 1 ^ ^ X > ^ ^ 1^1 -2 :# iHl^T]) 157

*ll 3 Qx}£. if l^-^-al- 160

i. ^flJf^ai- 7H^^7ii 160

2. W ^ ^ i - 3*}Q i«l7fl 7fl 176

XV

Page 17: Liquid Metal Reactor Design Technology Development ...

3. *}3^2:i- 7l i?H 182

4 4 ^^l^lf- i«l7fl^^7fl 185

1. Q*}£-^ 7H -M7]1 185

2. ^ A l ^ E 3 ) 7 f l ^^^ l 191

3. ^ ^ til^^l ^ ^ ^ l ^ a f l ^ ^ 1 ^ 3 ] 201

*ll 5 7l7fl7fl^ ofla] £ ^ 7 } 208

1. €^^-§-71 ^3,^7} 208

2. ^ ^ f S ^ - 7 l ^5L^ol «fl^ 264

3. Qz}S-&7] *}^niL ^ ^ 7 } 271

4. IHTS tiH^- «^«l^-2:3g7i. 281

5. iflJf^-S-i- t-g-^«l]^ 288

6. ^ ^ ^ S i - ^"2: 7> 311

7. - § - ^ 70V5L3|7}- ^J EL^A^- ^ A o ^ j 7 > 321

8. -g-^4 r^-g-^ ^7> 354

9. -g- - i^]S^ 367

^ 1 6 ^ 1 ^ 374

4 # 71^1^1^ ^ ^ ^ 1 ^ 1 71]^ 383

^1 1 7fl.&. 383

1 2 ^ - i 7 | 3 H ^ sfl^S^ ^I^l7fl# 384

1. ^ | 7 f l 3 H ^]^7fl^ 384

2. ^ l l ^ S H ^ ^ 7 i l ^ - 385

A 3 x]^l§1]A|iaH ?m 389

1. *1^^3.^-(SAC-CORE) 389

2. ^ l ^ l ^S -4 1 « f l ^ ^ ^ l ^ ^ 402

3. 3 ) - ^ ^ ^1^117fl - ^ ^ ^ ^ 2 : ^ 1 ^ 7 1 - 7 ^ 404

4. ^^^7^1^1^>H ^ ^ 415

1 4 H £ ^ 2 : * } H S J £ 7^ 420

1. EEL^S\S- ^ JL^-ef^l^ ^ ^ 3J71-SH 7im 420

2. Hf^]^ *1^#*1 ^ ^ 437

xvi

Page 18: Liquid Metal Reactor Design Technology Development ...

5 Q 7 | f2E Aj-g- l jA-1 452

1. ic^*l* l *fl*}-§- SAC-CORE 3 E 452

2. JL^^-Si ^Tflsfl^-g- NONSTA 2 H 464

6 *J 4.^ 490

7l^S. 493

^ ^ ^ ] ^ r g :^ 493

2 ^ tfl^l 7]<^£ 498

499

501

XVll

Page 19: Liquid Metal Reactor Design Technology Development ...

017]

tfl

717i01

014.

SI92\! 9

. 94\£

MDPi

GE, ANL ^ tfl74171

^) tfl

7] #

1

Page 20: Liquid Metal Reactor Design Technology Development ...

i f

FRAMATOME, AEAT, CRIEPI, JNC ^ IAEA CRP)

tfltb cfl*^

- 2 -

Page 21: Liquid Metal Reactor Design Technology Development ...

} f^ofl *} 4003$<H1

250

sl ii^l-o] 7fll£S|jL, 2 : ^ ^ ^ yo

-g- Pu

1990\l

, ^ 1 ^ ^ NERI

(Nuclear Energy Research Initiative) ^ ^ n ^ ^ r f-*}^ ^^- r*S

4 . °^^-^ ^ ^ S . DFBR 7 ^ ^ 7 1 1 * €:S.-3l-ji JAPC, JNC ^

Jl 91SL*\, 1 7 H ^-^=6.

IFR (Integral

- 3 -

Page 22: Liquid Metal Reactor Design Technology Development ...

Fast Reactor)4 PRISM(Power Reactor Innovative Small Module) 7]

4 4 7]

^-§-5)-

1. 1

1978^ ^^^F°i D0E7> i

^ FFTF(Fast Flux Test Facility)

d°fl ^ ° 1 f1^^ 975MWt ^ €

Reactor Plant)i tfl

T 3 1 ^ ^ A N L ^ l

^ 20MWe 3.7]^ EBR-II ^

°-#i$. uj- oj^- 400MWt ^-^

#<£ ^ * H $14. ^ tb 1983

CRBRP(Crinch River Breeder

4 oiji GE ^r^S 7fl

PRISMCPower Reactor Inherently Safe

Module)^ ALMR

IFRdntegral Fast

Reactor)

6.5. 1971 d ASME Boiler and Pressure Vessel

Code l Code Case 1331-ir *{•%• #!-u! Code Case 1592, 1974^^1 Code

Case N-47# 7]^^\ Code Case N-47-29S ^ ^ ^ $ 1 4 . n *

- 4 -

Page 23: Liquid Metal Reactor Design Technology Development ...

4 I N ASME Section III Subsection NHS.

DOE4 HTSD(High Temperature Structural Design) 31^4 WRC

(Welding Research Council) 31 PVRC(Pressure Vessel Research

Committee)^ < 3 ^ # ^ 4 *1€°.£- ^ ^ H & 4 .^A*> 7flS # ^ ^ 1 - &^}7] ^§1] DOE

^- 71-i-^ NSMH(Nuclear Systems Materials Handbook)!- # ! •

PRISM ASME-NH4

t}7] 1 . 500 °C

7im,

2. S^-i

Rapsodie^

1200MWe -

5.°] Phenix

Superphenix * 1986\1

Superphenixl-

^o] 4*> Phenix 5^

ol

C

Page 24: Liquid Metal Reactor Design Technology Development ...

, , °-S 1978\3 CEA, EdF ^ Novatome^l

(AFCEN)7l-

^Tfl ^ ^ ? ! : ^^1^ -^S ^-g- ^ ^ l S H ^ l RCC-MRi:

1985^ i

EFR(European Fast Reactor) 7l]

EFR ^^11- ^§1] -M l ? i ^ ^ 1 ^ ^ 7fliHr>7l ^*fl DCRC1- ^ ^

o]§fl EFR

1 1963\li

4 ojci Hfl^^-g- +s\\o] G C R o]^o^ pre-stressed concrete

^ ^ - ^ o.s ^-g-*> «}7r XI4. a t t 1973^^^ SSE 0.

^ ^ Koeberg(SSE, 0.3g) ^ CRUAS(SSE, 0.

$14. SL* Superphenix^l ^^f ^ ^ ^ ^ S ° J SPX2(1500MWe, SSE,

^ f ^ M SPX2 7^]^^

-fe EFR ^ ] ^ 1 S ^ ^ ^ 4 1

3.

- 6 -

Page 25: Liquid Metal Reactor Design Technology Development ...

JAPC^l ^ £ S ^ ^ S * l DFBR (Demonstration Fast Breeder Reactor) ^

Q*}£. =?^% - i ^ l * 3 $ W 7fl^^r ^*S«t ti} «IO.D] CRIEPI f-§-

f ^ A S MDP ?m ^o] o ^ ]

71 #^4 ^ ^ - ^ ^ ^ ,

- ^ 1971 \£ JOYCHf cfl^F^ M-Sf- 7]

JOYOi

A t 5lAS ^#sr)-JZ -o}^$\ Code Case 15921- ^-g-*}

*\°1 ^TflsH 711 51 ^ ^ . 4 j ^ O I ^ I - J L MONJU l JL

BDS S H I - ^-Aj^].^ A>-g-s]-$|4. BDS S H ^ Code

Case r

Code Case4

MONJU 2 >7flf- uH^o]

' ife JAPC1- ^43AS MONJUS 5 ^ 1999\! DFBR l zfl^^Tlll- ^S.t\ji JAPC,

JNC,

. JNC, CRIEPI f- - ^

BDS 2 S f 7flAi^- DDS S H I - *H3s]-7l o *V o £ ^ # ^ s j ^ o l r ^

] g t t ^ ] ^ 1 ^ € ^ > ^ Jl

- r

Page 26: Liquid Metal Reactor Design Technology Development ...

3: f^ ] &t)-. 125} JL CRIEPI

71 q- ^^flJE ^ ^ ^ofl olcf.

4.

1977\1 oleflS 1000 MWe - ^ EFRCEuropean Fast Reactor)^

7l]^-i- ^1*>^ CEC(Commission of European Communities)^ LMR

Coordinating Committee §H1 WGCS (Working Group Codes and

Standards)^ ^^1

o.^, =-«a^r 1973^^1 OIP] S ^ - ^ ^ Phenix^ 7 ^

SNR-3005] ? i ^^ ; A1^*> 4 OJ4^ o j ^ £ I955\li ^^fl^-^S.

DFR^ ^ I S ^ j i 1974 1 i ^ r AEA-TS] ^ ^>i 250 MWe

7fl A] ^ ^ # fe $1^ ^^1^-^S. 711

NNC ^-

i EFR

H<a R51- 7^SBK5} Interatom^ ^^-2-S ^ ^ S ^ J KNK-E

Ansaldo€ ^ ^ - ^ 1974\1 120 MWt

Page 27: Liquid Metal Reactor Design Technology Development ...

EFR £-£3134 ' i ^ l S H 7fliHl ^<*R> 4 o^_ E F R <g^.- 1 9 9 8

5.

BOR-60,

- r ^ ^ f °1 SiJi 1973\i3l- 1980^^1 AA ^y\ ^^^oHl ^m^l 130

MWe %%$\ %%/^^^^ BN-350(€^ ^ W ^ ^ f t &A)A # ^ 600

SX^- AJ"-g-S BN-8004 BN-1600

13 MWe^i ^ ^ ^ ^ FBTR^r *&A

# ^ 500 MWe

^<y CEFR 7fl^

IGCAR ^ ^ : f ^ ° _ S ^

RCC-MR

71

6.

El-

- 9 -

Page 28: Liquid Metal Reactor Design Technology Development ...

7]

- 1 0 -

Page 29: Liquid Metal Reactor Design Technology Development ...

1. 4^ 7 ] ^7\, ^\^9\ 7}

7] 3131 f-

713131 f-

" ^ ^ iiL "T-l jrL I E . " "^ ^TrJiL-^-] ^ ^1

- <5fl ] ] -g - -^^ . ^ 7 ] 1 ^ L H ^"M.

. ASME-NH, RCC-MR, BDS

4 ^ ^ i ^3l7l§- -M^#31- RV 4^1^(-"§' ^3 l7 l^s j - i- 713131*^31 Know-How Sj-iL

- ANSYS, ABAQUS, SYSTUS,CASTEM-2000, MARC, FINAS,NASTRAN, ADINA, COSMOS

'-^QIT^M^ *^

(SYSTUS ,CASTEM- 2000,FINAS)

° JL-&7^^ # ^ 4 tilo]El-Hflo]i ffl-^.

° °" "3" 3. "T2" 3i 7~\ - - 4 7l 'S' ^ # 31

° 31 •$• ^ 7fl 1 i^ \ 7ll W"/" -§" # 31

° 4'51 1'"§1 itS-'^ sfl'^71^' ^^#31° 'Ji'itS— ^ ^ 4 ^ 71^-^"^ #31

— viEfJ ~^>r Ti ^S--^\ ~T~ ^7. -^f ? i rs -^1 3 J~ y

- •S^l"5--§-7lJ ^^ -§ -7 ] ^ ^ 1

~~ ^c" V J 2 . 1 " 7?l ~^" Ull ji|- - ^ /^l

. ASME B&PV 2Ef -g -

. ASME SE.S1 4 t i l^ £ # ^ ^

- 713131- ^31 Know-How ail#31

- ANSYS, ABAQUS

- Jl^r Hl^Sfl-ij ^ S . ^ - ^ <3:TL7ll#

#31 (NONSTA 2E 7m :f^)

° 4 -?! *11 " s — 7H " 1 §•- Jn-^j4 -51*1]^3E7]] (SAC-CORE)

° J I ^ T ^ ^ 7ll'il 'il^31711 r <S~iL#3l

° - 1 -51 1"•§•/$• 3 ^ *fl'M7l^ l?l':rL#31

° -Ji'ilSS. 'n ir'M 1 S i L # 3 l

- 1 1 -

Page 30: Liquid Metal Reactor Design Technology Development ...

(1)

7EVC}.

IHTS

EM ^E.

- 1 2 -

Page 31: Liquid Metal Reactor Design Technology Development ...

71 Ef

^ o]n]

^7>7l#,

ol ^ ^ J ^ _

71 # ¥#

O 717|| Til-

- 1 3 -

Page 32: Liquid Metal Reactor Design Technology Development ...

CASTEM-2000 5LH.i Chaboche ^ i ^ S-Ht- 444-Si^l, Framasoft

7> 7H^^ --g-SH^l SYSTUS°11 Chaboche

1 Ohno-Wang £ | f ^

Alo] i f - 5 ] j l &*! ^ ^ ^ ^ o j j l <3j^^ j N C 7 l . yflm-^ji ol

FINAS 51 . 1 ^Si 7> 1

7]

(2)

7] ^TJl^f- ^ 3 : 7]]

44

- 1 4 -

Page 33: Liquid Metal Reactor Design Technology Development ...

51

I"

O

Know-How^

71 #5L^-1-

11 - # 5 . 71^1^-2: ^TflSIE.^ ^ ^ ^ I I ^ H nj^o^ ASME

Sec.III Subsection NH, Code Case 2014

DYWIDAG

LNG z\

7] 3]^>^ ^^l^T^l ^-§-^- 7^]^§}JI $14. t H - ^ r ^ T - i ^ UNISON

Super-Structurel-

371R

- 1 5 -

Page 34: Liquid Metal Reactor Design Technology Development ...

*fl^7]# 7fl

"(NONSTA-VP)-I- 7fl

0 1 ^ 014. rr*> ^ ^ ^ ^ S . ^ 71 Tfl A]

I-DEAS S H

SAC-CORE S H I -

7^1

- 1 6 -

Page 35: Liquid Metal Reactor Design Technology Development ...

71, 2) ^ 2 : # ^ «M^1^-, 3)

1 1 ^ 31 71-

4) o\}V}^-Et

KALIMER

IDEAS H §

31

L0CA<4 7^^ *}IL7} ^-^*M1 ^V r ^ i # ^ - ^ 7 > ^A*> A^ 31

Hf4. IHTS7]7l ^ ti]]^^^^ 1 #31 1*1 31^31

7171 f- - *l*l*Rr M ^ H ^ 31

- 1 7 -

Page 36: Liquid Metal Reactor Design Technology Development ...

ASME Section XI Division 3 # JI5]§}J1 KALIMER

^ A ^ 7 l - ^ ASME Code Section III,

Subsection

KALIMER

71-

Support), -^-•y^(Inlet Plenum), tfl^-^1^1 #(Support Barrel),

H(RV Liner), ^H] ^(Baffle Plate), £ e | ^(Separation Plate), o.z)5L

Guide), #^-tfl«-^-2:!-ol i ^ - s ) ^ , o) 6fl ufl *V ofl a] -i

1- IDEAS i ^ H ^ o ] ^

IHX

KALIMER

^ 2*1-31 £ ^ 7 1 1 5 } IDEAS

- 1 8 -

Page 37: Liquid Metal Reactor Design Technology Development ...

IDEAS s

KALIMER

^ ^ ^ KALIMER

^ ^ ^ 4 . tifl^ A£A 4^°fl^fe 480°C §1-90cmo] ^ ^ 2 : ^ ° 1 ] tfl

7l7fl7fl-fi cfl^ c jti]

7]-

^] ANSYS1-

KALIMER

spherical)

J 4 - IHTS

- 1 9 -

Page 38: Liquid Metal Reactor Design Technology Development ...

Chaboche

1000^5- ^Sj tf- ^ o H 1 ^ #^2:7iA] c^|til^7i]5l KALIMER

3

7H11"

0.3g <g^7]

^ 2.5cm

Tee-Junction^

ASME ^ H Section III Subsection N H *

0.3g

- 2 0 -

Page 39: Liquid Metal Reactor Design Technology Development ...

-8-7] 7],

1.

KALIMER

KALIMER

! ! I

M : !

^ ' / ' • t *''

(a) Arrangements of Duct Subassemblies (b) Detail Duct Assemblies

3.2.1-1 KALIMER Core Structures

- 2 1 -

Page 40: Liquid Metal Reactor Design Technology Development ...

3.2.1-2 Core Supports and UIS

- 2 2 -

Page 41: Liquid Metal Reactor Design Technology Development ...

•316SS SI

-PSDRS

3.2.1-3 Core Radiation Shield and Inlet Pipes

- 2 3 -

Page 42: Liquid Metal Reactor Design Technology Development ...

Station SXIXI

• o

« us

3.2.1-4 Support Barrel and Flow Guide

- 2 4 -

Page 43: Liquid Metal Reactor Design Technology Development ...

3.2.1-5 Separation and Baffle Plate

• 2 5 -

Page 44: Liquid Metal Reactor Design Technology Development ...

3.2.1-6 IHXs and EM Pumps

- 2 6 -

Page 45: Liquid Metal Reactor Design Technology Development ...

Overflow

3.^ 3.2.1-7 RV Liner and Insulation Plate

- 2 7 -

Page 46: Liquid Metal Reactor Design Technology Development ...

-316SS ME.5Cm, SOI 1855 Cm

- 2(1/4) Cr-liMo- ¥ 1 2 . 5 Cm, a 0| 1880 Cm

3.2.1-8 Assembled Reactor

- 2 8 -

Page 47: Liquid Metal Reactor Design Technology Development ...

3.2.1-9 Concept of Containment Structures

- 2 9 -

Page 48: Liquid Metal Reactor Design Technology Development ...

3.2.1-10 Preliminary Concept Design of KALIMER Reactor System

- 3 0 -

Page 49: Liquid Metal Reactor Design Technology Development ...

3.2.1-11 Seismically Isolated KALIMER Reactor Building

T 1

Page 50: Liquid Metal Reactor Design Technology Development ...

2.

7\.

KALIMER[3.2.2-1]

. o] 71$ £A-^ ^2:1-4 Tflf-, 7l7l

(1) ° ^ ^

(7f) 7] 7]

2010^

: -f-SS( 4 ) NSSS ^

( 4 ) Step ^ Ramp ^ - § } ^ «l-7Jl t f lcf l^^ NSSS

-t°i ^ £ ^ n^\°]o\ ^4.^ NSSS 7l7l ^ 4 4 1 " ^ ^ ^ ^ r ^ ^ 4^-2:?i(4^1, Missile

(4) -t4.

PSDRS7>

- 3 2 -

Page 51: Liquid Metal Reactor Design Technology Development ...

(2) ^_^}7)^^}^^$] JJTJ] (Relationships to Design Basis Events)

(3) ^r-n-iL^i (Classification Requirement)

(71-) °J^i^^-^^-(Safety Class)

^- 1, 2, 3

3.2.2-1 i 14EH- §14-

ic Category)

1).

© ^ ^ I

^ £ ^ 1, 2,

(2) Ml^^^r II

7]7l

7}

- 3 3 -

Page 52: Liquid Metal Reactor Design Technology Development ...

41- 5*

(4) aj-g_tf^(Code and Standard)

KALIMER ^ - S - i T f l ^ A>-g-

4^ 4 -o] ul^ifl^ %-g- 71- *1- 3HS}

- KS

(uf) Af-g- 7 1 - ^ ^ ^ ^ 4 ^ S . , fl-^(Code and Standard)

- ACI-349: American Concrete Institute, Code Requirements for Nuclear

Safety-Related Concrete Structures, 1980

- AISC: American Institute of Steel Construction, Specification for the

Design, Fabrication and Erection of Structural Steel for Buildings, 1978

- ASME B&PV Code, Section III, Rules for Construction of Nuclear

Power Plant Components, 1995

(4)

NRC4 4 ^ (Regulatory Guides)^ 4 ^ - 4

- 3 4 -

Page 53: Liquid Metal Reactor Design Technology Development ...

- 1.12, instrumentation for Earthquakes, Revision 1, April 1974.

- 1.59, Design Basis Floods for Nuclear Power Plants, Revision 2, August

1977.

- 1.60, Design Response Spectra for Seismic Design of Nuclear Power

Plants, Revision 1, December 1973.

- 1.61, Damping Values for Seismic Design of Nuclear Power1 Plants,

October 1973.

- 1.76, Design Basis Tornado for Nuclear Power Plants, April 1974.

- 1.92, Combining Modal Responses and Spatial Components in Seismic

Response Analysis, Revision 1, February 1976.

- 1.122, Development of Floor Design Response Spectra for Seismic Design

of Floor-Supported Equipment or Components, Revision 1, February 1978.

(5) *£A

^ ^ f l fl f ^ ^ ANSI 1

do] ^ ^ ^ ^-f n ^ n ^ ^ § } ^ 3 : ^ ^ 5L

^A(envelope)^ 4 ^ 4 - A^7fl^^,

^ ANSI A58.1-1982 - 4 ^ 4 .

Tornado

- 3 5 -

Page 54: Liquid Metal Reactor Design Technology Development ...

(4)

(5}) ulA><H(Missiles)

NRC 10CFR Part 100^

Sift

- 3 6 -

Page 55: Liquid Metal Reactor Design Technology Development ...

(4) *W*}^

L ^ 7};

^ ^ 1 * 1 ^ 1 - i ^ l l - ^*H 10CFR100

Appendix A # 1^5} ^ 7fl^ free-field ^1^1°^^ ^ ^ ] ^ ^ ^ :

NRC RG1.6(H

, 0

H ^ § } ^ - ^ ^ e j ^ ^ 2 : # ^ ] tflsflA-] ANSI/ACI 349^]

- 3 7 -

Page 56: Liquid Metal Reactor Design Technology Development ...

a 3.2.2-2^ 4 4 4 &4- 4 ^ 2 : ~t£ #51^1 ^ 3 H 7]

IS] ^ ^ ^S- i - ^ 3^2*h§- a 3.2.2-3< l

# a 3.2.2-4^ 4ll-f3f 7l7ll-£ ^^7l§Afjl§ol] cfl Sfl ^ ufl «>S] 7J- ?V

4 7]7l

thermal anchor movements^ i ^ - ^ }

(6) 7fl3-&-£l (Material Requirement)

(7})

(4)

(4)

(4) i

(4) -

(4) 03,4- s i i f l t ^ ^ ^ - ^ ^ ^ ^ ^ ° ^ ^ 4 4^H1 4 ^ 7fls.^^4

- 3 8 -

Page 57: Liquid Metal Reactor Design Technology Development ...

(7) 7}]#.3_£(I & C Requirement)

NRC RG1.12i

^71

| l ^ ] f ] ^ f l j l fl|} ANSI/ANS

2-2-1978^^

(8) ^7Jl^>^ ^(Design Methodology)

o>

(7J-) ASME Code *fl l-§-# Jf^- ^

ASME Code xfl 1^-g- Jff-^ 3Jj7}^ ASME ^ ^ ^ - 7 l Sec. Ill,

Subsection NBU 4 ^ ^ - ^ l ^ l f S t ^ Subsection NF# 4 ^ 4 ^7]-S. 4

IS. i t H ^ l ^ K g - 427 °C

371 °C V]T&)

- 3 9 -

Page 58: Liquid Metal Reactor Design Technology Development ...

a. NUREG-0800, Section 3.9.3, "ASME Code Class 1, 2, 3

Components, Component Supports."

J l £ ^ - # ( _ $ . i 3 l 4 0 l ^ ^£flo}3]i7ol-^ 427 °C O]AJ-3

371 °C o]Ai-)

a. ASME B&PV Code, Section III, Subsection NH, Class 1 component

in elevated temperature service (1995 Ed. Dec 31, 1995)

b. NUREG-0800, Section 3.9.3

2^-g- J f ^ £ Subsection NC, 4 3f-^ ^-f-^- Subsection ND, 2z$

Subsection NG# 4 ^ 4 - 1 4 ^ 4 W ^ l " 0 ] ovofl^ ^ A]

^ Section III, Code Case N-201-g- 4 4 AAA

(4) 4^1^^] ^ «

7H?} 4^^- i ^

(4)

^ 7^-f T^^1^2:1-Tfl^-(Seismic Isolation System)4

Isolated Structures), TJl-f ^ 7]7l, H E ] J 1

- 4 0 -

Page 59: Liquid Metal Reactor Design Technology Development ...

(9) ^ l ^ ^ f ^ ^(Testing and Qualification)

Vl

KALIMER

.2.2-4], ^^-§-71 [3.2.2-5], ^

[3.2.2-7], 2%} *AA"%^- ^-^-§-71 [3.2.2-8],

IHTS afl^ ^1f-[3.2.2-9],

[3.2.2-13], Qx}^ 4°]% T&QZ] [3.2.2-14], IHTS

[3.2.2-15] ^o\)

- 4 1 -

Page 60: Liquid Metal Reactor Design Technology Development ...

3. 3.2.2-1. Safety Classification and Seismic Classification

Safety ASME Code SeismicClass Section/Class Category

or Quality Group

I. REACTOR SYSTEM

Reactor CoreFuel assembliesRadial blanket assembliesRemovable radial shield assembliesControl assemblies

Reactivity Control and Shutdown

III/lIII/lHI/1III/l

Control rod drive assemblies

Reactor Internal StructuresSupport structure includingprimary sodium

Inlet Plenum and Core SupportSupport barrelFixed radiation shieldingReactor vessel liner andseparation platePrimary EM pump dischargemanifolds and sealsIHX seals and supportsCore assembly transfer stationHot pool thermal insulationInstrumentation supportsUpper internal structure

Reactor EnclosureReactor vesselReactor headContainment vessel

Primary Heat TransportPrimary EM pumpsIntermediate heat exchangers(IHX)EM pump coastdown equipment

1

1

111

1

11111

112

111

111/1(1)

QG-A

QG-AQG-AQG-A

QG-A

QG-AQG-AQG-AQG-AQG-A

HI/1III/lIII/l

III/lIII/l

QG-A

1

1

111

1

11111

111

111

- 4 2 -

Page 61: Liquid Metal Reactor Design Technology Development ...

5- 3.2.2-1 Safety Classification and Seismic Classification

SafetyClass

II. REACTOR PROTECTION SYSTEM

SensorsCableCabinets

112

III. REACTOR REFUELING SYSTEM

Reactor Fuel Handling SystemIn-vessel transfer machine(IVTM)Reactor fuel transfer portadapter and gate valve

Interim Transport System

31

ASME CodeSection/Classor Quality Group

QG-AQG-A

QG-B

QG-CHI/1

SeismicCategory

111

11

Fuel transfer casks 3

IV. AUXILIARY LIQUID METAL SYSTEM

Primary Sodium Processing SubsystemEM pump 3Cold trap module 3Sodium drain tank 3Sodium valves 2Piping 3

HI/3

111/3(1)HI/3HI/3

HI/3HI/3

V. INERT GAS RECEIVING AND PROCESSING SYSTEM

Reactor Helium Distribution SubsystemIsolation valvesPiping

III/lIII/l

- 4 3 -

Page 62: Liquid Metal Reactor Design Technology Development ...

3.2.2-1 Safety Classification and Seismic Classification

SafetyClass

VI. BUILDINGS AND STRUCTURES

Reactor BuildingHead access area enclosureElectrical and Instrument vaultsPrimary sodium processing and

sodium drain tank vaultsPSDRS inlet and outlet ducts,horizontal plenums, collectorcylinder, and shielding concrete

Seismic isolatorsRadioactive Waste BuildingGround floor and curbs

Mobile Refueling Enclosure

333

3

3

3

ASME CodeSection/Classor Quality Group

QG-CQG-CQG-C

QG-C

QG-C

QG-C

SeismicCategory

111

1

1

1

Wall and roof steel framing 3 QG-C 1

Bridge crane 3 QG-C 1

VI. ELECTRICAL POWER

Class IE dc subsystem 1 QG-C 1Class IE ac subsystem 1 QG-C 1Electromagnetic pump power supply 1 QG-C 1

(1) Portions which form primary boundary

- 4 4 -

Page 63: Liquid Metal Reactor Design Technology Development ...

I£ 3.2.2-2 Load Combinations for Reinforced Concrete

Seismic Category I Structures

For normal and severe environmental conditions the following load

combinations and allowables are satisfied:

1) U = 1.4D + 1.7L

2) U = 1.4D + 1.7L + 1.9Eo

3) U = 1.4D + 1.7L + 1.9W

If thermal stresses due to To and Ro are present the following combinations

are considered:

4) U = (0.75) (1.4D + 1.7L + 1.7To + 1.7Ro)

5) U = (0.75) (1.4D + 1.7L + 1.9Eo + 1.7To + 1.7Ro)

6) U = (0.75) (1.4D + 1.7L + 1.7W + 1.7To + 1.7Ro)

In addition, the following combinations are also considered:

7) U = 1.2 D + 1.9Eo

8) U - 1.2 D + 1.7W

For extreme environmental, abnormal, abnormal/severe environmental and

abnormal/ extreme environmental conditions, the following load combinations

and allowables are satisfied:

9) U = D + L + To + Ro + Es

10) U = D + L + To + Ro + Wt

11) U = D + L + Ta + Ra + 1.5Pa

12) U = D + L + Ta + Ra + 1.2Pa +1.0(Yr + Yj + Ym) + 1.25Eo I

13) U = D + L + Ta + Ra + Pa + 1.0 (Yr + Yj + Ym) + Es

-45-

Page 64: Liquid Metal Reactor Design Technology Development ...

£ 3.2.2-3 Load Combinations For Structural Steel

Seismic Category I Structures

For normal and severe environmental conditions, the following load

combinations and allowables are satisfied:

1) S = D + L

2) S = D + L + Eo

3) S = D + L + W

If thermal stresses due to To and Ro are present the following combinations

are also considered:

4) 1.5S = D + L + To + Ro

5) 1.5S = D + L + To + Ro + Eo

6) 1.5S = D + L + To + Ro + W

For extreme environmental, abnormal, abnormal/severe environmental and

abnormal/extreme environmental conditions, the following load combinations

and allowables are satisfied:

7) 1.6S = D + L + To + Ro + Es

8) 1.6S = D + L + To + Ro + Wt

9) 1.6S = D + L + Ta + Ra + Pa

10) 1.6S = D + L + Ta + Ra + Pa + 1.0 (Yr + Yj + Y m ) + Es

11) 1.7S = D + L + Ta + Ra + Pa + 1.0 (Yr + Yj + Y m ) + Es

- 4 6 -

Page 65: Liquid Metal Reactor Design Technology Development ...

3.2.2-4 Structural Stability

Load Combinations

Minimum of Factors of Safety

Overturning Sliding Flotation

1)

2)

3)

4)

5)

6)

D -

D -

D -

D -

D -

D H

h H + Eo

H H + W

f- H + Es

h H + Wt

H Fl

h F2

1.5

1.5

1.1

1.1

-

-

1.5

1.5

1.1

1.1

-

-

-

-

-

1.5

1.1

Notes: Symbol "H" lateral earth pressure

"Fl" buoyancy force due to maximum ground water level

"F2" buoyancy force due to maximum flood level

S. 3.2.2-5 Minimum Design Loading Combinations for Systems

and Equipment

Condition

Design

Level A

Level B

Level C

Level D

Design Loading Combinations

Design Pressure

PMAX + Dead weight + Thermal(Operating)

(a) PMAX + Dead weight + Thermal(Operating) + OBE + Trans ients(w/ OBE)

(b) PMAX + Dead weight + Thermal(Operating) + Transients(w/o OBE)

PMAX + Dead weight + Thermal(Operating) + Transients + DSL*

(a) PMAX + Dead weight + Thermal(Operating) + SSE + Transients(w/ SSE)

(b) PMAX + Dead weight + Thermal(Operating) + Transients(w/o SSE)

PMAX : Peak pressureDSL* : Dynamic system loading associated with sodium water reactions

- 4 7 -

Page 66: Liquid Metal Reactor Design Technology Development ...

3.

KALIMER 3 ^ £ lOCFRlOO^ ^ ^ ^ 4 Part50^ GDC16 ^ GDC50

LOCA A>JI ^ o ] ^_g_ ^ 7 4 1 > ^ HH ^ ^

LOCAS} 7EV^. A}JL7\ ^ - ^ * H ?>J1 i f -

Z 3 U

3.2.3-H

[3.2.3-1].

r ^Z] 7}x] 71^-1- ^"^tll[3.2.3-2]

PSDRS 7fl^-[3.2.

# PSDRS ^ 7 1 ^

- 4 8 -

Page 67: Liquid Metal Reactor Design Technology Development ...

. ii*144 &JL 500 °C,

250KMM 7 1 ^ - f M 4 ^ ^nna\ W - ^4^-§-7]4 ^ - M 4

^7l 7fl >i7fl ^ r ^ l ^ ^ H ^ 3.2.3-24 go) Qz\3.x

M. ^ ^ 7 H H ^^"-§-71 ^ - 4 ^ # € 4 4

ell[3.2.3-5] ^

# € 4 1 - ^ - J I ^ 3.2.3-2011 j i ^ 4 4

ASME Section IIH ufef ^TJlsflo]: ^ j - ^ QT}SL 7} 7}

Subsection NE[3.2.3-7]7> ^-# ^^-§-7]6fl tfl

2]^-^£fe 371 °C4^1 ^

-^-4 H ^[3.2.3-8] PSDRSi

2.25Cr-lMo 7j-6)| tflsfl ASME Subsection NE l ^-g-

3711:* ^^r 5L-&2] ^ 3 , 4 4 - 4 4 4 ^^-g-71 >i7flA] ASME

Subsection NH[3.2.3-8]!- 3-§-«fl°> 3]-7l nfi -«i Subsection NH ] 4^- ^7^]

°fl §1144^- Subsection NB[3.2.3-9]1- ^

500°C, 0.

3.2.3-2 ] 4 4 ^ 1 4 4 ^°1 4 ^ 7.37m, SV^-^Hl-

18.8m, ^ 2.5cm^]4.

4- *

\^z ^^l^rS. 45014 QA*^ 240KPai4

- 4 9 -

Page 68: Liquid Metal Reactor Design Technology Development ...

7 ^ ^ <g 7\

HVACI-

^ £ # ° J ^ ^ SIS.^ personnel air

IHTS

A}2}-

[3.2.3-13]^

3.2.3-301]

UIS, EM pump

- ^*V I -EE^I l7fl, ^ l ^ ^ ^ ^ ^ l ^ USS

(Ultimate Shutdown System)^- ^ *V ^sflxl 27fl# f-tfl J Z ^ 47fl^l ^ - ^ #

Aj-a-s-jzi. § f « - § ^ ^ ^ ^ J f - ^ f Torispherical ^ - S . o l ^ - ^ ^ ^ c f l Tori-

spherical ^-^-^ ASME Section III, Appendices, Article A-4000[3.2.3-14]<*f].*]

^ 1036.5m3ol

-^r 2.25Cr-lMo7j-AS.

& 3.2.3-34 ^ o ] ^ ^ 14m, £ o ] 8.4m,

KALIMER

- 5 0 -

Page 69: Liquid Metal Reactor Design Technology Development ...

7}

HAA

3.2.3-4^ 7EVo]

Support ringl- ^

Support ringo]

fe 7A

3.2.3-1 KALIMER

7^ a]

ifl^- ^-3]

^^-§-71

500 °C

250 KPa

737 cm

1880 cm

2.5 cm

2.25Cr-lMo

66.9 m3

450 °C

240 KPa

1400 cm

840 cm

2.5 cm

2.25Cr-lMo

1036.5 mJ

- 5 1 -

Page 70: Liquid Metal Reactor Design Technology Development ...

3.2.3-1 KALIMER

-52-

Page 71: Liquid Metal Reactor Design Technology Development ...

Bolts

CV Flange

1880cm

30cm 10cm

ContainmentRing

Reactor Support/Reac to rHeaAichorBoItn2i/

it

Bolt Seal

" Omega Seal

3.2.3-2 3,7]

- 5 3 -

Page 72: Liquid Metal Reactor Design Technology Development ...

3.2.3-3 3 t f 1/2

- 5 4 -

Page 73: Liquid Metal Reactor Design Technology Development ...

Insulation

Containment dometemperature ~40C

InsulationPlates (22)

Hot Pool Sodium

-53OC

Containment Boundary(fixed seal)

Containment Ring

Reactor Head

-230 C Normal

PSDSS

Air out temp- 100C

Air In temp ~ 40C

RV Liner Collector cylinder

3.2.3-4

- 5 5 -

Page 74: Liquid Metal Reactor Design Technology Development ...

4. IHTS fl H

7\. KALIMER ol

(1) IHTS ufl^Tfl

KALIMER[3.2.4-1] *I*1] *)^$] 1 ^ 7 } ] ^ H& 3.2.4-14

$14- ^ 3.2.4-1 A-] 4 TJ-O] IHTS^r IHX # ^ ^ £ 7 f 511

Jl ^ T ^ S - f e 339.7 °C^ IHXS] # . ° J ^ ^ - ^ 4 7 > 171.3

2.571 °g-^.S ^>gs]«H 9X1= JL^ ^<a-^ <

^Js i l^J IHTS4 ^ " ^ ^ ^ 3.2.4-2^1 A 4

KALIMER IHTS n^$] Hfl l [3.2.4-2,3]

3.2.4-3ofl ^ 1 ^ 5 ] ^ X14- ^ 3.2.4-3 ^ 6 1

^ 7fl S] IHXS-^-E] 4 - ^ JL^^-ol -^45.7^1- B3i H> 6flA-l Tee

^ 1 4 4 - ^ ^ 3.2.4-3^A-] Tee ^^•^-•y ^ ^ 5 4

f- 7fl n&^r 14"SCH40^

20"SCH40S] c ) l^^

^ * } ^ ^-S^lr^-ar 5 ,^4 . ^ ^ ^ ^ « m ^ ^ 1 : ^ ^ ° ! 53.34cm,

^ 76.2cmo]4. z | ufl^ ^ o} ^ j ^ ^ . s 3.2.4-1^], nefjL IHTS

4 i ^ ^ ^ - ^ i ? ] 4 ^ a 3.2.4-2i 4 4 4 9XA- IHTS tifl^ TJI^O]

^ =L& 3.2.4-4ofl ZLS]J1 s j ^ £ ^ r n ^ 3.2.4-5^ ^ A] S] O] 014.

(2) <

IHTS tifl^^Sl ^ A ^7]lA^o_S-ir ^*(|, IHX4

4 , fl IHTS ^

i t b 10m ojAj-^. ^ ^

IHX4 SG4 f1^

- 5 6 -

Page 75: Liquid Metal Reactor Design Technology Development ...

(3)

H ^ 3.2.4-2^

^-#^1 IHX ^ o .

(4) g-§-^

KALIMER IHTS ti^Tili^ ^ ^ - ^ ^ ^^f- ^ ^ ^ ] ^ i 7}^-

Jl, H 5 . - f S l - *]-%-f± ^^}7^o] ^ 4 . n ] ^ ^ PRISM[3.2.4-5]^ IHTS

Gimballed ^ S - f ^ l - fl-g-*V w}^ -fi-^5^ EFR[3.2.4-6]^

- KALIMER IHTS

^ i tfltbSZ-tr

(5)

§T] hanger x]x] ^ i f i ^ S 4-§-*>^4- KALMER51 IHTS

77fl l hanger x]*]^^*] ^ ^

- 5 7 -

Page 76: Liquid Metal Reactor Design Technology Development ...

(6) 71 Ef JlS|Af*J-

] fflTS

IHTS «M ^ ^ f e i # ¥ ^ 1 tflal^H catch1 ^*1 Aj-Jl a^oJlA^ IHTS

IHTS tiM^life ^^r ^a^lf- ^wM°l ^-^-Slfe v}

- 5 8 -

Page 77: Liquid Metal Reactor Design Technology Development ...

3.2.4-1 Design features of KALIMER IHTS

IHX

SG

IHTS EMP

Large bored piping

(Hot Leg/Cold Leg)

Small bored piping

(Hot Leg/Cold Leg)

O.D

IHX-IHX distance

NumberO.D

Height

No.O.D

Height

NumberO.D

Thickness

Pipe spec.

Radius of curvatureO.D

Thickness

Pipe spec.

Radius of curvature

Horizontal distance of IHX-SG

Design feature of KALIMER1.2 m

3.74m

4 EA2.8 m

18.8 m

2 EA1.32 m

5.44 m

2 EA50.8 cm

1.506 cm

20SCH40

76.2 cm35.56 cm

1.113 cm

14SCH40

53.34 cm

11.5 m

3.2.4-2 Design parameters of KALIMER IHTS

ParametersDesign pressure

Operating pressure

Faulted pressureDesign

temperatureOperating

temperature

Hot legCold leg

Hot leg

Cold leg

Design features2.5 MPa

0.35 MPa

15.5 MPa530 °C395 °C

511 °C

339 °C

- 5 9 -

Page 78: Liquid Metal Reactor Design Technology Development ...

CORE mx SG TBN

530°C

386.2°C

529.8°C 511°C 511°C

3SSPC 339.TC 339°C

EMPHeater

3.2.4-1 Normal Operation Condition of KALIMER

Contnmnt Dome(0D=14m)

2.64 m

RxWall(t = 0.9m)

D=35cm

SOSm

II 5m

2.4m

1.87

2.765.02m

IHTS

(OD= 1.32 m)

3.2.4-2 Plan View of KALIMER IHTS

- 6 0 -

Page 79: Liquid Metal Reactor Design Technology Development ...

Nodal coordinates

IHX: small pipe

: large pipe

IHX

3.2.4-3 Schematic Diagram of KALIMER

IHTS Piping System

Node

12345678910111213141516171819202122232425262728293031323334353637383940414243

000805805805000805805805960960115011501150115011501150115011501150115011501150115011501150115011501150115098098082082098098082082010201020

0000

186.7373.5373.5373.5373.50

186.7373.6186.716.716.7186.7186.7-13.3-13.3186.7186.7426.7426.7426.7426.7-249.3-249.30.70.7

-249.3-249.3-249.3-249.3-249.3-249.3-249.3-249.3-249.3-249.3-249.3-89.3-89.3186.7

0120300300300300300120012012012012012012012058058010201020146014601360-520-650920-400-400-150-140566111012201220920920620620300300300300300

Small pipe (14"SCH40)

:Do: 35.56cm, t=l. 113cm

p=53.34cm

Large pipe (20"SCH40)

:Do: 50.8cm, t=l.506cm

p=76.2cm

- 6 1 -

Page 80: Liquid Metal Reactor Design Technology Development ...

Co-axial

piping part

3.2.4-4 KALIMER IHTS Piping System

3.2.4-5 Plan View of IHTS

- 6 2 -

Page 81: Liquid Metal Reactor Design Technology Development ...

EM Pump

3.2.4-6 Intermediate Heat Transport System of KALIMER

- 6 3 -

Page 82: Liquid Metal Reactor Design Technology Development ...

5.

KALIMER Q } n ] i fl^ ^ [

-^^l ^ < M ^ a ] A S y ^ o H 1^3.2 .5-2]

^7} 3.7% 4 ^ ^ 4 . 71^5] ^^}S^1 *R-2 : ! - £ H ^ 3.2.5-H]A^

30 7 ^ o . S . 127H51 x j ^ i l l - o]^-t><^ ^l^l*l-fe i H H 8 n f . o] 6\]

^ [3.2.5-2]i^^r Z l ^ 3.2.5-2^1^5)-

0>*Vo_S 30cm <£%& T]X]$ 7 ^

.2.5-4].

^ - ^ KALIMER

(1)

-§-71

- IHX (4 7]])

(47fl)

I S (access port : 1)

- UIS (17U)

- IVTM (I7fl)

^ 7U> 71 71

- 6 4 -

Page 83: Liquid Metal Reactor Design Technology Development ...

RV

S. -

RV ifl S.^r ^ 2 #

^-(gas-tight seal)o]

^ £ 1 ^-^^r seal

membrane seal)0]

^. a 3.2.5-H

7.37mo]c}. KALIMER

n ^ 3.2.5-5^ ^-nf.

7]

^ ^-[3.2.5-2]i

(2)

KALIMER

16mm-?] 227^7}

45cm

85.8^6]]

3.2.5-6oll

(3) SflS.

, EMP,

EMP

^ 3.2.5-4

3.4m^ ^

. ^ y}5f

. 2) *} # ^

^ ^-(welded

- ^ ^ 30cm

3.2.5-1^]

-f-

3.2.5-9

- 6 5 -

Page 84: Liquid Metal Reactor Design Technology Development ...

ledge ^ °fl * H £ H ledge

3.2.5-8^1 5 ^ 1 S ^ l ^ M O1O.B] zi& 3.2.5-7

IHX riser!- ^-g-^H €^VS.^H 3 3 IHX f } £ ^ f-^*l 3 ofl

- °^7H ^}S«HH<>flfe 4 7 ^ IHX7> ^1^5]^c|l

, IHX Risers ^4^ 0.6m^cf. IHX v}^

A ^ 47l]7f -M 1 sq^ti l ° 1 ^ ^ A J - ^ ^ ^ 3.2.5-8^

, 3.2.5-11^1^ a . ^ ^JJII- ^ o ] xl^l ^ 3 ^ u l ( 5 l ^ l . l75m)i ^

i HAA(Head Access Area)S^l

^(thermal bow)-§- ^4:S}-^?14. ^^>5.?i#- fl HAA^]

^ 38 °CS ^^§VJ1,

ufl ^5L^r 52 °CS. -i

KALIMER^ ^ - f ^^11 ^ ^ 1 ^71171- 65cmS

4.

•& ^ ^ ^ ^ ^ KALIMER ^^fS-SflHS] ^A}^7\%: 5]^ ^ ^ 7fl ^

[3.2.5-1,3]

l, 3fl.EL°ll

- 6 6 -

Page 85: Liquid Metal Reactor Design Technology Development ...

o}6\)

(1) i^l * 1 ^ ^

o i ^ KALIMER

3.2.5-2

IHX ^ EMP7]- ^-^-slfe- ^ ^ ^ ^ ^ ] Ml^^ \.2mSL

20cm, 25cm, 30cm, 35cm ^ 40cm£1 ^-fofl tfltb

«} $I4[3.2.5-8]. x l ^ l ^ t ^ l ^ E ] - ^ ^ ;g-f [3.2.5-2,6]ofl

(2) ^

-S^H^l^ 7]7]*\ 7] 7]

;«*1#(PRISMS1 4^- : 5271]) ^ ^fl^

7l ^|§f^ ZL& 3.2.5-12^A^ go] IHX, EMP

ANSYS £ 1 ^ DL 3.2.5-125}1 ^ ^ : i ^ « M ^ 1 ^ ^ 1/4^^ S - l ^ ^ ^ 4 - TllS^l^-^A^ 6

, uy, uz, x, y, z)t- fe €

- 6 7 -

Page 86: Liquid Metal Reactor Design Technology Development ...

4 4 4 r # 20cm

, y)5] 3 4 ^ ^-

(3)

- ^ [3.2.5-7]

i£ 3.2.5-2ofl

H^ 3.2.5-125] s f l ^ l ^ j 5]^i

2]^i#5izi #eflxl Aj-o]] - a 3.2.5-2^^5}- 7EVol ^ J t ^ ; CRD, UIS,

IVTM ^ 7Jl#^-yl ^ ^ 68.611- o} ^

8009.4 (N)5] ^ ^ ^ } ^ o l -g-§1-711

4 ^ ^ i ^ r 3771.54 (N)4 4f^°l 4 ^ 4 ^ , 711 254^1 S ^ 5 ^ s]ol °lo] z> ^ ^ o i l ^ ^-^4711 4714.42

(N)4 4^°1 4-§-44 44-4 4 ^ - e ZL^ 3.2.5-125] 3~4^^^OH1^ %*}

^ i f - f- # 1013.57^.5]

4 ^ i ^ 59161.12(N)4

4 . § f l ^o^ CV7> 4 4 ^ ^ ^ 3.2.5-125] 5 ~ 6 < i ^ l ^ 88.51^-5] CV4

^0} ^^.gj.^cfl o] A1AO>OI 43^^ofl^ 5046.1(N)4

4-

(4)

7] 71

-68-

Page 87: Liquid Metal Reactor Design Technology Development ...

3.2.5-13^r

3.2.5-14^ CFX S^[3.2.5-

^ ^ 223 °C, *}•$.#•& 230 °C£ M-Ef^^cU o]

PRISM[3.2.5-9]5] ^^^Ef l ^ S ^ H ^1H^ ^ £ 7 ] - 100 °C

} } ^ }^ )} Slfe ^ ^ seal J f £

seal &43. *1*>< ^ ^ ^ 7 B ^ ^ ^ ^ j - J L $14

. KALIMER ^ ^ S . « f l H ^ ^:3£7> 200 °C O]AJ-^_

44 44\+

(5) -g-^sfl^ % - i ^ l ^ ] ^ ^ 4

KALIMER ^ S - S f l n f e ^ - ^ i ^ i ^ ^ £ ] S - S . ASME Section III NB1-

44 ^^1^4- s*> 4

# PRISM[3.2.5-10]

a°HAi ^i-g-^ 4 4 £°1 20cm, 25cm, 30cm, 35cm ^40cmS] ^-fofl cflt}^ -g-e^^-!- ^^^. ^ ^ ^ a 3.2.5-3^ ^ H ^ 4

[3 .2 .5 -8 ]^ ] H l «

-69-

Page 88: Liquid Metal Reactor Design Technology Development ...

3. 3.2.5-3^^ SLTT 4 4

Sfl

3.2.5-15^^^ go] ^T?\}7\ 30cm

^ 2 ] ^ ^ ] ^ ^ r 0.83mmS 6.35mmiL4

3.2.5-1 KALIMER

^ ^

*r# (EA)

*H

As.

7jo] (shell)

KALIMER J@ *|-3.3I1 H&

16.0 mm22.0 mm

22316SS

^^>S«11 .

45 cm

30 cm304SS

702 cm

5 cm17.6 m316SS

- 7 0 -

Page 89: Liquid Metal Reactor Design Technology Development ...

i t 3.2.5-2 Weight of Components and Systems for KALIMER Reactor

Structure

^ ^ I - S J Z L + C U I S + C R D )

EMP (1EA)

IHX (1EA)

RVifl ±^

-xl x] tifl Jnlet Plenum

^7\] ( S ) :35.61+(33)

20

25

25

85.8

88.51

165.89

421

426.68

5. 3.2.5-3 Analysis Results of KALIMER Reactor Head

(cm)

20

25

30

35

40

2.73

1.42

0.83

0.53

0.36

rDM1-

6.35

*] (mm)

9.84

5.10

2.99

1.90

1.29

46.08

40.8

28.7

21.3

16.5

38(5.8

. (MPa)

99.95

64.13

44.64

32.88

25.23

-71

Page 90: Liquid Metal Reactor Design Technology Development ...

Bolts

CV

1687 5cm

ContainmentRing

Flange \Reactor Support/

R e a c t o r H e a Anchor Bolt (12) /

th

30cm 10cm

3.2.5-1 Previous Concept of Reactor Support Structure

- 7 2 -

Page 91: Liquid Metal Reactor Design Technology Development ...

Insulation Support Ring

\

Containment Boundary(fixed seal)

Reactor Head

-120C Normal

HeInsulationPlates (22)

Hot Pool Sodium

-530C

Ar

RV CVRV Liner

PSDRSAir out temp ~ 100C

Air In temp ~ 40C

Collector cylinder

3.2.5-2 Current Concept of Reactor Support Structure

- 7 3 -

Page 92: Liquid Metal Reactor Design Technology Development ...

-12)11- Lubrite A[g-li?f SI g

-316SS¥ l 5 C m , i ' 0 l 1855 Cm

-2(1/4)Cr-lMo2.5 Cm, & 01 1880 Cm

3.2.5-3 KALIMER Reactor Structure

- 7 4 -

Page 93: Liquid Metal Reactor Design Technology Development ...

Support Rin00 767cm

UISOD 140cm

IHX (4)OD 120cm

Thermal LinerOD 687cm

Reactor VesselOD 702cm

Containment VesselOD 737cm

3.2.5-4 Plan View of KALIMER Reactor Head

3.2.5-5 Penetration in KALIMER Reactor Head

- 7 5 -

Page 94: Liquid Metal Reactor Design Technology Development ...

ROTATING PLUGFLANGE

PINS AK3 SPACERS

3.2.5-6 Construction of Insulation and Shield Plates

- 7 6 -

Page 95: Liquid Metal Reactor Design Technology Development ...

3.2.5-7 Arrangements of Insulation and Shield Plates

- 7 7 -

Page 96: Liquid Metal Reactor Design Technology Development ...

3.2.5-8 Components supported by Reactor Head

- 7 8 -

Page 97: Liquid Metal Reactor Design Technology Development ...

CANOPY SEAL(316CRES

0:25 WALL)

DYNAMIC SEAL(INFLATABLE

ELASTOMERICI

ROTATING PLUGTIE-DOWN BOLTS

BUFFERED STATIC SEAL(4 PLACES)

JACK ATTACHMENTAREA

TIGHT SLIP FIT TO PREVENTTORQUINC BELLOWS

SUPPORT CHOCK SPACE

FIXED CLOSURE FLANGE

12 in.

RING GEAR

TOP SEALRING FLANGE

ROTATING PLUGANTI-ROTATION

TAPERED THRF"" 1—

RP SUPPORTBEARING

PRIMARY SEAL(INFLATABLE

ELASTOMERIC)

MAINTENANCESEAL

ROTATABLEPLUG

3.2.5-9 Alignment of Reactor Head and Rotating Plug during Operation

- 7 9 -

Page 98: Liquid Metal Reactor Design Technology Development ...

IHX MOON TINGFLANGE

, RE. ACT OHDEC*

1

3.2.5-10 Supporting Concept of IHX

EMP Flange

Reactor Head

Pump penetration : 1.2m O.D

Support cylinder. (I >175m O.D)

Reactor Head

3.2.5-11 Supporting Concept EMP

- 8 0 -

Page 99: Liquid Metal Reactor Design Technology Development ...

7 ^6 jf +

3;-;-

|:

• i

2

Reactor Head -

AN^ ^ ^ g : ^ . ^ Supporting line

-itIt f iC7f«S : f l^sS-^^ '12 : Rotating plug

^ ^ ^ ^ ^ ^ S ^ - * 5-6-7-8: support ring

Ro]

_xrinc" IMP

type support Xlt-30em) ^ ^ ^

4 5

Fig. 3.2.5-12 Finite Element Model of Reactor Head

- 8 1 -

Page 100: Liquid Metal Reactor Design Technology Development ...

Containment Dome(Argon gas)

Reactor vesselCenter line

Reactor HeadInsulation

Upper Helium gas region

Insulation plate (22 plates, t=?16mm, gap=22mm)

Lower Helium gas region

Hot pool surface3.435m

3.51m

3.685m

Ar

Reactorvessel

' Thermal lirier

Containmentvessel

3.2.5-13 Configuration of Reactor Structure

- 8 2 -

Page 101: Liquid Metal Reactor Design Technology Development ...

3.2.5-14 Thermal Analysis Results along RV Axial Direction

Reactor Head - ring type support (t=30cm)

C&VG)

ANSYS 5.5.3APR 11 200011:33:25NODAL SOLUTIONSTEP=1SUB =1TIME=1UZRSYS=0PowerGraphicsEFACET=1AVRES=MatDMX -.01497SMN =-.832E-03^ -.832E-03S I -.740E-03fSB* -.6-37E-03

-.S55E-03-.462E-03-.370E-03-.277E-03-.18SE-Q3-.925E-040

CDmm

CD

3.2.5-15 Vertical Deflection of Reactor Head under Thermal and Dead

Weight Load

- 8 3 -

Page 102: Liquid Metal Reactor Design Technology Development ...

Z XReactor Head - ring type support (t-30cm)

ANSYS 5.5.3APR 7 200016:55:18ELEMENT SOLUTIONSTEP=1SUB -1TIME=1SINI (NOAVG)PowerGraph icsEFACET-1DMX =.01497SMN -55797

=.287E+0855797.324E+07.642E+07.960E+07.12BE+08.160E+08.191E+08.223E+08.255E+08.287E+Q8

SMX

CDE3E3enCD

3.2.5-16 Distribution of Stress Intensities for Reactor Head

- 8 4 -

Page 103: Liquid Metal Reactor Design Technology Development ...

6.

3.2.6-14

3.2.6-H7}

ension member)^

(armature)^-

44.

$14.SLB\

(driveline)

44

tube)

44

B4C#

4.

A

- 8 5 -

Page 104: Liquid Metal Reactor Design Technology Development ...

. A

A

USS(ultimate shutdown system)7>

USS^r ii-a ^

(SASS) 7 l ^ # ^o>4^ 7 ^ ^ - 33*l#*]oM [3.2.6-2],

B4CS- t > l - ^ ^ ^5^ 7flS]

icf[3.2.6-l].

4. f-*11S, ^ 5 ^ # ^ A ^ ^-g-§>^ ^ I f e ^4^°H £\^*\ B4C

. B4C

USS

USS

Page 105: Liquid Metal Reactor Design Technology Development ...

ULOF(unscrammed unprotected loss-of-flow), ULOHS (unprotected

loss-of-heat sink), BEfe- UTOP(unprotected transient overpower)

- 8 7 -

Page 106: Liquid Metal Reactor Design Technology Development ...

3. 3.2.6-1 (CRDM)

Housing

Shim motor

Drive shaft

Screw driver

Motor support level

Drive nut

Rod stop screw

Rod stop drive gear

Diameter

30/27 cm

6 cm (1.5/2.5cm)

10 cm

6cm

100cm from bottom

17.08/(12.5/10.5)cm

2.5cm

8. 5cm

Length

400cm

50cm(5.0/2. 0cm)

360cm(-150cm)

150cm

Thickness of 2cm

2.0/10cm

80cm

2.0cm

3.2.6-1

Page 107: Liquid Metal Reactor Design Technology Development ...

7.

18

(In-Vessel Transfer Machine)^!

(Fuel Transfer Station)* -f-Sfl

-§-71 (Fuel Transfer Cask)ofl ^o ] - ^ ^ A j ^ ^ O ] ^ A | ^ 1 4 . ^ 3.2.7-H>H

*\%*]-£•£:

(1)

3.2.7-2^

- 8 9 -

Page 108: Liquid Metal Reactor Design Technology Development ...

7} #& #7]

Q4-7], 7}°],

t}7) ^]*>

m 5. ^.o] <^±v] main tube 4 } ^

0.915

1^^1H ^ $14- ^ ^ 3.2.7-3 ^ ^ i ^

^ ^ 3 J ° 1 * A £\ r ^cfl -tl^Al 0.3048

0.9144

(2)

(gate) l i

4 - 5E*> ^

hoists

(3)

2.743 m

. o l .

3 . 2 . 7 - 5 ^ s ] ^ i 4

n ^ 3.2.7-60JI 4 4 4 5 1 4 .

- 9 0 -

Page 109: Liquid Metal Reactor Design Technology Development ...

#£iHTr ledge seaH

hold-down

tacometer^l 51 sfl ^ r #

^ encorder

(4)

^ 67fl^

cflsfl SB]

t> cover

67fl 51 carousel

(5)

(6)

71

13)

(7)

- 9 1 -

Page 110: Liquid Metal Reactor Design Technology Development ...

1- f-sfl

3.2.7-8i

Sflo^jg.

Reactor Building

Fuel Handling andStorage Building

at n

3.2.7-1

- 9 2 -

Page 111: Liquid Metal Reactor Design Technology Development ...

m t n )

Telescopic Tube Length

/ Telescoping coupling

Grapple Assembly

r~ EL. o

EL. 11800

150X150

& 3.2.7-2 Pantograph Type IVTM

- 9 3 -

Page 112: Liquid Metal Reactor Design Technology Development ...

36 in

Top of core

i

Retracted Position Extended P osition

3.2.7-3 IVTM S]

- 9 4 -

Page 113: Liquid Metal Reactor Design Technology Development ...

Center of Reactor Qgj$(RC)

. KALIMERCore OuterDia.: 3381 mm

Control Rod Drive

RP Jacking

Mechanism

Plug Drive

Ultimate Shutdown

Assembly (356 O.D)

Center of Rotating PJ gTCF)

2845

Rotating Plug

(2743 dj.a.)

OffsetfromR.C(211)

IVTM

(600 O.D)

FTS (600 O.D)

Support Cylinder

QZ13O.D)

3.2.7-4

- 9 5 -

Page 114: Liquid Metal Reactor Design Technology Development ...

Center of R.C

2845

Center of RP483 j

< f-915 T T

EL. 900

EL. 300

EL. 0

" EL. -300

280 211

2743

600

1371.5

3.2.7-5

- 9 6 -

Page 115: Liquid Metal Reactor Design Technology Development ...

RP Support

3.2.7-6 RP seals]

3.2.7-7 RP seals]

- 9 7 -

Page 116: Liquid Metal Reactor Design Technology Development ...

Rotating Plui

1681.0

1771.0

1846.0

1910.0

Insulation and

Shield Plates

Fuel Transfer

Station

EM Pump

IVTM

IVS

3.2.7-8

Page 117: Liquid Metal Reactor Design Technology Development ...

8. 7] 7 ^ 2 : # £ A>JL

7}. o f l ^ ^ ^ ^ £ = .

[3.2.8-1]. ^ ^ 1 ^ - ^ S . ^ ^ S ^ l ] ^ i f - ^ ^ z ^ f l S A>-g-§]-7l

(1)

7171S1 ^S] ^-^1 f-afl ^ ^ 1 ^ 1

^^14. J ^ I -g-

. 7]

(2)

4-S-,

-99-

Page 118: Liquid Metal Reactor Design Technology Development ...

3.2.8-H

4.

3.2.8-H 127}]

2:4

o]o]

$14.

3.2.8-1

Phenix

S P X

Fermi

EBR I I

D F R

P F R

KNK 1

SNR

BN 350

BN 600

Rapsodie

Monju

711

it10

5

2

4

1

11

3

2

2

4

1

1

46

9

1

1

2

8

2

2

2

2

29

[ ^

zii

2

1

4

i

i

3

5

714

1

1

1

1

2

1

1

8

Si2

2

1

4

1

2

1

13

2

2

1

7

1

1

1

15

2

1

1

4

-1 *1

i

2

1

4

•SJMf

3

1

4

714

3

1

1

1

6

10

5

2

4

1

11

3

2

2

4

1

1

46

- 1 0 0 -

Page 119: Liquid Metal Reactor Design Technology Development ...

4-

<HH "11-f ^ A § } 4 . oil- ^sfl 31*1-3

(In-Service Inspection ; ISI)7>

.2.8-5].

^^l^^S-Oi] cfl*> 7\^^7iA\ ^ . ^ ^ ASME B&PV Section XI

Division 3 i 4 4 fl-^€4[3.2.8-6]. Section XRr 7 } ^ ^ ^

^ ^ ^ 71 A\ ^ ^ 7JA|- ^711- 7)^t}5L $14. KALIMER

4 ^ ^ ^ ^ ^ - S . ^ ^ € Tfl-f-4 ^ ^ ^ ASME fl-^#

4- i^r^°J ^^11- ^o1]T= A S M E

31

*>r}. of i^^-^^o^ ^ A J ^ - j i ^ ^ r } ^ KALIMER^

- 1 0 1 -

Page 120: Liquid Metal Reactor Design Technology Development ...

(1) 7]-§

(71-) 3 4

oJj^^-^^L^ ^ m JjL -ofl cfl*V 7f^^7jA}^ f ^ o j ASME Sec.

XI, Div. 3£ 7 > ^ 3 4 ^71, 3 4 W «.=., T^AJ-ti *J 7JA)- ^ ^

3.2.8-2) 31 *>^ -£?fl ^ < H $1^4 ASME 7}^-^

KALIMER

ALARA

(M-) ^ 4

ASME 2£.«>|Alr 7 > ^ - ^ ^ A } ^«J ^ 7 ] S . S. 3.2.8-3 S ^ S 3.2.8-4

1 0 0 o / o

- 1 0 2 -

Page 121: Liquid Metal Reactor Design Technology Development ...

£ 0 1 -

5af

I-W1A -

--hi* 4ot

\5

-bk

•[Z.-8T£]-br$ IT

[fl #-12 ^:A uoijoss HWSV

IY ^ ^ -§-ir

Page 122: Liquid Metal Reactor Design Technology Development ...

g_ 3.2.8-2. ASME B&PV Code, Section XI, Division 3£]

B-A

B-B

B-C

B-E

B-F

B-G

B-H

B-J-l

B-J-2

B-K

B-M

B-N

Guard Vessels. i i J ] r

Guard Vessels. JiJLSl^l

?}&] 7 f i l-}] 7)1 7l 7l

t r - - o irj r - * •• ^ r ^n "^

Guard pipe EETT ^ r i S .

Guard pipe JE.^ ^ 3 - S .

<5)] ^]] -g- . ^ ^ y}| j ! j -

71 71

€45. -§- -

7lH} -§-71 -8-^^f

€45 ^\v\

7lE} -§-71

€45 %

€ 4 5 -§-71

?>til7l-^: lfl7fl yflE]-

^ ^ ^ * ^ ~

1 4 ^ "?1 - 1 •?•

^ 7 V "S ^1 7Jl -W-

^-o>^A]- VTM-2

Sr°}^^} VTM-2

x\] ^ ^ j Aj-

o t 7V A]

^#^A!

^-oV^Af VTM-3

7.]] ^ 2 j A}

^-o>^A]- VTM-2

^-oj-7^Af VTM-2

^V\ ^•^l^Aj- VTM-2

^-^V^Al- VTM-3

**} W

^1-S-^-T"^ 33%

^-g-^-T-5] 33%

^ • g - ^ ^ 100%

d ^ ^

-§-^3] 33%

7 Til 51 33%

-104-

Page 123: Liquid Metal Reactor Design Technology Development ...

g_ 3.2.8-3. A

34 71

2,f (7^)

3^} (13\l^]r)

4x} (17\£ V)

34 471

1 - 3

4 - 7

8 - 10

11 - 13

14 - 17

18 - 20

21 - 2324 - 27

28 - 30

31 - 33

34 - 37

38 - 40

*\± 34 #s*

100

33

100

16

40

66

1008

25

50

75

100

SJtfl 3A} ^g.ig

100

67

100

34

50

75

10016

34

67

100

3.2.8-4. B

3 4 ^7,

\x} (10^3-)

2*} (10\13:)

3x} (10\£3r)

4x\ (lO1^?!)

34 471

1 - 3

4 - 7

8 - 1011 - 13

14 - 17

18 - 2021 - 23

24 - 27

28 - 3031 - 33

34 - 37

38 - 40

Z± 34 # «16

50

10016

50

10016

50

10016

50

100

m 34 sae34

67

10034

67

10034

67

10034

100

- 1 0 5 -

Page 124: Liquid Metal Reactor Design Technology Development ...

°) 4.

44ol

A]

Sl-cf.

A ] ^ ^j] ofl X\?}JL O)

$14.

106-

Page 125: Liquid Metal Reactor Design Technology Development ...

ASME

ic Emission), S 5 ^ >H

n-Line Monitoring) f-o]

(2)

ASME Section XI, Div. KALIMER

3.2.8-1^

A}

-§-7]

RV4

150 °C ~ 200

- 1 0 7 -

Page 126: Liquid Metal Reactor Design Technology Development ...

oflo] o o 7]-^ ^ f ^ 3}*} 3- -§-7]4 2^-g-7l Afo]o^ 5^^ 7fl ofl

7 ^ ^ ^ -81 * H l«fl

7} ^

ASME

3.2.8-24

$14.

-71 ofl ^ 4 ^ 4 - ^ °l-g- S^ :^ ^14S SflH°fl $I r ISI

(4) ^

VTM-3

TVofl 1«]- VTM-3^4# " r ^ 4 ^ n r ^ ^ ^ * ^ 4 ? 5 : 4 . ( ^ ^ 3.2.8-2)

- 1 0 8 -

Page 127: Liquid Metal Reactor Design Technology Development ...

Reactor Vessel

VTM-2, CM, VI

Containment Vessel

VTM-3, ILRT, CM

Primary

VTM-2,

EM Pump

CM

Int. Heat Exchanger

VTM-2, CM

Reactor Internal

VTM-3, CM, VI

Reactor Head

CM

Rx Support Structure

VTM-3

VTM : Visual Testing Method-1,2,3

USV: UnderSodiumViewing

CM : Continuous Monitoring

VI : Volumetric Inspection {UT, ECT)

SI : Surface Inspection {PT, MT)

ILRT : Integral Leak Rate Test

LLRT : Local Leak Rate Test

Containment Dome

ILRT, LLRT

Residual Heat Removal

VTM-3, CM

Primary Cover Gas Sys

Int. Heat Transfer Sys

VTM-2, CM, SI or VI

Isolation Valve

ILRT, Performance test

Intermediate EM Pump

VTM-3, CM

Steam Generator

VI, CM

3.2.8-1 KALIMER

- 1 0 9 -

Page 128: Liquid Metal Reactor Design Technology Development ...

ISI Access

Port (12)Monitor

Reactor Head

15cm

Reactor Vessel

(SS316) 5cm

EMAT Sensor

Video Camera

Ultrasonic Equipment

A

Video Recorder

Containment Vessel

(2-1/4 Cr-Mo) 2.5 cm

3.2.8-2 -§-71 -§-71^

- 1 1 0 -

Page 129: Liquid Metal Reactor Design Technology Development ...

RV/CV

tfl^-5] ^ J l 71714

VTM-37]- A ^ i ) ^ ^ ^ } ^ ^ r # ^ ^ tfl

^ 2 # £ ] VTM-3 ^ - ^ ^ A l - ^ ^ l f l ^ - ^ 2 : # ^ 71

Tfl 3 ^ " 2 : ^ A o^- t ^A}§f^ 31 0 ^

. a]

514- TflolT;] ^ - 4 IVTM#

3.2.8-34

- 1 1 1 -

Page 130: Liquid Metal Reactor Design Technology Development ...

4- TW 1-Hfl ^ ^ 11 f ^ ^ r IHX

Ultrasonic Equipment Monitor

Manipulator

Ultrasonic Transducer

ISI Port

IVTM

3.2.8-3

-112-

Page 131: Liquid Metal Reactor Design Technology Development ...

HAAi

^ 71

6\)

4-

(«!-) ^ t i 47] A^- (PSDRS)

47] Tfl^S] -71 <a - ^ # ^ ^-S-4 -71 -fr^^r ^ ^4. Dll ^ ^ ^ ^^1^7144 OI^^L ^.^ PSDRS f-s., ^^-§-71

- 1 1 3 -

Page 132: Liquid Metal Reactor Design Technology Development ...

-g-

(Af) Tg^l Al^Efl

114-

Page 133: Liquid Metal Reactor Design Technology Development ...

IHTS flfl^, l*f i f-

10CFR50 Appendix J<*f|

# ^ ^ J l S 35]

bulletin^- ^ ^ A ] ^ O ] § | ] ^ ^

10

5 psi <5flA-] 6 p s i ^ ^

JBLS. ASME 3 £

IHTS

A] ojl ^ E l ^ H . 1 - T£JL IHTStfl^ ^ . g - 7>«fl l i

-115-

Page 134: Liquid Metal Reactor Design Technology Development ...

4- IHTS Bfl2}5] 7}^7^A}±- i f ^ S ] <g^7j-A]5f VTM-2

4-

. IHTS Hfl^s] i f - ^ r ^ ^ i f - tifl^s]- ^ . s . tifl^ A\O)

IHTS

if"

. A S M E 7 > ^ - ^ 7 J A f i ] ^ ^ ] l a H } > ^ } ^

trfl^-ofl ^ ^ A ] Sj-7.1] A } J L ^ 7 | . - ^ o]

*j-g-£j

i r remote field

. IHTS4 i l l

#J± ^ S . 7>4# l7-]*l- ^ remote field

4 4 10% ^ £ 4 ^ ^ - 1 - fl 7 A)-7R>

(SGACS)4 ^ 7J 4 ° l S ^ ^ ^ 4 ^ ^ TV -7

- 1 1 6 -

Page 135: Liquid Metal Reactor Design Technology Development ...

fe ^ -§-1^*1 ^-§ *1 (Active Acoustic Leak

Detection)^ ^ ^ -g-%Va-*] (Passive Acoustic Leak Detection)-^ ^ - ^ ^ - § -

§Vcf. ^ ^

(plugging)

(3)

(7)-)

71

^r -SL

S 4^51 °io> W - KALIMER l

^7-1 §1-71 ^ ^ ^-#

. ALARA7fl

- 1 1 7 -

Page 136: Liquid Metal Reactor Design Technology Development ...

al-g-

KALIMERS]

KALIMER^

oi

$14-

- 1 1 8 -

Page 137: Liquid Metal Reactor Design Technology Development ...

f- 3 T\]

KALIMER

Id

(4)

reventive Maintenance : PM)4

ive Maintenance

57^1

^ ^ i ^ ^ ( D i s c r e t i o n a r y PM) H^Jl

(Preventive Diagnostic Maintenance : PDM)S 4 T 1 4 -

°J

(4)

iJ-'S-i- 3. 3.2.8-44

- 1 1 9 -

Page 138: Liquid Metal Reactor Design Technology Development ...

(7\)

-8-71

(4)

v ^ ^ f £14-

3.2.8-4^ €7-1 S^ IJ .^ 7H^51# 4 4 ^ 4 -

U

- 1 2 0 -

Page 139: Liquid Metal Reactor Design Technology Development ...

(4)

7]6] ^

o]

-^ 71-

- 1 2 1 -

Page 140: Liquid Metal Reactor Design Technology Development ...

S. 3.2.8-4 KALIMER ^r_3.-^#^

-g-71 o-8-71 o

oi

A>-g.)

o A

o A

o A

o A

5] ^ f o A

Xi- o A

o A

- 1 2 2 -

Page 141: Liquid Metal Reactor Design Technology Development ...

3.2.8-4

• 1 2 3 -

Page 142: Liquid Metal Reactor Design Technology Development ...

(5)

- ASME fl-^ofl S]^- 7 1 - ^ 3 4

] ^ ^ oflia]

17] # ^ 7-1 Jf^Sl XU1- ^ ^

1 5 . rgJ

4^517-14

(6)

KALIMER $] JL^r ^-^ 3LB\f>\5L ASME Section XI Division 3

-§-71

- KALIMER5] 7fl^ ^ ^ 1

4.

124-

Page 143: Liquid Metal Reactor Design Technology Development ...

9.

} &4[3.2.9-l,3.2.9-2].

Okada f-ojj <q

) - ^ ^ } ^ s ^ ^ 7 } # ^«S^>J1 ASME

Code Section III, Subsection NH[3.2.9-3]°M

7}.

(1)

(3.2.9-1)

• 1 2 5 -

Page 144: Liquid Metal Reactor Design Technology Development ...

(3.2.9-2)

(3.2.9-3)

^(3.2.9-2), ( 3 . 2 . 9 - 3 ) ^

^ AA

, 0.2% ^l-

flS., ^ 304SS, 316SS

Ramberg-Osgood^ ^ - ^

rjc = Min[\.Q, 1.04tanh(0.98.707£ lcrccre)] (3.2.9-4)

Vs = M«[1.14tanh(rO7£/rc%), tanh(1.6ro.7£ Irscre)} (3.2.9-5)

yft =1.0 + 0.21sech(3.5o-07£/<rJ (3.2.9-6)

ys = M«[1.0 + 0.22sech(1.7ro7E/<J, 1.0 + 13.0sech(6.4r07E / rscrj] (3.2.9-7)

[3.2.9-5]^

(3.2.9-8)

(3.2.9-9)

( 3 . 2 . 9 . 1 0 )

(3.2.9-11)

- 1 2 6 -

Page 145: Liquid Metal Reactor Design Technology Development ...

[3.2.9-6J. J. Okada

= 0.66^-0.9,1+1.0 (3.2.9-12)

A~~T1 (3.2.9-13)

^ ^ # ^ §tf^fe 0.5< L/R < 5.0 nelJL 50.0 < M < 500.0^4.

(2)

sfl (Eigenvalue Buckling Analysis) yo

VlH-4 til^i^ 2)-i-«l]^ (Nonlinear

Buckling Analysis) yo

Vtt!ol

point)!-

(3.2.9-12)

j 1 (Stress stiffness

matrix), A fe- 2}-

^7}A]

- 1 2 7 -

Page 146: Liquid Metal Reactor Design Technology Development ...

Snap-through 2 f ^ ^

. KALIMER

(1) KALIMER

3.2.9-1^-

-fe- 316SS

KALIMER ^

a t H^Jl 7]7l

702cm, -Tfl 5cm, 1700cm

(2)

3.2.9-25]-

KALIMER

510°C(950°F)#

ASME Code Section III,

ANSYS version 5.5[3.2.9-7]l-

SHELL63

SHELL43 &.±^

£=160 GPa

Subsection

316SS

^ ^ ^-A]^(Isochronous)

510°C M ^ 3xlO5

3.2.9-3-1:

KALIMER

Qcr = 1200

Qcr = 31829 tons

- 1 2 8 -

Page 147: Liquid Metal Reactor Design Technology Development ...

: Qcr = 19252 tons (

: Qcr = 2000 tons

5)^71

KALIMER

KALIMER

3.2.9-5^ KALIMER

7}

3.2.9-6^ KALIMER

R/t7\ *}

§ H ^ ^ S ^ « t KALIMER

= 19252 tons°]v\ °}?e D.% 3.2.9-5^1.

- 1 2 9 -

Page 148: Liquid Metal Reactor Design Technology Development ...

Qbcr.e=20000 tons3\

2000 toS 0cr=12OO tons

3711 ^ ^ - $14- 3.2.9-7^

(3) ASME ^

III, Division 1-Subsection

Jl $14-

:71

4^-4ASME Code Section

j-g-ofl tfl *V

4-8-

Factor)

i 2:71 7 l 4 ^ [ ^ imperfection

(Time-Independent Buckling) °ll JLi^

^ 7 l 4 * H imperfection^l ^

Buckling)^ J l

imperfection^

- 1 3 0 -

Page 149: Liquid Metal Reactor Design Technology Development ...

l ^ ASME

(Normalizing)S. ^ ^

ASME Subsection

(3.2.9-13)

oil tfl fl ^7]1 ^ ^ ^ S ? l A, B^l tflsflAife 3.0, ^ ^ S ^ i C

2.5, ^ ^ ^ ^ 1 D i tfltflA-ife 1.5 ZLB\3L Al^£^ol l uflsflX-]

Shutdown Earthquake)^

^ £ ^ 1 DSL

KALIMER

KALIMER ^

^ - f 0.9g,

q-. 1 4 4 ^ KALIMER

tons, ^.^.AiA^ ^ - f ° H r 26=171.9

KALIMER

: Load Factor = 1.09 < 1.5 ( £ * I 2 : ^ D)

: Load Factor = 6.98 > 1.5 ( ^ S ^ D)

- 1 3 1 -

Page 150: Liquid Metal Reactor Design Technology Development ...

KALIMER ^ j ^ 1 ^ ^ f ] f^

EL7\]

_g.7]o^ yV^o] j ^ ^ ^ S . 2 } - ^ 7117}- ^-el

KALIMER ^14S.-§-7l^ til^^l^7^1^ ^-fofl ASME

- 1 3 2 -

Page 151: Liquid Metal Reactor Design Technology Development ...

3.2.9-1 Conceptually Designed KALIMER Reactor

Fixed B.C.

3.2.9-2 Finite Element Analysis Model-1/2

- 1 3 3 -

Page 152: Liquid Metal Reactor Design Technology Development ...

s.»w

£V)

(1) ASNIE Code Section ill, Subsection NH(2) Material = 316SS(3) Temp = 510°C(4) Service Time = 3x10s hr

0.00 0.25 0.50 0.75 1.00 1.25

Strain (%)

1.50 1.75 2.00

3.2.9-3 Stress-Strain Curve Used in Buckling Analysis

(a) Eigenvalue Analysis (b) Nonlinear Elastic Analysis (c) Nonlinear Elastic-Plastic Analysis

3.2.9-4 Buckling Model of KALIMER Reactor Vessel

- 1 3 4 -

Page 153: Liquid Metal Reactor Design Technology Development ...

40000

30000

C 20000

10000 -

0 -

Elastic BendingElastic ShearPlasticPlastic and Imperfection

Imperfection Q

Shear Buckling Bending Buckling

L/R

3.2.9-5 Slenderness Effects on Buckling Loads

a " 30000

\ v l \ \ • Thickness = 5.0 Cm

i —— R = 300 Cm— R = 400 Cm— R = SOO Cm—•— R = 600 Cm— R = 700 Cm

Nonlinear Elastic Analysis

Won linear Elastic-Plastic Analysis

O- O - O - 0 - - 0 - 0 - 0 - 0 0

30 AO 50

Displacement (Cm)

60 70 30

3.2.9-6 Plasticity Effects 3.2.9-7 Disp-Force Responses

1 3 5 -

Page 154: Liquid Metal Reactor Design Technology Development ...

10.

KALIMER[3.2.10-l]S]

o> .s. ^AJ^JL 44^1 ^HU-^Hl ^ ^ 7flM 3J71-1- ^f*l-$i

[3.2.10-3].

7\. KALIMER

KALIMER ^

3.2.10-H 3.91

CRDM, IVTM, EM ^ ^ , IHX

1-^121- ^ ^ l S . ^ 1 ^ - ^ 127fl2l

[3.2.10-2]. ^^«J-*j=6.S. 127H5]

§11H.^^^^(Head Access Area)^l

20cm

7}

- 1 3 6 -

Page 155: Liquid Metal Reactor Design Technology Development ...

KALIMER

7]

- PSDRS

3.2.10-2^1

230°C

H KALIMER^- 2 ^ 3.2.10-2ofl &91 7AA

Collector Cylinder^! tij-^r^-^-S. -^^f ^7] 7}

- 1 3 7 -

Page 156: Liquid Metal Reactor Design Technology Development ...

131 3 Collector Cylinder 4 z*^-%-7] A \ ° } % §fl ^ 3.

cfA] UBj-^q-7]-^ PSDRS(Passive Safety Decay Heat Removal System) Tfl-f-

[3.2.10-4]^ ^ l ^ l H t\7\ nfl ofl ^ ^ x l x ] ^ 2 : # i : *AA% nfl PSDRS

PSDRS TJl ^ ^ l i tp} ]1PSDRS ^717} £ £ 7 }

A]

6\]

(1)

KALIMER ^^1-S. ^1^1^3:1-^ ^ y] 7

Jl ^7^1 lfl?>O.S ^]A]«V < AJ 7}*]$] 7]

3.2.10-34

- 1 3 8 -

Page 157: Liquid Metal Reactor Design Technology Development ...

°H

?J

(uj-)

3.2.10-4^

7}

- 1 3 9 -

Page 158: Liquid Metal Reactor Design Technology Development ...

€*>£• 4™}^ ^

°H1

^ ZL^ 3.2.10-5O11 £3.0} ^ 4 7^0]

HAA

-140-

Page 159: Liquid Metal Reactor Design Technology Development ...

3.2.10-6^1

9X3.,

*.

67fl~127ll

^ . ^ HAA

K) . tflo> 5

H ^ 3.2.10 A}

^ 6-12711

1, o]

H 4 HAA

- 1 4 1 -

Page 160: Liquid Metal Reactor Design Technology Development ...

(4) ^ 1 4 ^ 1 H ^ f ^*f|*§ ^ ^Efl ^-2: - tH<£ 6

(Af) ^ ^ t f l o j . S.^sg7l- 1 4

431 £4 1

4444 71-

^j 3.2.10-84 - E ~ I s-c-^-i ^ix Nr i a-^-sT TLL"ar i i*

^(support ring)-

HAA

back weld ^ ? ^ M §-^7]- € T1 Si-5-HS ^^-§-7] -§-^^- 4 t t weld

buildup^ 4 4 ^ 4 ^ ^ S ^14*1 3 ^43.^1]IE.i ^ ^ 4 ^ yoVc?14 7EV

4 ^ ^ Sj *V ^ 4 4

4 ^4^ ^ M ?^s 44^4-

^r 6~127fl S-

- 1 4 2 -

Page 161: Liquid Metal Reactor Design Technology Development ...

7j

HAA

Si

i - i tflsfl ASME B&PV

Code Section XI[3.2.10-6]£| IMF-2500i

. KALIMER^ ^ ^ ^ 7 ^ 1 ^ 3 ^ 4 ^^--§-71

: 1 - ^ 7}^f^ 7 A|-7l- -§-ol^ ^ ^ . ^

PSDRS £*1 2 : ^ A]

€45.

1 4 3 -

Page 162: Liquid Metal Reactor Design Technology Development ...

HAA

#^4 HAA

KALIMER cfl

(2)

ANSYS

(71-) SL

2.25Cr-lMo70>o]4.

fe ^ 30cm

HAA

B&PV Code, Section III, Subsection NF[3.2.10-7]^l

370°C A>O]O1]A^ 184.5MPa<y ^

20cmol

HAA

12.7MPa

ASME

- 1 4 4 -

Page 163: Liquid Metal Reactor Design Technology Development ...

15%

<£ ^ O |

KALIMER

(SSE) 0.2gt- JlSl

61= 0.6g7l-

} ^ 3 ] o . S ^^1^1 #Bfl^l^ ^7)1 5cm, £°}7\ 60cm

^ 77.5cm,

5cm,

HAA

103MPa

60% 3 5 . ^7>%> ^ - f £ § ] - § - ^^]70 i -£ i - ^>^Alz] 7474

- 1 4 5 -

Page 164: Liquid Metal Reactor Design Technology Development ...

^ 4-8-8-^4

344 sfl r ^ ^ I t l t ^

(4) ^ ^ S ^ l ^ ^ f ^ ^ 1 % ^Efl ^ S - tflo]- 6

^} £ £ • - 11 30cm, s. 30cm£l

SHELL63 ^ . i - t ^f-§-^F^ 1/4

11, IHX, ^ EM Pump

.5q- ^ ^ 304

. HAA «

3.2.10-114 ^ v i ^ ^ - ^ 4

3.2.10-124 ^ 4 - 4 4 ^ 4 # 4 20cm7> HAA

4 EM Pump 4 ° H H ^

2|tfl 21MPaS. §!-§- ^^7 j -£ . 1.5Sm ^ 4 184.5MPa(200°C

^ - ^ ^ i ^ r n ^ 3.2.10-13 1 4 4

8.7MPa^4 ^ ^ ^ ^ -g-^^ 4^?-> M ^ ^ ^ $1

4- 41 *}5.315.2] ^ 4 ^ £ f e 4 200°C~ 230°C?14[3.2.10-9] o ] ^ o ] ^ «g

44 ^4 f-g- - ^^4°ls.4#

- 1 4 6 -

Page 165: Liquid Metal Reactor Design Technology Development ...

4.

KALIMER Qx}£, 4 4 ^ 1 " 3 ^ 4 44

-a.

°m 37M

^ B f l

4-

€4*

HAA

44^fe

tfl <

44

444

HAA

- 1 4 7 -

Page 166: Liquid Metal Reactor Design Technology Development ...

57

KALIMER

- 1 4 8 -

Page 167: Liquid Metal Reactor Design Technology Development ...

1687.5cm

737cm

30cm 30cm

3.2.10-1 KALIMER ] 7fl

-149-

Page 168: Liquid Metal Reactor Design Technology Development ...

SGACS

I

o

U

jooto

SteamGenerator-

RPST

R D s -

Sodium

Dump Tank-

Sodium

Catch P a n -

LowerBasemat-

&>•\"

I Cask

HAA

PSDRS Stacks

Cask&TransporterPit

EquipVaults

ReactorModule

ReactorSupport

SeismicIsolators

Page 169: Liquid Metal Reactor Design Technology Development ...

30cm

60ctn

1687.5cm

30cm30cm

3.2.10-3

- 1 5 1 -

Page 170: Liquid Metal Reactor Design Technology Development ...

y S l (HAA)

3.2.10-5

- 1 5 2 -

Page 171: Liquid Metal Reactor Design Technology Development ...

3.2.10-6(HAA

811E

(HAA)

3.2.10-7 t|]6].(5) -

- 1 5 3 -

Page 172: Liquid Metal Reactor Design Technology Development ...

Reactor Head Support Ring

Containment Boundary(fixed seal)

HAA

3.2.10-8

ANSY5 5 . 5 . 1

OCT 31 1999

10:58:10NODAL SOLUTION

STEP=1

SUB =1

TIME=1

SIHT IAVG)

PowerGraphics

AVRES=Mat

DMX =.473E-04

SMH =3 66785

SMX =.127E+08

I1F0RRFORPATHA =.105E+07

I =.12OE+O8

3.2.10-9

- 1 5 4 -

Page 173: Liquid Metal Reactor Design Technology Development ...

Support Structure - Axisyro case

ABSYS 5.5.1OCT 31 199913:29:39HODAL SOLCTIOHSTEP=1

SUB =1

TME=1SIHT [AVG)PowerGraphics

EFACET=1

AYRES=MatDMX =.001353SHN =.125E+07

SMX =.103E+09A =.6SlEi-07

3.2.10-10

Reactor Support-Head Support ring : Cold deck (t = 30cm)

ANSYS 5.6APR 24 200013:20:26DISPLACEMENTSTEP=1SUB =1TIME=1PowerGraphicsEFACET=1&VRES=MatDMX =.709E-04

DSCA=2809XV =0YV =.866025ZV =.5

*DIST=2.378*XF =2.196*YF =1.799*2F =-.057643Z-BUFFER

3.2.10-11

- 1 5 5 -

Page 174: Liquid Metal Reactor Design Technology Development ...

Reactor Support-Head Support ring : Cold deck: (t = 30cm)

ANSYS 5.6APR 24 200013:38:02ELEMENT SOLUTIONSTEP=1SUB =1TIME=1SX (NOAVG)RSYS=1PowerG raph i csEFACET-1DMK =.243E-C4SMN —.210E+08SMX =.210E+08A —.186E+08

=.186E+0S

3.2.10-12

Reac to r Support-Head Support r i n g : Cold deck ( t = 30cm)

ANSYS S.6APR 24 200013:38 :4SELEMENT SOLUTIONSTEP=1SUB =1TIME-1SY (NOAVG)RSYS=1PowerGraphicsEFACET=1DMK - .243E-04SMN =-.866E+07SMX =.B66E+07A =-.770E+07

-.770E+D7

3.2.10-13

• 1 5 6 -

Page 175: Liquid Metal Reactor Design Technology Development ...

11.

2*} ^-ff,

3*H7l7l<y ^

[3.2.11-3,4,5]^

71 #*ll

3.2.11-131-

support hanger*

EM Jg^fe-

Saddle angle plate

hinge joint*

-g-7l ^ a f l ^

snubberl-

9-l^-B.S. snubber support hangerS.

hinged support column -rl °11 ^l^l^l Saddle angle plate

1 - 67]], ^ > ^ S - 4711

^ £^U1 Hfl ^ ^-711-

3£ E. ^7-1 (support hanger)

47fl

157-

Page 176: Liquid Metal Reactor Design Technology Development ...

Air Flow

SGACS

| Steaml- Outlet

WaterInlet

A-A Section View

B-B Section View

3.2.11-1

- 1 5 8 -

Page 177: Liquid Metal Reactor Design Technology Development ...

Sodium Outlet

\\\ww\\\wwwwwww\ww\x

A-A Section View

B-B Section View

3.2.11-2

- 1 5 9 -

Page 178: Liquid Metal Reactor Design Technology Development ...

7}-. Design Description

(1) PURPOSE

The purpose of this document is to provide the design description for

KALIMER (150MWe) reactor internal structures with conceptual

drawings of each internal parts.

(2) SCOPE

The scope of this document includes the description of KALIMER

reactor internal structures except the upper internal structure.

(3) DESIGN DESCRIPTION of KALIMER REACTOR INTERNAL

STRUCTURES

(7» OVERALL DISCRIPTIONS

The KALIMER reactor internal structures are composed of the Core

Support Structure, the Inlet Plenum, the Support Barrel, the RV Liner, the

Baffle Plate, the Separation Plate, the Flow Guide, the EMP Nozzle, the Inlet

Pipe, and the Radiation Shield Structures. Table 3.3.1-1 is the design data of

the KALIMER reactor structures and Fig. 3.3.1-1 shows the elevation of the

reactor internal structures including the containment vessel, reactor vessel,

reactor internal structures, and components. Fig. 3.3.1-2 presents the part

names of the reactor internal structures.

KALIMER reactor internal structures have 3-main functions providing 1)

core support, 2) primary coolant flow path, and 3) component support.

Basically all reactor internal structures are designed to meet these functional

requirements as shown in iso-view drawing of Fig. 3.3.1-3. The design basis

-160-

Page 179: Liquid Metal Reactor Design Technology Development ...

of KALIMER reactor internal structures is described in next section.

From Fig. 3.3.1-1 and Table 3.3.1-1, KALIMER reactor vessel is 17.0m

height of side cylinder, 7.02m outer diameter, and 0.05m thickness. For the

material data of the reactor internal structures, 304 SS or 316 SS will be

used but these materials are studying to be replaced by 316 LN.

The general seismic design features of KALIMER reactor internal

structures are the horizontally coupled between the fixed structures and the

components at the baffle plate and the separation plate to remove the

disadvantage of a single-stand cantilever structural type as shown in Fig.

3.3.1-2 and Fig. 3.3.1-3.

The annulus type internal structure called as the baffle annulus, which is

composed of the RV liner, the support barrel, the baffle plate, and the

separation plate, is provided to mitigate the large thermal gradients generated

between hot and cold sodium boundaries. The temperature of stagnant sodium

in the baffle annulus is steadily stratified at all operating conditions and will

greatly reduce the thermal stresses of boundary regions of hot and cold

sodium.

Table 3.3.1-2 shows the calculated weights of KALIMER reactor structures

and Table 3.3.1-3 shows the calculated primary sodium volume and weights

contained in reactor vessel.

More detail descriptions of the reactor internal structures for each part are

written in following sections.

(M-) CORE SUPPORT STRUCTURE

The core support structure provides the restraint of the reactor core

assemblies necessary to maintain them in their prescribed geometry during all

modes of reactor operation.

The KLAIMER core support structure is the simple skirt type as shown in

Fig. 3.3.1-2 and Fig. 3.3.1-3. This structure has main function to support the

- 1 6 1 -

Page 180: Liquid Metal Reactor Design Technology Development ...

core assemblies and the fixed internal structures. This skirt type provides very

simple core support design and fabrication. End parts are welded to the

reactor vessel bottom head and the lower grid plate of the inlet plenum. The

skirt side provides the holes to access for the welding works and to fill the

primary sodium inside the skirt structure.

( 4 ) INLET PLENUM

The inlet plenum is composed of the lower grid plate, the upper grid

plate, the side cylinder, and six (TBD) small diameter structural sleeves. The

upper grid plate is connected to the lower grid plate through the six (TBD)

tie sleeves and the side cylinder that carry the pressure loads tending to

separate the plates. All of the vertical loads from the core assemblies are

carried, through the receptacles to the lower grid plate. The upper grid plate

has a function of accurately positioning the receptacles and also participates in

sealing the annulus around each of the receptacles.

The main functions of the inlet plenum are to receive primary sodium

from 4-inlet pipes and distribute it to the core via the nosepiece receptacles

and structurally to hold the receptacle body supporting the nosepiece of duct

assemblies.

The depth of the inlet plenum is established by the space required for the

inlet pipe nozzles forging welds and the radial flow area necessary to assure

uniform flow distribution to all the core assemblies.

The support structure of the core radiation shields that have functions to

protect the irradiation of the reactor vessel, containment vessel, and to limit

the activation of the impurities in the air flowing the PSDRS is welded to the

outer surface of the lower grid plate of the inlet plenum.

(2}) SUPPORT BARREL

The Support barrel is integrated single cylinder type extending vertically

- 1 6 2 -

Page 181: Liquid Metal Reactor Design Technology Development ...

upward from its attachment at the upper grid plate of the inlet plenum.

Therefore, no core shroud is provided. At the active core region, support

barrel has a function of core shroud.

The main functions of the support barrel are to provide the support

locations of internal structures such as baffle plate and separation plate and to

guide the flow path of hot sodium coming from core to IHX inlet holes.

Support functions provided by the support barrel are:

- Lateral support of the core former ring

- Lateral and vertical support of the flow guide including EMP nozzle

- Lateral and vertical support of the baffle plate and the separation plate

including the RV liner and the component support structures.

- Support of the IHX shielding materials

(*}) RV LINER

The RV liner is a cylindrical type located 2.5cm inside the reactor vessel

between elevation 210.0cm and 1130.0cm. It is provided with slots at its top

end that under normal operating conditions are always above the hot sodium

level.

The RV liner is designed to protect the reactor vessel from directly

contacting the hot sodium at steady state and transient thermal operating

conditions and form a portion of the pressure boundary between the hot and

the cold sodium regions within the reactor. Therefore, this structure isolates

the reactor vessel from rapid temperature changes in the hot pool sodium that

results from duty cycle events, thus minimizing the thermal loading on vessel,

its attachment to the closure head, and to the containment vessel.

RV liner is one important part consisting of the baffle annulus. The RV

liner provides support for the baffle plate and the separation plate, which

force thermal stratification inside of the baffle annulus and thus minimize heat

transfer between the hot and cold pools.

- 1 6 3 -

Page 182: Liquid Metal Reactor Design Technology Development ...

(wf) BAFFLE PLATE

The baffle plate is located at the top end of the support barrel and welded

between the RV liner and the support barrel. This has a number of circular

penetrations that allow the IHX and EM pump to pass through while

providing a lateral seismic support for these components. The main function is

to force thermal stratification in the upper volumes of the cold pool and thus

minimize heat transfer between the hot and cold pools.

(A» SEPARATION PLATE

The separation plate is located at the bottom of the RV liner where the

IHX discharge nozzles are attached. The separation plate is welded between

the RV liner and the support barrel to complete the pressure boundary across

the hot and cold pools. This has a number of circular penetrations that allow

the IHX and EM pump to pass through while providing a lateral seismic

support for these components.

( 4 ) FLOW GUIDE

The flow guide is a large diameter cylinder structure, where one end is

fully opened and the other end is covered by the upper plate connected to the

EMP nozzles.

The main function of the flow guide is to direct the cold pool sodium

discharged from the IHX outlet nozzle to the EM pumps with cooling of the

core shield structures installed between the flow guide and the support barrel.

(*r) EMP NOZZLE

There are 4-EMP nozzles corresponding to 4-EM pumps, which has a

function to guide the cold pool sodium to the EM pump intakes after passing

upward from the bottom of the reactor vessel through the annuli between the

- 1 6 4 -

Page 183: Liquid Metal Reactor Design Technology Development ...

core shield structures. The ends of the EMP nozzles are welded at the

separation plate and the upper plate of the flow guide structure as shown in

Fig. 3.3.1-2 and Fig. 3.3.1-3.

The main function of the EMP nozzle with the flow guide is to enhance

the operation of the PSDRS. These structures assure that sodium drawn by

natural circulation through the EM pumps and into the core will always come

from the lowest elevation and, thus the coolest region within the reactor

vessel.

(*» INLET PIIPE

There are 4-inlet pipes, which are directly connected to the EM pump and

the side cylinder of the inlet plenum. The inlet pipes convey the cold sodium

forced by EM pumps to the inlet plenum.

(?}) CORE FORMER RING

The core restraint ring consists of six core former ring segments and the

core former support ring. The plate segments fit into a rectangular recess in

the inside surface of the ring. When all segments are in place side-by-side,

their inner surface contour matches that of the outer most rows of core

assemblies. The segments are held in the ring by large pins that are welded

to the ring.

The core former ring is supported horizontally and vertically by the

support barrel. Six equally spaced lugs on the outside of the former ring fit

into slots in the top edge of the support barrel. The ring is held in place by

a number of pins installed through the support barrel. Pin motion, after

installation, is prevented by lock welding.

The core former ring fits within the support barrel at its nominal inside

diameter. To provide a close fit of its parts with each other, with the core

assemblies, and the support barrel, the parts of the core restraint hardware

- 1 6 5 -

Page 184: Liquid Metal Reactor Design Technology Development ...

will be precision machined.

(Ef) RADIATION SHIELD STRUCTURES

The radiation shield structures are provided within the reactor vessel to

limit the activation of secondary sodium flowing through the IHX, to limit the

activation of impurities in the air flowing through the PSDRS, to provide a

radiation environment that accommodates the various neutron flux monitors.

The shielding to provide the irradiation protection for the support barrel of

active core region, if necessary, is required.

Basically the radiation shield structures within the reactor vessel have two

shielding concepts. One is the near-core shielding and the other is the local

shielding.

(4) CONCLUSIONS

This section describes the conceptually designed KALIMER (150MWe)

reactor internal structures. The structural configurations mentioned in this

section are very preliminary, thus required the optimal concept design.

- 1 6 6 -

Page 185: Liquid Metal Reactor Design Technology Development ...

i t 3.3.1-1. Dimensions of Conceptually Designed KALIMER Reactor

Structures

1.

2.

3.

4.

5.

6.7.

8.

9.

10.

11.

12.

13.

14.

15.

Items

Containment Vessel

Reactor Vessel

RV Liner

Support Barrel

Inlet Plenum

Baffle PlateSeparation Plate

Core Support

Core

Reactor Head

Flow Guide

Inlet Pipe

Core Shield

Former Ring

EMP Nozzle

Outer Dia.

(Cm)

737.0

702.0

687.0

374.0

374.0

687.0687.0

374.0(t)

454.0(b)344.0

737.0

660.0

45.08

248.0

358.0

125.0

Thickness

(Cm)

2.5

5.0

2.5

5.0

15.0

2.510.0

15.0

-

30.0

2.5

2.54

15x3

10.0

2.5

Material

2(l/4)Cr-lMo

316SS

316SS

316SS

304SS

316SS316SS

316SS

-

304SS

304SS

316SS

316SS

316SS

316SS

Remark

(Cm)

Partial-spherical bottom

headGap between RV and CV

= 15.0Gap between RVL and RV

= 2.5Gap between SB and IHX

= 16.925Upper Grid Plate T=10.0

Lower Grid Plate T=15.0Lower Baffle Plate T=2.5

Upper Baffle Plate T=2.5Circular Disk Type

Skirt Type, Height=60

Gap between Core and

SB= 10.0

Circular Disk Type

4 EA

3-Cylinder Type, Gap=3

Height=370

Height=80

* O.D. of IHX (4EA) = 120 cm

* O.D. of EM-Pump (4EA) = 120 cm

* T : Thickness

* t, b : top, bottom

> » On material data, 316SS is studying to be replaced by 316LN.

- 1 6 7 -

Page 186: Liquid Metal Reactor Design Technology Development ...

3.3.1-2 Weights of KALIMER Reactor Structures

Components

Containment Vessel

Reactor Vessel

Core Support

Inlet Plenum

Support Barrel

RV Liner

Baffle Plate

Separation Plate

Inlet Pipe

Flow Guide

Former Ring

Core Shield Support

Core Shield

EM-Pump Nozzle

Insulation Plates

Weight (tons)

88.51

165.89

10.31

38.72

48.64

39.10

3.02

17.57

19.94

20.20

1.56

0.18

54.00

2.38

85.8

Remarks

Skirt Type

w/o Receptacle

4 EA

4 EA

Plate( 1.6cm) x 22EA

Reactor Head

Rotating Plug

UIS

Total

64.98+15.48

35.61

20.0

731.89

RH + RP Flange

* Used Density = 7800 kg/m3

- 1 6 8 -

Page 187: Liquid Metal Reactor Design Technology Development ...

S. 3.3.1-3 Calculated Volume

Volume RegionsVolume 1

(RV Bottom Head)Volume 2

(Inlet Plenum)Volume 3

(Outside of Flow Guide)Volume 4

(Inside of Flow Guide)Volume 5

(Core)Volume 6

(Inlet Pipe x 4)Volume 7

(Baffle Zone)Volume 8(IHX x 4)Volume 9

(From Above Core toSB Top )

Volume 10(From SB top to IHX

Cylinder Top)Volume 11

(From IHX CylinderTop to Hot Free

Surface)Volume 12

(From Flow Guide Topto Cold Free Surface)

Volume 13(EM-Pump x 4)

Volume (m^)

34.402

8.230

62.964

58.991

34.000

2.809

95.211

22.727

54.843

38.926

38.814

25.780

19.720

and Weight of Primary Sodium

Weight (tons)

29.76

7.12

54.46

51.03

28.00

2.43

81.14

18.79

45.34

32.18

31.53

22.30

17.06

Remark

Cold

Cold

Cold

ColdHot

Vo*+Vd **x 0.3

Cold

MediumMedium

Vcylinder x 0.8

Hot

Hot

Hot

Cold

ColdVnozzle +Vcylinder

x 0.8

Volume 14(From RV Liner Slot

Top to Hot FreeSurface-Gas)Volume 15(Inert Gas)

Total

17.603

55.036

570.056

-

-

421.14

* Vo : Outside volume of duct assemblies in core region

** Vd : Inside volume of duct assemblies in core region

Hot Sodium Density = 826.77 kg/m3, Medium Sodium Density = 852.25 kg/m3,

Cold Sodium Density = 864.98 kg/m3

- 1 6 9 -

Page 188: Liquid Metal Reactor Design Technology Development ...

Unit: Cm

165.0

605.0

3.3.1-1 Elevations of Reactor Structures

170-

Page 189: Liquid Metal Reactor Design Technology Development ...

Internal

Inlet Pipe

Support

Barrel

Separation

Plate

3.3.1-2 Part Names of KALIMER Reactor Internal Structures

- 1 7 1 -

Page 190: Liquid Metal Reactor Design Technology Development ...

Reactor Head

(RH)

Thermal Insulation

Plate

(TIP)

Baffle Plate

(BP)

Support Barrel

(SB)

Separation Plate

(SP)

Inlet Pipe

(IPP)

Inlet Plenum

(IP)

Reactor Vessel

Liner (RVL)

Reactor Vessel

(RV)

Containment Vessel

(CV)

Upper Internal

Structure (UIS)

Flow Guide

(FG)Radiation Shield

(RS)

Core Support

(CS)

3.3.1-3 KALIMER Reactor Internal Structures

- 1 7 2 -

Page 191: Liquid Metal Reactor Design Technology Development ...

T-f. Design Requirements

(1) Purpose

The purpose of this document is to provide the preliminary design basis

of KALIMER reactor internal structures.

(2) Scope

The contents of this document include the functional requirements,

structural requirement, and material requirements of KALIMER reactor internal

structures.

(3) Design Requirements of KALIMER Reactor Internal Structures

(71-) Functional Requirements

Provide in-vessel structural support for the core, instrumentation,

Intermediate Heat Exchanger (IHX), EM-pump, in-vessel piping, fuel transfer

equipment, shield material, and in-vessel stored fuel.

- Provide the flow path for primary sodium inside the reactor vessel for both

forced and natural circulation cooling of the core.

- Provide shielding to limit the activation of secondary sodium passing

through the IHX and ambient air passing through the Reactor Vessel

Auxiliary Cooling System (RVACS).

- Limit the irradiation levels within the Head Access Area (HAA) to permit

personnel access during operation.

- Provide the structures to separate hot and cold sodium and minimize the

heat losses between hot and cold plenum.

- Provide the reactor vessel liner to prevent the contact of the hot sodium to

reactor vessel directly.

- Provide the lateral support for the IHX and EM-Pump to reduce the

horizontal seismic responses.

- Provide an Upper Internal Structure (UIS) to support control rod drive

shroud tubes, In-Vessel Transfer Machine (IVTM) guides, and above core

- 1 7 3 -

Page 192: Liquid Metal Reactor Design Technology Development ...

instrumentation.

Provide the inlet plenum to gather the primary sodium and distribute it to

individual core assemblies appropriately.

Provide the structures or devices to prevent the lift-up of core assemblies

caused by the hydraulic fluid forces.

Provide the core restraints to limit the maximum horizontal core deflection

and acceleration to within the capability of control rod drive and the

structural and functional limits on the core assemblies during duty cycle

events and operational basis and safe shutdown earthquake events.

Limit the maximum relative vertical displacement between core assemblies

and reactor closure head, which hanging the UIS, to minimize unstable

reactivity insertion caused by a change of control rod insertion during design

earthquakes.

Provide for the support and in-vessel storage of (TBD) core fuel

subassemblies during reactor operation at locations accessible to the IVTM

of the reactor refueling system.

A service life of all reactor internal structures shall be 30 years.

*4) Structural Requirements

The reactor internal structures shall be designed to withstand all of

thedesign conditions, which shall cover all service conditions.

Evaluation for structural integrity shall include duty cycle events and design

earthquake events.

The design of the reactor internal structures shall include all fabrication,

handling, transportation, and installation loads.

The loading conditions to be taken into account in designing the reactor

internal structures shall include but not limited to the following : internal

and external pressure, weight of the component and its contents,

superimposed loads from other components, vibration and seismic loads,

174-

Page 193: Liquid Metal Reactor Design Technology Development ...

reactions at supports, temperature effects, irradiation effects, and the effects

of the sodium environment. Design basis pressure and temperature for the

system is shown in Table 3.3.1-1. These conditions shall be used in

conjunction with the plant duty cycle (Appendix A) to establish the thermal

and mechanical loading conditions for the reactor internal structures.

For the seismic events, the reactor internal structures shall be capable of

withstanding the effects of the Operating Basis Earthquake (OBE) without

loss of capability to remain functional and to withstand the effects of the

Safe Shutdown Earthquake (SSE) without loss of capability to perform their

safety functions.

As a general seismic design basis, the designer shall follow the design

guidelines for seismic isolation

For the design criteria, design and construction of core support structures

and designated reactor internal structures shall conform to the ASME B&PV

Code, Section III, Subsection NG.

For elevated temperature service exceed those to which Tables of ASME

B&PV Code, Section III apply, special rules such as ASME Code Case

N-201-4 may be used.

The reactor internal structures shall be designed as Seismic Category I

structure.

Material Requirements

The effects of environmental conditions such as neutron radiation exposure,

temperature variations, and sodium shall be included in determining the

allowable value of material properties used in the design of system

components.

Material surface in contact with the liquid sodium coolant shall be austenitic

stainless steel unless other material must be used for strength or wear

resistance.

- 1 7 5 -

Page 194: Liquid Metal Reactor Design Technology Development ...

- Appropriate heat treatments and processes shall be utilized during fabrication

to minimize sensitization of stainless steel components.

(5) Conclusions

This section will provide the requirements for conceptual design and

analysis of KALIMER Reactor Internal Structures.

2.

Internal Structure, UIS)£)

10m

fe

- 1 7 6 -

Page 195: Liquid Metal Reactor Design Technology Development ...

£L7fl

IDEAS

±S£ 3.7)7} ^ 5 ] # 150MWe

^^^l^rfe- S 3.3.2-H

150MWe

Til ^ ^47 } M-^ife 2^

KALIMER 'S-^-tfl^-^S-i-fil ^ ^ € ¥ 3^ ^ l sjrfl 140cm

£r Inconel

Inconel

ife 95cm7>

- 1 7 7 -

Page 196: Liquid Metal Reactor Design Technology Development ...

KALIMER

= HOcm

= 2.5cm

= 500cm

= 74cm

= 5.0cm

= 468cm

= HOcm

= 2.5cm

= 92cm

= 10cm

= 10cm

7 ^ o ] ^ io.6m7|-

<H[3.3.2-6], olofl cfl*> ^ ^ * >

67H

1.5m

^ 2 0 7flS] ^

2.5cm

= 20.3cm

= 0.635cm

= 515cm

= 11.43cm

1 7 8 -

Page 197: Liquid Metal Reactor Design Technology Development ...

= 0.305cm

= 454cm

= 13.46cm

= 0.254cm

= 165.7cm

= 12.73cm

= 0.267cm

= 969cm

- 13.46cm

= 0.254cm

= 165.7cm

IDEAS

t ^ sf^^- ^r^JEl- n ^ 3.3.2-14 n ^ 3.3.2-2^

3.3.2-1 oflfe ^ i f l ^ - ^ 2 t ^oj tjj-s^ 45}

01A^, o_^^^.S §>^Jf y>^^ -ifli:-^ n ^ 3.3.2-2i

slot)4 ic^ t q ^ s a ^ l i xS\% AA^A ^ Q^^Q

-71171- 9.HJL, §> - ^^f-^ia^^ 2.32^,

^o] 1.32^0.^ ^^^Tfl^ 13.1^6.S TJl

- 1 7 9 -

Page 198: Liquid Metal Reactor Design Technology Development ...

S. 3.3.2-1 Dimension of PRISM and KALIMER Upper Internal Structures

Cylinder Outside

Diameter

Thickness of

Cylinder

Distance between

Upper Core and

1) Shroud Tube*

2) UIS

Total Length

PRISM 150

(1986)

132cm/

132cm

2.54cm

5 cm

91.44cm

11.25 m

PRISM 150

(1989)

142cm / 74cm

2.54cm/5.08cm

5 cm

91.44cm

11.76 m

-Upper :

6.02m

-Inter : 4.80m

-Lower :

0.94m

PRISM 300

213cm/ 152cm

2.54cm/5.08cm

-

-

12.85m

-Upper :5.59m

-Inter :6.30m

-Lower :0.66m

KALIMER

(1997)

140cm/140cm

2.5cm

5cm

90cm

10.60m

KALIMER

(1999)

140cm/74cm

2.5cm/5.0cm

5 cm

95cm

10.60m

-Upper :5.00m

-Inter :4.68m

-Lower :0.92m

: In operating condition

3. 3.3.2-2

(0.

(0

*l (m<)

1.15

0.2913

0

152

0

032

1

1697

+ 0.0177)

0408

+ 0.0088)

6518

9.

2

1.

(1.183

0.

(0.249

13

: (tons)

136

.32

321

+ 0.138)

318

+ 0.069)

.097

- 1 8 0 -

Page 199: Liquid Metal Reactor Design Technology Development ...

3.3.2-1

ij

\\u\ \X\

['

/1 ' S~-\! l- / °/\ ' v-- , /? ^ ' /

'N,\ / / ' \ i J- - A.

1 ' /

L

3.3.2-2

- 1 8 1 -

Page 200: Liquid Metal Reactor Design Technology Development ...

3.

7\.

(l)

(2)

PSDRSS] -71 ^431-1- M ^ l $ * H ^*l-5L-g-7l tfl

4-n ^ 3.3.3-1^ i ^ ^ ^ t g - ^ ^l-^^-3:-i-Sl 3^}^ -iTflS.1-

ZL^ 3.3.3-2^ i « l ^ ^ l ^ l ^ l

IHX# 2x}^

PSDRS^ ^ - 7 1 ^ tij-A}3]-

^ ^ J f ^ Support barrel

(Reactor Vessel, Core Support, UIS, Support barrel, EM-Pump Coil

^ ^ - Fit table, s f l < £ 5 - ^ Table, ^ 7 ^ ^

- 1 8 2 -

Page 201: Liquid Metal Reactor Design Technology Development ...

v-h KALIMER

KALIMERi tfl^ of til xM^7]&£.3,*\ 3.4-^^7.} 2:A}(Fast

Neutron Fluence) &$]$ :g-f oflfe- i ^ n 5 ^ 3-^ ^Si^6]} tfl^H 5.0E+21

DPA(Displacement Per Atom)!-

- 304SS : 2.4 dpa

- 316SS : 4.1 dpa

4-

^ x l # = 0.748 DPA < >£7fl7l^ = 4.1 DPA

Grid & = 0.039 DPA < QAA^ = 4.1 DPA

- 1 8 3 -

Page 202: Liquid Metal Reactor Design Technology Development ...

3.3.3-1 Iso-View of Core Radiation Shield Structure

3.3.3-2 Dimension of Core Radiation Shield Structure

- 1 8 4 -

Page 203: Liquid Metal Reactor Design Technology Development ...

7>.

^^[3.4.1-3].

^ f^f-S} 7l7l«H^] ^2:6fl tfl Sfl

^ IDEAS i£

7fl^^] KALIMER ^ ^ f S . ^ # ^ ] 4 ^ ^ 3.7] ^

3.4.1-1 ^ z i ^ 3.4.1-2S)- £°] ^y] ^ ^ ^ ^Bfli $14[3.4.1-2].

M ^ 1.5

1.0

^ J f Lfltf ^ £]•& 0.5

HAA #5]-M. 0.9

7lHf ^ e } a . o.5

SG * 1 * | % M.^ 0.7

&pfl^^ 1.5m

'] 1S ;$1^4 ir7} 0.5Hz £|

3.4.1-34 ^-°1 ^o l7l- l.2me]5L,

- 1 8 5 -

Page 204: Liquid Metal Reactor Design Technology Development ...

IDEAS £

4- 3 - ^ £ 3:71 ^Tflir ^ ^ 3.4.1-4i M-Bl- cf. IDEASS

71

6m

^ S 4m # ^ 4 . HB\3L ^71^^71 ^^1 ^^7> 6m7-l^ri^ 6m of

f IDEAS il- ^ ^ 3.4.1-5i q-Efi^o.^, ^^Hfe- H ^ 3.4.1-6i

3 ^f-^11- a 3.4.1-H ^Aie

IDEASS 7fl }*> ^ 11 -7flfe 51,230^ O.S 4 ^ 4 - € ^ f S ^Hr^l^

7,300 - 1 SlJL ^T-l-S-g-71 ^ ^ 1 ^ 1 ^ ^ 2,336Sol

l - i ^ ^^1 ^ } ^ til^-ol 20% ^ E f ^-^-si-51^-.

- 1 8 6 -

Page 205: Liquid Metal Reactor Design Technology Development ...

S. 3.4.1-1 KALIMER i i i

Part Name

RV Support Wall

SG Support/Protection Wall

Working Floor(HAA)RV Support Floor

SG Bottom FloorSodium Tank Room FloorVertical Inner WallStacks (4)Center RoofUpper Part

Middle Part Walls

Lower Part WallsBasemat (Upper/Lower)

Isolators SystemTotal (Except Isolators)

Weight

(x 1,000 Ton)2.336

0.35/ 2.3

2.2161.70

1.111.551.01

0.290.962.72

8.08

19.067.3/ 7.3

1.951.23

Wall or Floor

Thickness (m)1.5

1.0/0.7

0.70.7- 1.0

0.7

0.50.70.1

0.50.5

0.5 0.9

0.7 0.91.5/ 1.5

(Number : 182)

Key Dimension [Section

Area (m2) and/or Height(m)lID/OD=9.0/12.0, H=19.3

12.0 x 7.0 /13.4 x7.7,H=25.0

37.20 x 19.122.65 x 19.122.65 x 7.00

22.65 x 7.0, H=5.8H=13.3

2.2 x 2.2, H=36

39.0 x 20.9H=6.50

H=19.0

H=30.8

52.0 x39.0

Seismic Isolation Bearing

3.4.1-1 KALIMER

- 1 8 7 -

Page 206: Liquid Metal Reactor Design Technology Development ...

Unit: m

A A

39

A

R t t ^ -

3.4.1-2 KALIMER

400 cm

63 cm,

120 en

_ 9 5 c m ^ _, 210 cm _

3.4.1-3

- 1 8 8 -

Page 207: Liquid Metal Reactor Design Technology Development ...

3.4.1-4 3L7] KALIMER IDEAS

3.4.1-5 KALIMER IDEAS

- 1 8 9 -

Page 208: Liquid Metal Reactor Design Technology Development ...

1 r

i

r - r

1

-\

m m m m

i

_LL_I

|

*r- m m

"1

i : :|

i

i

:

|

|

1

m m m m m m i~r

3.4.1-6 7fl KALIMER IDEAS

- 1 9 0 -

Page 209: Liquid Metal Reactor Design Technology Development ...

2.

2007]]

514.

KALIMER

^ ^ 1 ^ ^ 1 9 9 4 ^ ^ 1 9 9 9 ^ 4 4

^°} 9X°-V][3.4.2-1,2,3], £ * ! €

e-^ *11^# ^ r s 3 ^ 4 514P.4.2-4].

^ KALIMER € ^ > 5 . ^ # ^ ^ 1 ^ 1 ^

|sfl -f^d KALIMER ^ 4

: ANSYS

1- 4 ^ - ^ S . KALIMER

4-

^o] 26kgf/cm2 (370 psi), ^ ^^1^4^(fh)7> 0.5 Hz,

^ 21 Hz, ^ ^ ^ ^ ^ T f l i r 300% £1Jt-(]Efe 538 mrn^]

- 1 9 1 -

Page 210: Liquid Metal Reactor Design Technology Development ...

1.2

L -g-^-1- EL7\] *\±= -?-7f $14[3.4.2-6]. JL#

# £171] t}±r ^ ^ ^ - ^ H ^ ^ ^ 7fl^ f- <H3

3711 t ^ $14. °l fBj ^ i J

7j.^tr o.

$14[3.4.2-7],

3.4.2-1

1/8 ^SL^ ^1^§}$|4.

^r 5 3.4.2-14

% 4 E } ^ ^ ^ ^ ^ f l ^ ^ f l H ^ l ^ ^ 4 1 mm ^ £ 3 .

Til 7|4^irC-ll o ] ^ ^-S- AVCI ^o\] JL*.^ 4-SLSL ^o]

24-sm 4 4 4*1144. °1^^-44[3.4.2-8].

0.05Hz4 0.5Hz

34^1 ^

- 1 9 2 -

Page 211: Liquid Metal Reactor Design Technology Development ...

44 ##

^7^0^] ^ ^ Z\^V}7} 0.32?]

-f 100% ^ ^ ^ ^ 7 l § ^ S ^7>7 t}^^^- 31%44 371] ^ ^ 5i^r ^

4- 3444

r 15.57 ton/mm4 11.48%S. 4 4 4^ -^ :4 . ^ 4 ^A7^^ 15.57

^ ^ i ^ j - ^ (S-S^: 36 kgf/mm)

1/4 ^6-S- 4 4 - 3^>^ ^

2.17 ton/mmi4 3] cfl 4.4 ton/mm^ ^ afl^S. 4°l7l- 4 4 ^ 4 - °lfe

^«fl°i^ ^ 4 ^ ^ 1/5 ^r^^l^, ^-^S:^ 3-ffe 3 £54%s ^* t# ofl^: ^ gi-i- ^ £ 5 . 3. ^^-7} 4 4 ^ 4 .

fe- # cycled- o]^: cycle A>o]<sfl ^o]7f gife- ^ S 4 4

4 4 4 4 ^ ^ 4 . o]^ ^2i7o>^o] DIN ^

4 . ^^Hflol^ til]*]

Bfl -ofl ^ l -^A^ 15

^-S 101 o] wfl ] 7}^§>o^ ^ ^ l507fl# Bfl*]t ^r $14-

KALIMER

1 9 3 -

Page 212: Liquid Metal Reactor Design Technology Development ...

f sl£*> 1807||7} ^ A § f 4 - 180

71] ol^cq ^

^ ^ o ] 2.1m4

n ^ 3.4.2-24 n ^ 3.4.2-3^ 4E) - \+ ufl^-i^-i- J l^§]-^q-. ZL^ 3.4.2-2

$] ti]]^l£ I f 19471]^ ^ ^ l t i f l ^ ^ ^ 14 x 16

3.4.2-3^1 «fl^l£. 2^r yfl*]5. H ^ # ^ o ] x

^ 1 ^ 1 ^ ^ 67fl# *\}7]t;}3L 3m<>\} 27fll- ^7 f«

f 1907]] o]cf.

. KALIMER

3.4.2-4O1] 4 E } \ + tif4 ^-o] ANSYS

4 A^^] ^ 4 4 ^ 3 2 0 ^ ^ 4 ^ 4 ^ ^ ^ 4 ^ ^ 3,166 KN/m,

5584,824 KN/m^-S. 4^4[3.4.2-2].

2400 kg/m3, i 4 ^ y l ^ 0.2, ^^Tfl^fe- 21.5 GPaS.

4 ^4 441: 44

444 ^ ^ ^1 (coupling)A]?1 j i , ^ ^ zjo| o}eflofl

- 1 9 4 -

Page 213: Liquid Metal Reactor Design Technology Development ...

7fl^fe 32347fl, ^ 7fl^fe 43257l

3.4.2-24

* } ^ ^ ^ 2400 s ^

4[3.4.2-9].

ANSYS 5.5^ 31- - 1 f-^rl- *%£{$: ^.A 1,2,3 >

^ ^ ^ i ^*> £ | H S , 5 3.4.2-3^

0.51Hz4 0.52Hz

^: O.^ 3.4.2-2 ^ ZL^ 3.4.2-34

1 4 H})*]5EL 2S) ^ - f i ^^1] ^ ^ l » f l ^ ^ z*zH 3]-g-^-fe

4: S]-^ ^}°1^ Hfl^lt 15] Tg-f 4.1 MN / 0.58 MN^-S,

f 4.1 MN / 0.95

3.4.2-54

yJ-A§«V ^ ^ 5 ] ^^ltiflcH^ 127fllr

71 t\jl, ^o) ^711 4 4 ^ JjUflofl ^ ^ l ^ o l ^ 47l]» ^ 7 1 - ^ - ^ ^^fl 182

7111-

- 1 9 5 -

Page 214: Liquid Metal Reactor Design Technology Development ...

^ 1827}]

£ 394^(O.39MN)°]J1, s ] ^ #^-& 193-g-(1.93MN) .5. 4

^ «1]^H 2 iL4 a^ / s |± : *>^ €*}# 3.7fl #°^ ^ SI

4- ^5^ i 320^ 60^$] ^ ^ i 1427H(78%)7l-

4 ^ ^ ° 1 407}]o]rf. o ] ^

l 50%(l60^)4 200%(600S)

30o/o ^£.0} i ^ ^ l - j i o l j i oic]-[3.4.2-4].

> £ < ^ 1mm ^ £ Sjjl, sjcfl o ^ - g - e ^ 2.58 MPa

3-oj^ ^ 01 ^_ R C s a ^ ^ ^ 7j-£.^ <y- Al 24

MPa (240 k g / c m > l i , *]^-A] 1/8 =^$<y 3 MPaS ^

-§-^ 2.58 MPa^ *]-g-g-^ ^ ^ ojifloj] 014.

^ T f l

ol

- 1 9 6 -

Page 215: Liquid Metal Reactor Design Technology Development ...

i t 3.4.2-1 Specification and Design Targets for Lead Laminated

Rubber Bearings

Prototype LRB 1/8 Scale LLRB

Design Vertical Load (Ton)

Effective OD(cm) / ID(cm)

Rubber Thick.(mm)Layers

Steel Thick.(mm) x Layers

Primary Shape Factor(D/4tr)

Secondary Shape Factor(D/ntr)

Vertical Stiffhess(kgf/cm)

Horizontal Stiffness (kgf/cm)

Damping Coefficient(%)

Max. Shear Strain(%)

294

120/4

278(9.629)

3.2 x 28

31.25

4.31

51.6xlO5

2,846 (5,692)**

12

300

4.6

15/(2.7,3.7,4.8)*

34.8(1.229)

1.8 x 28

31.25

4.31

6.4xlO5

356 (711.4)**

12

300

* Inner Diameter of Lead Rubber Bearing and Diameter of Lead Plug

** Horizontal Stifmess at Isolation Frequency of 0.5 Hz (0.7Hz)

3. 3.4.2-2 KALIMER

AREA

NODE

ELEMENT

Number

1-120

121-134

135-170

1-3058

4001- 4238

1-104

105-399

400-3439

3901-3916

4001-4221

4301-5082

Description7-^.g- S^T^-VS D.I A,\1 e o \1 —i ZK. o

SG £LM

7d-i: ^ ^ ^

QA^ £ # %BL «J.S.i (STIF4)

^ ^ 7 l 2 : ^ S . (SHELL63)

QAS- ?i-i- (SHELL63)

%7\S. ? ^ t ^f^^^ (MASS21)•s}^-7} 2 n f l ^ %^ «1J3L4: (STF4)

^[^)sfl<H^(COMBIN14)

- 1 9 7 -

Page 216: Liquid Metal Reactor Design Technology Development ...

3.4.2-3 KALIMER

MODE

1

2

3

FREQUENCY

0.480

0.510

0.528

EFFECTIVE

MASS (X)

0.341E+07

0.620E+07

0.485E+08

EFFECTIVE

MASS (Y)

0.121E+08

0.439E+08

0.209E+07

EFFECTIVE

MASS (Z)

Small

Small

Small

^ 3.4.2-1

1 16 J i t 2 i i16

3.4.2-3

- 1 9 8 -

Page 217: Liquid Metal Reactor Design Technology Development ...

3.4.2-4

- » ! * •

• 0 2 - 2 2 - 2 , 1 - 2 .1 - 0 . 2 - 2 .8 • 2 8 - 0 . 8 - 2 . 8 - 2 ,8 - 0 . 2 - 2 . 1 - 2 .1 - 2 . 2 - 0 2 - < m )

:320ton/pedesta1(x182)

3.4.2-5 3)

- 1 9 9 -

Page 218: Liquid Metal Reactor Design Technology Development ...

3.4.2-6320^- 380

3)

3.4.2-7

- 2 0 0 -

Page 219: Liquid Metal Reactor Design Technology Development ...

3.

-Br 3.7\]

5} 4 . H- Z } - ^

5171

# a 3.4.3-H

31

^ ^ o ] (cable tray)£

3.4.3-H

s]

KALIMER

tflt!:

-201

Page 220: Liquid Metal Reactor Design Technology Development ...

0.9m ^ 5 . £lH^ HflU 5)uH ^ ^ t -

[3.4.3-2]. «m iflt- j^iLfe ^-^^£71- 480°C4*l # ^ 5 .

0.5 Hzol^S ^^7ltiH^:^ Jl-^^l^^fe ^ ^ 4.0 HzS.

ANSYS s

7f. ^ ^ 7 ^ « M ^3i ^ £ | ^

HH^ ^ 2 : ^ ZL^ 3.4.3-2i q-Efvfl WJ-5]- ^O] igttj

> I A S zi- i^o^ ^ol7> 15m x 25m ^ 1 ^ , S7H1 3m

m^ ^ ^ l ^ - ^ o ] 0^4. tifl^-o] ^ l ^ ^ ^ ^ o ] 45.7crrHjL,

°14- 200

i ^

yfl4

• ^

GPa,

=1711

4.52

L

12

cm

7840 kg/m3, i ^ ^ ^ l f e 0.3, < i ^ c M l ^ 14 x 10"6 m/m°C

[3.4.3-4]. tijl^^^- J7OJ-O] 13071

ANSYS ^ f l ^

A3-, - h Jf^-^ PIPE18^ ^ f e 1247H, i i ^ r 1207111- 4 - 1 - ^ 4 . H

4^^1 ^ ^ - » S ^ ^ 4 ^-g-^71 ^^\^\ ANSYS SSZL^S] APDL

(ANSYS Parametric Design Language)^^# 4-§-*M Hfl : T 1 ^ ^ ^ £•£:

4 tfEfl^S] Ao^}* ^ ^ a 3.4.3-2011

tifl^^l 4-§-^m ^f1^ 4 ^ ^ ^M 4 ^ - i ^eife- 13071

4 «H r ^r^ 1- 1 ^ t f l ^ ^ l - J13l^4. ^ 4 ^ o . S ^ -^ 20°C

- 2 0 2 -

Page 221: Liquid Metal Reactor Design Technology Development ...

480°C7}

M-.

0.9m

S}- 4 ^ 4 ^ -^ 3.4.3-

^1^1^ 57} °]

fe 5.46 Hz7f

3.4.3-4°fl M-Ef 4 4 ^°1 0.98mS 4 4 ^ 4 - ^ tfl -g-^^ n ^ 3.4.3-5^

4 4 7E^1 151.0 MPaS 3.711 # ^ 1 : ^ 4 . °1 4-^ ^ ^ 48

154 MPa iL4 4 ^ 4 ^ ^°1^11?} 0.9 m

44.9 MPa

A

- 2 0 3 -

Page 222: Liquid Metal Reactor Design Technology Development ...

S. 3.4.3-1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Jl^l^|7l#ol^^.

oJj^Bll7lf-ol^^

^ f. 7] ^

" ^ ^ ^

<H-^^-7l?^3j;

an 41 £

Ar 7)-i^-

N2 71-^^J-

As

As

B

B

C

C

C

C

C

C

c

c

c

c

c

c

50

480

300

# £

AoV-€r

# • £

-8-*100 -

320

Aj-.Q.

AV 0

^ • &

(kg/

cm2)

7

5

5

5

130

160

7

7

3

3

20

7

10

15

8

8

°3 ^ 7~1 •§-

R/B 21 «-

R/B 21 r

R/B M/B

R/B M/B

R/B T/B

R/B T/B

R/B ^l-f

R/B T/B

R/B M/B

R/B 21 n1

R/B T/B

R/B M/B

R/B 2]-if

R/B T/B

R/B 2]-if

R/B 2] «-

R/B T/B

R/B M/B

SUB sq-if

R/B T/B

R/B M/B

R/B 2]-f

R/B T/B

R/B M/BR/B T/B

R/B M/B

R/B 21-if

R/B T/B

R/B M/B

R/B 2) Jf

R/B M/B

21 *

(inch)

18

2

2

2

18

16

1,2

1,2

2,4,6

6

2,4

2

6

3,4

2

6

S2 ^l^l^l t'tf-S}fe €- 'S^oll tfl

B f-H" ^1^1 -M ^

S1,S2-*1;*U1 afcj

S1,S2 ^1^1-^1 sV

<a- i n s ^•it^-Sr ll-cr Sixl°l $

— ^^]°i i qisfl

-B-.

upl , ^£fe bellows H

-§-

^•sfl^l, Sfe bellows*fl-§-,& Asf-&tflaj

-S £ °)1 S "&

i-&, 31 °J" 2I?1O1H-J3.

bellows *}•%-•& A i\

17

18

Duct

Cable Tray

B

A,C

50 1 0 0

mmaq

R/B M/B

R/B T/B

R/B M/B

1000

300w

1200w tfl*M ^i-d^ ^

-8-71 B^oll ^

y\.^ll o]] -2- o^ yM o | ol ji_

"E -jl Ol O]l X-H ( t ] " ^ -^- O]

- 2 0 4 -

Page 223: Liquid Metal Reactor Design Technology Development ...

3.4.3-2

Design Variables

(Support Location)

Frequency LimitStress Limit

DV1 (m)DV2 (m)

DV3 (m)DV4 (m)

DV5 (m)Freql (Hz)

(MPa)

Lower Bound12

2

16

54

Upper Bound216

15

24

146

154(480 °C)

Initial Values1

2

2

16

5

3.4.3-1 KALIMER

Isolated Part

OD = 45.7cmThick = 4.52cm

(SCH160)

3.4.3-2 ^

- 2 0 5 -

Page 224: Liquid Metal Reactor Design Technology Development ...

3.4.3-3

ANSYS-5.2 .SEP 28 1999 -10:42:25DISPLAnEMENTSTE.P=1 - :

; g u B - = i . ••••.- "•• "> :•

pXV- : = i ; : ' - - •Y V = ' i • . - . ' • • : . • •

2 V - : ' • • . - : = i - - " . . : ; .••'.:.-•

DIST=15.298 ;XF<=7iQ58^YF? "i-6 /0522F^ =12; 601Z-BUFFER' .

3.4.3-4

- 2 0 6 -

Page 225: Liquid Metal Reactor Design Technology Development ...

3.4.3-5 o

- 2 0 7 -

Page 226: Liquid Metal Reactor Design Technology Development ...

7}7\] -A]

3.5.1-1

702cm, ?f-?\}±r 5cm5. <£$$ ^cf[3.5.1-1].

3.5.1-2i

7\.

^ A \ PRISM, sSuperPhenix, ^ ^ MONJU ^$] ^ ^ - g - ^ S . €

514- ^ ^ ^ H ^ r KALIMER

- 2 0 8 -

Page 227: Liquid Metal Reactor Design Technology Development ...

3,7}

KALIMER ^ > § l ^ # ^ 1

i- 'S-S- -B-^Ai*ll^SH«?l ANSYS[3.5.1-3]

3.5.1-3o]l

7>

702cm, 737cm, 682cm, 374 cm^ JL

210cm, 550cm,

^ 16647]]^ 4 ^ ^ ^ t f l ^ ^^g:^ . i (PLANE75)4 270

19677)1 O]T^ -B-

2.25Cr-lMo 4 ^ - ^ ^rlr^^laL «1# 4$\~$: M-^4 ^ ^ t ^ 2 . ^ 3167]]

PLANE75

-209-

Page 228: Liquid Metal Reactor Design Technology Development ...

S. PLANE75

444PSDRS ^7l Afo]^ LINK31 A i l - 4-g-«H 4 4

^ - § - 7 1

Afo],

0.7-lr ^-§-§}-Jl ^^ - -§ -7 ]4 PSDRS

^-^ 0.8^ ^-g-4^4. PSDRS ^714 ^S^r ^^AJ-^^1 fe°H 4 4

£7} 4 ^ 4 ^ n^£\ ^ 4 * 4*fl ^^^l^-S- 90°c

4^ 11.358J/sec.m2oClr

(4)

7.3m)

- 2 1 0 -

Page 229: Liquid Metal Reactor Design Technology Development ...

4O4.4°C1-

2.2m)S] <£ *§= a.

ANSYS

^- i35.12MPao]ji ^ £ ^ 404.4°CS ^ | ^

ASME B&PV Code, Section III, Subsection NH[3.5.1-4]£]

Subsection NB[3.5.1-5]S]

-1-7131 ^ ^ 7 > 5cm<y

-g-7

11- 2.5cm, 10cm,

3.5.1-2i

l 2.5cmS. t l^-i- nfl -§-^7ov^i!:^r 6%

-g-44%7} &7}

<£ ^ SI4- -

-211

Page 230: Liquid Metal Reactor Design Technology Development ...

4*1171-

^ ^^--§-71 «> 1 PSDRS

a 3.5.1-3^

^cll PSDRS* JL^^

S.-§-71 ^ ^ 7 } 15cm^l 3-fSl -§-^7o>c7|. =^j|7 | . 2.5cm^]

43%^ #7}-# i e ] PSDRSt-

3.711

€45.-8-713

1^ W - €45-8-717} 4.

3--8-^ 8.2MPa >] I^^tlrt:

€45.-8-713 ^^1^1 &&~ Q T ••—i ^ ^ i . - ( •"] t i A T - ^ N

"^" ^^*- •^•'L -^*- O ,A"n "711 0 l_ "7-fl ~/{r Oil

71 n¥:°\} €45.-8-713 ^ ^

^]s-}^ *}^^8r €45.-8-713

}. 6 l fe ^^-^-t i i^ l 400 °c 3

<y lllMPa(Sm)i til*}^ ^

4

P R I S M €45-8-713

- 2 1 2 -

Page 231: Liquid Metal Reactor Design Technology Development ...

KALIMER

]^} ^ i ^ ] ^ ^ ANSYS S H

SHELL63#

^.^^ ^-f^fe- 506MPa# ^ ^ A ]

^r^-§-^^] 73% ^7}t}±± ^ # ^

1.5Sm-|- ^ ^ ] ? } o > §}^^1 -y-^ofl^ 1.5Sm ] 207MPa.?l ^-^

(2)

KALIMER

7]} -o.S.^1 t -g -^ ^ ^ - 1 : #o l 7] ^*1] 5cm

if-

- 2 1 3 -

Page 232: Liquid Metal Reactor Design Technology Development ...

(7J-)

, RV

^-f l - fl

KALIMER ^^S.-§-7l«1 Ji-^ i f - ^ - e ^ ^ S l - ^ l tfl ^

fl^2E?l ANSYS[3.5.1-3]«

P S D R S ^ 7 l i - t b fl^!! 1 ^ ^ > f l H 3 y fl^

3.5.1-4i M-BJ- i -. JL^i f - ^l-fi-5^ -^-e^^i 5cmi^ 2.5cmS.

f-^11- 2.5cm5L

316 igflo]5fli7j- ^

^ ^ H i 2.5cmS. ^5f§>^r

103^ ^2.5] ^-7111-

ial Spherical) ^ Efl <y ^-fof l^ 5 c m

-214-

Page 233: Liquid Metal Reactor Design Technology Development ...

7}

5cm

3.5.1-5^1 ^.^fecfl 5cm

5cm 5°^ ^ 11 ^7.3m) H>S 42fli^i 4 4 s l J l ^ S 403.4°C5f 401.8°C

^- 4 4 n ^ 3.5.1-6 11

125MPa^ 5cm ^ ^v\\9l ^ - f^ l 135MPaJ±4 ^ 8% ^ 5 . # < H ^ ^ 7A

¥•^1 ^^ l -S . -g -7 l ^ ^ ^ yo > ^ -§-^(Sz)^r ZL% 3.5.1-7^1

3.5.1-5^) -2L^^a-AEoilA4 -BJ&OI ^ - ^ . ^ s - ^v-S-xc-ri i=.

- 2 1 5 -

Page 234: Liquid Metal Reactor Design Technology Development ...

-^ 51.6MPao]

> > ^ n ^ 3.5.1-8

90.5MPao]

. 5cm $ ^

-g-^o] zi-zv iO5MPa4 104MPaol

-S-^°l ^ 15%

3.5.1-9^ 7>^^^11 S . ^ 4 5cm

7] 5 H 14^

j- 5cm ^13 ^^1] ^ - f i 4 10-15% ^ £ 4 ^

cfl -§-^7j-j£ -g-^70V5L^h^ 7>^^f7ll Jg .^4 5.0cm ^

125MPa4 135MPao]ji ^ H f e 404°C ^ £ ° 1 4 - °1 ^

E«] ASME B&PV Code, Section III, Subsection NH[3.5.1-4]^1

427°CJ±4 %<*} Subsection NB[3.5.1-5]^

5.0cm

5cm S I f-^ll ^ - f ^ l ^ ^ o l 103MPaS -§-7] i f l ^ i

l 14% >gS. 2]-^ 90MPaS -§-7l

- 2 1 6 -

Page 235: Liquid Metal Reactor Design Technology Development ...

5cm

739s ^ c o l j ! o^^ofl 5cm

8.2Mpa «>7il 5lfecH °}±r ^^J-BflAl 400°C5l ^ cfl

)<y l l lMPai u]

5cm &<£ ^7\] ^ - f ^ . 4 ^ 79% ^7}§

3.5.1-10^1 M-Efifl^rf. ANSYS -fi

*l SHELL63^.dh 75671] 5]- 8027fl5]

- 2 1 7 -

Page 236: Liquid Metal Reactor Design Technology Development ...

5cm ^ ^*fl S . ^ 4 2.5cm

1/2 tfl*J

b ^ ^ ° 0 - ^ ° l 160KPa

lfl<y-§- ^-g-^H 7>^^7fl £ 1 4 5"^ 711 5L1S]

KALIMER

S\ JL

ANSYS

1/2

- 2 1 8 -

Page 237: Liquid Metal Reactor Design Technology Development ...

2.5cm)4 5cm ^ 2.5cm

^tH^-ri (cm)2|tH -§-^#5= (MPa)^cfl QS^^ (MPa)

2}tfl ^-g-§3 (MPa)

7ftfl^7ll(5~2.5cm)0.2474.974.143.7

5cm 5"^^^ll0.1144.238.143.5

2.5cm "3"<y-r-7l]0.2583.783.368.2

3.5.1-25^>H

JL o]^ 5cm

^ l ^-f7>

^ 94% ^

5cm

lllMPa^r

571

69%

. 2.5cm

5cm ^

r 118% 5cm

69%

400°

67%^] o j ^

7\v\o} 7

r^LS ii^^2]A}ji(Core Disruptive Accident)^

• 2 1 9 -

Page 238: Liquid Metal Reactor Design Technology Development ...

3 ^ £ 3 (cm)^rfl ^#S. (MPa)

7}-^?)l(5~2.5cm)1.1234.5

5cm S ^ T ^ I

0.5521.3

2.5cm ^ H ^ l1.2849.6

. s jcf l^o^^ 2.5cm

104% ^ 7 f t f ^ j 7

34.5MPao] ^ 3 § H 5] tfl-g-^ #£7}- -§-71

62%

1?} 5cm

5cm

(4)

KALIMER

2.5cmS.

fe 5cm

125MPa5L 5cm -f

- 2 2 0 -

Page 239: Liquid Metal Reactor Design Technology Development ...

57l«y-5l ^ ^ B ^ ^-g-*> ^ l ^ H r 5cm S ^ ^ M l ^ - f ^ tfl

-§-71 ^ ^ H 44.2MPa l ^ * b ^ H «1 sfl 7 > ^ ^ ^ 1 ^ ^ - f

-§-71 Si ^Tfl7} ^ * > ^ 4^^1^ i 74.9MPaol ^ ^ ^ ^ ^ c l ] o ^ 5 c m ^

69%

2] ufl-g-a 70>

5cm ^ ^ ^ ^ 1 ^ - f ^ 4 62%

^ 4 71-^^-Tlll- ^fl^l

I - ^ 2.5cmS ^7fl ^ 1 : ^ - 8 " ^ ^ 8%

70%

o_H^ KALIMER €*l"S.-§-7lfe 5cm

-Sfl PSDRS ^-71

CFX4 ^ H

COMMIX ^ H » ] § > ^ ^ ^1?! £ 4

(1)

- 2 2 1 -

Page 240: Liquid Metal Reactor Design Technology Development ...

(7ft

^r H ^ 3.5.1-2S] 7flif;E.°fl J±°] 3} 4

SI4-

PSDRS

] ofl

PSDRS ^ - 7 ] ^ yov t-^14.

PSDRS ^-7]S\ ^ £ 100°C,

CFX4 ^^O]]A-1 ^^--g-7] a ^ ^ t ^ ^ l ^ ^ r 10.0W/m2

3.5.1-ll^r ^^-gr^Al ] ^

^ ^ ^ 0.05m, -0.35molJl

21-z]- 0.8m, -1.614m, i f-

^r 270°C ^ 4 ^ 1 260°C ^ - £ ^ 1 ^

* 9%$r 8%

-] 83%

Si 4-

- 2 2 2 -

Page 241: Liquid Metal Reactor Design Technology Development ...

4.470 £ 1

^ PSDRS

3.5.1-3^1

3.5.1-111

2(1-10

ANSYS1-

- 2 2 3 -

Page 242: Liquid Metal Reactor Design Technology Development ...

* H f e PLANE75

PLANE42 &±°\}

^2f5] 1/21- i

316SSO)JI ^- 304SS<>H 7]

-0.8m ~ -1.6m

^ 259.99

3.5.1-12^1

- 2 2 4 -

Page 243: Liquid Metal Reactor Design Technology Development ...

3.5.1-134 3.5.1-14^

Q^y% -8-3 £ £ * 44152MPa, ^ H

^ 206°C

C F X 4 S H 1 . A ] . ^ * ] . ^ A ^ O ]

Sl ^ £ ^ - 5^«1-7|1 2O6°C1-

2.79cml- q-EJ-iflilrf. 3] cfl -g-^70i-£^ z i ^ 3.5.1-15^1^4 7^0]

128Mpa, -128MPao] 1 H * > & J ! ^ ^ 4 ^ 1 ^ : A^6\) 91%$: -g-7l

i- 86.8Mpa, -77.5MPaS 4 4 ^ 4 - ^ ^

^ - ^ ^ 4 4 94.5Mpa, -94.8MPaS.

81.5MPa#

^-g- ^ - f ^ . 4 2:^- £1711

176MPaS

- 2 2 5 -

Page 244: Liquid Metal Reactor Design Technology Development ...

^. a 3.5.1-44

9X3. o}6\] rrf^ Q*}3.-%-7]<>\ 17-1^-^ ^Nj iUr 3 H 5 3 4 - £- 3.5.1-

> -g-ea £ (Case 3,

40% o]<# ^o}%JL ^^}4& § } ^ ^f -^ i^ i^r 60% opj- ^

^ 30%

3.5.1-1

Case \s\ ^ - f ^ ^ ^ 1 - ^ 1 ^ : ^ ^ : 4 ^l^tlr ^ f ^ ^J£7f 300°C

ASME B&PV Code Section III Subsection NB[3.5.1-5]-& ^-g-

l Si4- ^ 2 : i f ^ ^£ .7} 427°C

fe Subsection NH[3.5.1-4]!- ^ - g - ^ o ) : t\^t\] Case 1 4 2 ^

Subsection

238MPaS.

-. ^ 1 ^ : Subsection NH^fl^fe o] H>6fl3£ til^^^^# ^.7d4 3.

^ ^ ^ ^ ^ 2%!- fH<?}:n ^14. 316SS

o] 530°C v

ti

912^-°] 4 - ° 1 ^ ^4S--§-7l -#^H] ^ ^ - - 5 - ^ lOMpa

I M. sD^ojJA^ ^ - r f l ^ ^ S . 3.7)7}

-226-

Page 245: Liquid Metal Reactor Design Technology Development ...

Subsection NH4 Neuber rulei 4 4

AA 765MPa4 0.5% ^S.S. £ sfl^^ 1 4 ^ o]o]] £]

-. Case 1

] S f l ^ ^ 4 ^ £ ¥ ASME 2 E

Case 34 4fi] ^^ ^4^r j 4

7fl

Case

Case 14 2 f ^

°.v\ °}z\ 1 4ASME 3H2]

(2)

^ COMMIX 3 E f 4 -§ -^^ ^ £ ^ 1 € 4 5 . Pool

14[3.5.1-9] ^^-^r^Al IHX7> ^ 1 *>

s . ^ 3. 8: i f - 4-n-a^

413.3TC1- i.°l3I €45-8-71

351.41C5.

- 2 2 7 -

Page 246: Liquid Metal Reactor Design Technology Development ...

COMMIX^]

Aj-o] Jf «-

COMMIX S H

3.5.1-16^1

n - a 1 ^ ^ 1.44m,

290°

320°c

410°C

6.44m

IHX

A

4.

35

COMMIX

^4.

i COMMIX

IHX7> ^ ^

320°C

10m

$14.

7~io°ci-

r ^145--§-7] AooMl

- 2 2 8 -

Page 247: Liquid Metal Reactor Design Technology Development ...

CFX4 3 H

COMMIX

COMMIX

3.5.1-17^:

3.5.1-17ofl

7 011

3.5.1-18^1

ANSYS

KALIMER

1.55mS.

PLANE78 ^

PLANE82

^ f e 116571] 2407flo]rf. ^ 1/2

i r 210°C

304SS£]

3.5.1-19^1

2.6cm

- 2 2 9 -

Page 248: Liquid Metal Reactor Design Technology Development ...

3.5.1-2H 4 E N & 4 . *}*fl3 o.£. 57fl -g

ol j2_ I H X ^w.« . ^.ojo] ol: 10m

i f f t r 91^-- #yov^^-^(Sy)t- #3iJ±^ ^ ^ 3.5.1-22

^ ^ i ^ 371]

i lO8MPa,

73MPa,

^ 3.5.1-24

r ASME 5 i ^ # tc}-ej- ^ ^ ^ ^ r ^ l 427°C

^ll^fe Section III Subsection NB

Subsection NH* 4 ^ 4 - ^^S.-§-7lfi]

7> l 430°C~440°C l ^ - £ ^ a # gJL OL

Subsection NBi 4 ^ - ol^}-§-5^oj ^ . g - ^ 3Sm-§:

^: ^>lfe 427

440°C°J

Subsection

- 2 3 0 -

Page 249: Liquid Metal Reactor Design Technology Development ...

S t - *}-£

316SS

427°C1-

328MPaS.

427°C fe- Subsection

Subsection O] HT-6||

2%!-

. 316SS 530°C

^ ^ ^ # # Subsection NH^ Neuber rulei 4 4 ^ ^ . ^ ^ # 5 ] - ^ A A

765MPa4 0.5% ^ 5 . ^ 4 - ^ *fl^Sl ^ 4 ^U"^ ^ ^ £ 1 ! t - £ 0.074%

~ 0.066%^ ^ - ^ ^ ^ l : o ] i ^ ^ ^ ^ f t^ ^ ^ 1 - 4 - 0.054% ~ 0.048%S.

0.1%i£ ^ 4^1 fe- A^r 2%

(3)

fe CFX4 S H I -

441"

- 2 3 1 -

Page 250: Liquid Metal Reactor Design Technology Development ...

CFX4

t #°1H 3.711

014. s.fr]

COMMIX 3.B

CFX4

f-7]- ^1-5.-§-71$ U IHX ^ ^ - ^ ^O]o] ^ 1Om |

if a] 4 0 ^ 4 . ^ ^ - ^ ^ . ^ ( S y ) sltfl^t^ 117MPaS

116MPao] i

^ 2 : ^ 1 ^ ^ ^7}^ ASME S H I - 4 4 ^ 3 4 ^ 1 427°C

°!Hfe Section III Subsection NB# 4^.31 ZL

Subsection NH-1- 4-C-4- Subsection

- 2 3 2 -

f

Page 251: Liquid Metal Reactor Design Technology Development ...

4 2 7 t i H 328MPa°lJL Subsection NH^l vtys. oj*]~g-^ ^]*t& 3Sm£ 53

-§• ° v ^

0.1%^£. ^ n]^lfe. 4 ^ ^ ^ - S ^ i Subsection

ZL

i2]^c>] PSDRS(Passive

Safety Decay heat Removal System) ^l^f-^-S. ^ - i - tS-#^:4[3.5.1-ll]. 3 ^

-^ 3.5.1-25^ £<£ ^ 4 7EVo] PSDRS

ir flow separator ] £ ^ collector cylinder)^

7} Afo)^ ^xf^^ i^ jz f PSDRS ^ - 7 1 ^ cH-f

y xfl -ofl>H ^ > S t b l ° l PSDRS

^.S ^£7]- ^71

ASME 3.E.

- 2 3 3 -

Page 252: Liquid Metal Reactor Design Technology Development ...

(1)

•?Ufl KALIMER 7 f l ^ 7 } H H ^ Service level A, B, C, D3

nfl

Service level A<4 B^l

^ 2000S] ^ £ ° ^ ^3^-S ^ 1 ^ 4 - Subsection

^r 71

4

Service level A 4 B3

SE

- 2 3 4 -

Page 253: Liquid Metal Reactor Design Technology Development ...

Service level A, BS}

7}

XI4- %.*}£.

fe PSDRS

Service level

600°C~700°C^

ASME Subsection NH

l - Sj 7 f

PSDRS

PSDRSfe KALIMER^l 3.5.1-25

^71

Si

i f °H^ ^ overflow7>

^71

713. .5.1-11].

- 2 3 5 -

Page 254: Liquid Metal Reactor Design Technology Development ...

3.5.1-26^- PSDRS 4 ^ ^ - ^ ^ S L ^ J L &^cfl PSDRS

PSDRS ^7^ (QPSDRS)J±4 igo} f- iflJf

42} QdecTr # 4 , 4 ^ ti}ig QPSDRS

Qdecl- 2.5MWS. ^ j - ^ PSDRS

^^-§-7] , PSDRS

3.5.1-27^ q-B|-ifl$i c-|l ^4^-g-7l i r *> - >H ^ ^ ^ ^ 1 ^ 440°C~520°C

$] -^S^-if- ^ ^ r 4 - PSDRS ^ i

PSDRS

^cfl ^ ^ ^ S ^ ^ PSDRS

^ PSDRS f ]

PRISM[3.5.1-8]£] PSDRS

^ 4 . PRISMS ^ ^ l i ^

ACS(Auxilliary Cooling System)^ 7}^- &c>) PSDRS^^S # 1 1 - 47] t}

~ 2f£2:^i^ Service level CS ^^-Sifetfl ° H ^^}S 4if-#£] ^JL^

ife- ef 6 0 0 t i °]€-^-. a e ] j l Bounding events PSDRS ^7]

75% ^*1 ^-f €*!-£-§-7l 3]c|]^£7> 650°Ci oj^^tll °1

3.5.1-28< 1 M-^tflSiJl PSDRS

47}- H ^ 25% 5]^-§}^ # ^

693°Ci E-^^fe^l o]^. ZLB) 3.5.1-29 1

^ A S . H ^ 3.5.1-284 H& 3.5.1-29^1 M-E}\£ PSDRS

(2) ^45.-g-71^1

- 2 3 6 -

Page 255: Liquid Metal Reactor Design Technology Development ...

^ 1 ^ - ^ 6.5. *H*]-:EL $1^1 oj^s} j p . ^ - a 3.5.1-5^ 4 4 4OJr 912-^] o]^c}. 4 ^ £)^ 702cm

ni--g-^o] 8.2MPa ^jE.

§-^ 16.4MPa(2.4ksi)l- ^-g-§}^4-

ASME Subsection NH°1Hfe H^°fl^ ^ r ^ ^ - ^ «] ^ ^ ^ ^ f - o l 1%

St

Smt ^ ^ - S. 3.5.1-64 n& 3.5.1-30 1

(a)

(b) #*}3.^^r ^-^t}^ 3)^ -g-^^ 80%

(c) 3 . ^ 4 ^ - i - ^^-^lfe s | i -g-^5] 67%

3.5.1-28^] PSDRS

^°}*] 7] A ] 2 | - § } ^ cfA] 400°C

650oC7>

- 2 3 7 -

Page 256: Liquid Metal Reactor Design Technology Development ...

3.5.1-30SJ

3x105*1 # 4 S ^ ^ o ] P}£-O

1.5x1063

43] #

.5x106*1 # x 4 = 0.0027

- ^ ^ 3.5.1-28S] PSDRS

4 ^ ] ^ 4 0.0027^ L

^ ^ # ^ £ 1 ^^l-g-^S. H ^ ^ S ^7fl3EoJ RCC-MR[3.5.1-13]^ ^-f^

£ ^^t-11 RCC-MR^ RB3226.H*i^ 3.^ A>-g-7]l (Creep usage fraction)

§- St - -Ai0!! ^-B-^}-0! ^ ^ ^-g-Al^-ir 4 4 \ £ 4 - ^ . S I J ! RB3252 1*-1

[JL $1^ ASME Subsection NH l 1%

4 1 - 4E.2i^iiL4 *Jt^ ^ 4 - ^ H ^ 3.5.1-29°fl £.Q PSDRS

jlBl^l-^. ^4S--§-7l^ 20*1 ^ ^ l 2J^H^£ 693°C°11

tgo^xlji £[4. ^^l*-]*] ^ - f 3 - 4^71-^lS- 6931

V 1000*17t!A£ 7}^§>jl si--§-^ 16.4MPal-

3.5.1-30 11 ^-§-*}^4. ^ . ^ 3.5.1-30^ &!:•&• ^ ^

3= 250000*1^:^-3- a.^^*j--$- 4-#-4 ^tf.

3 .^^* j - = 1000*1 ?}/250000*l^r x 4 = 0.016

- 2 3 8 -

Page 257: Liquid Metal Reactor Design Technology Development ...

H ^ ^ # 0.016%^ Subsection

7.1] A ] * } 1%S] til^^^l- I H J ^ l ; ^ 1.6%<H1

3.5.1-31^ # 4 ^ ( ) ^ j

St

^ - ^ PSDRS 2]-512^01

ASME Subsection j ]

^ - ^ 4 ^ ^ ^ 1 - ^ ^7^11- ^£5 ] - Al^ofl 45]- ^B ] -^ ^-A] - g - ^ - ^ ^

^^(Isochronous stress-strain curves)S. M-BJ-tflji $X€\-. ZL^ 3.5.1-323f

^ 3.5.1-33^r AA 650°C4 704°C^ tfl *V 316SS7J-51 ^ A ] - g - ^ - ^ ^ 1 -

16.4MPa(2.4ksi)^ 1 0 0 0 ^ ] ^ ^ ^ - g - ^ j - ^ 7 ^ ti] ^ A J ^

l ^ ^ A S PSDRS

(3) * f l ^ ^ 2 f

KALIMER

Service level A,

Service level C, D<>11 ^ § > ^

l KALIMER51

- 2 3 9 -

Page 258: Liquid Metal Reactor Design Technology Development ...

o] s]o] o_s|] -fHf] Service level A, BS] 4 £ ^ £ A 4 & •§•

A ^ ^ £ PSDRS

SLv\ KALIMER ^^-^^-^>Sl ^-^

§i^r ^1^^] PRISM ^fSl-

4S]

5.-§-717]- i ^ ^ ^ . S

0.00274 0.0164

4- 5E*v i

^o] s^o] ^3,?^o_S- PSDRS

psDRS

- 2 4 0 -

Page 259: Liquid Metal Reactor Design Technology Development ...

S. 3.5.1-1 SS316#, 2.25Cr-lMo7Di-,

(a) SS3167J-

Temp

CO

-17.837.7893.33148.9204.4260

315.6371.1426.7482.2537.8593.3648.9704.4760

815.6

Thermal

Expansion

(m/m/°C)1.4753E-051.5270E-051.5749E-051.6190E-051.6595E-051.6968E-051.7308E-051.7619E-051.7902E-051.8159E-051.8393E-051.8604E-051.8795E-051.8968E-051.9125E-051.9268E-05

Density

(kg/m3)

7861.12

778077577735

Thermal

Conductivity

k(J/sec.m.°C)12.6999713.6557314.5956815.5196216.4273317.3186418.1933419.0512219.8921120.7157821.5220622.3107423.0816223.834524.5691925.28549

Poissons

Ratio,

0.27

0.304

Youngs

Modulus

(GPa)

163

156.65

Specific Heat

c(J/Kg.°C)

448.8464472.3338492.4997509.7058524.3136536.6844547.1799556.1616563.9909571.0294577.6385584.1798591.0148598.505

607.0118616.8969

(b) 2.25Cr-lMo#

Temp

CC)

21.1137.7893.33148.9204.4260

315.6371.1426.7482.2537.8593.3648.9

Thermal

Expansion

(m/m/°C)1.1610E-051.1700E-051.2060E-051.2420E-051.2726E-051.3014E-051.3284E-051.3500E-051.3716E-051.3914E-051.4076E-051.4220E-051.4346E-05

Density

(kg/m3)

Thermal

Conductivity

k(J/sec.m.°C)36.1847336.350936.870237.2233237.2233237.0363836.5170835.831634.9591834.1075333.0689432.0303431.15792

Poissons

Ratio,

0.265

0.304

Youngs

Modulus

(GPa)

156.65

Specific Heat

c(J/Kg.°C)

704.4760

815.6

0.0000E+000.0000E+000.0000E+00

29.766227.0035326.48423 0

- 2 4 1 -

Page 260: Liquid Metal Reactor Design Technology Development ...

(c) -T2T

Temp

(°C)

-17.837.7893.33148.9204.4260

315.6371.1426.7482.2537.8593.3648.9704.4760

815.6

Thermal

Expansion

(m/m/°C)

Density

(kg/m3)

954.13941.394928.658915.923903.187890.452877.716864.981852.245839.509826.774814.038801.303788.567775.832763.096

Thermal Conductivity

k(J/sec.m.°C)

94.0138290.7992287.6570284.5872481.5898778.6649175.8123673.0322270.3245

67.6891865.1262862.6357860.2177

57.8720355.5987753.39792

Specific Heat

c (J/Kg.TC)

1447.446

1415.71386.8081360.7711337.5891317.2621299.7891285.1711273.4071264.4991258.4451255.2451254.9011257.4111262.7761270.995

S. 3.5.1-2 (PSDRS

RV ^?fl

2.5cm

5cm

10cm

15cm

(MPa)

104.7

117.2

134.1

147.6

(MPa)

129.7

146.3

169.9

187.3

• § - 3 # : E

(MPa)

127.4

135.1

164.0

183.7

^ 7 f ^ ( % )

(2.5cm

7^-f^ o]5L)

0

6

29

44

- 2 4 2 -

Page 261: Liquid Metal Reactor Design Technology Development ...

g. 3.5.1-3 PSDRS)

RV ^

2.5cm

5cm

10cm

15cm

^ «

(MPa)

128.0

143.7

162.1

175.2

(MPa)

161.4

180.4

208.4

229.0

^ «(MPa)

157.3

165.7

201.2

224.6

(2.5cm

0

5

28

43

3. 3.5.1-4

Casel

Case 2

Case 3

Case 4

^ J - t -S-^ ay(MPa)

152

152.2

82.6

86.8

-152

-152.1

-73

-77.5

-136

-135.6

-95.4

-94.5

134

134.4

95.7

94.8

48.5

48.5

143

128

-58.1

-58.1

-144

-128

• ^ ^ J - * -S-^ az(MPa)

^^ -e^^109

109.3

36.3

41.9

24.5

24.5

-24

-22.3

-112

-111.8

-81.5

-72.7

-30

-30

37.7

37.4

(MPa)

173

173

176

162

- 2 4 3 -

Page 262: Liquid Metal Reactor Design Technology Development ...

S. 3.5.1-5 KALIMER £.7] 7]

ComponentsContainment Vessel

Reactor VesselCore SupportInlet Plenum

Support BarrelRV Liner

Baffle PlateSeparation Plate

Inlet PipeFlow GuideFormer Ring

Core Shield SupportCore Shield

EM-Pump NozzleInsulation Plates

Reactor HeadRotating Plug

UISSodium

Core

Weight (tons)88.51165.8910.3138.7248.6439.103.0217.5719.9420.201.560.1854.002.3885.8

64.98+15.4835.6120.0421175

Remarks

Skirt Typew/o Receptacle

4 EA

4 EAPlated.6cm) x 22EA

RH + RP Flange

3.5.1-6 316SS#^ , Smt(MPa) (Subsection NH)

(°C)426.7

454.4

482.2

510.0

537.8

565.6

593.3

621.1

648.9

676.7

704.4

732.2

760.0

787.8

lh

109.6

108.3J

107.6

106.9

106.2

104.1

102.0

101.4

100.7

97.9

95.2

88.3

77.9

66.9

lOh

109.6

108.3

107.6

106.9

106.2

104.1

102.0

101.4

100.7

97.9

88.3

71.0

56.5

44.1

30h

109.6

108.3

107.6

106.9

106.2

104.1

102.0

101.4

100.7

93.1

75.2

59.3

46.2

35.2

lOOh

109.6

108.3

107.6

106.9

106.2

104.1

102.0

101.4

97.9

79.3

62.7

48.3

37.2

28.3

300h

109.6

108.3

107.6

106.9

106.2

104.1

102.0

101.4

85.5

67.6

51.7

40.7

31.0

23.4

lOOOh

109.6

108.3

107.6

106.9

106.2

104.1

102.0

97.9

73.1

57.2

44.1

34.5

26.2

20.0

3000h

109.6

108.3

107.6

106.9

106.2

104.1

102.0

89.6

64.8

50.3

38.6

29.0

21.4

15.2

lOOOOh

109.6

108.3

107.6

106.9

106.2

104.1

95.8

75.2

57.2

43.4

32.4

23.4

17.2

11.7

30000h

109.6

108.3

107.6

106.9

106.2

102.7

79.3

61.4

47.6

37.2

26.9

19.3

13.8

9.7

lxlO5h

109.6

108.3

107.6

106.9

106.2

86.2

65.5

49.6

37.9

29.0

21.4

14.5

10.3

6.9

3xl05h

109.6

108.3

107.6

106.9

96.5

73.8

53.8

40.7

31.0

22.8

17.2

12.4

8.36.2

815.6] 53.8| 33.8 26.9 22. l| 17.9| 14.5 11.0| 8.3| 6.2 4.5 3.4

- 2 4 4 -

Page 263: Liquid Metal Reactor Design Technology Development ...

0 (-8.0)

30.0(-7.7)

285(-5.6)

500(-3.8)

1200(2.2)

1290(2.9)

1681(6.3)

1771(7.0)

1846(7.7)

1910(8.0)

Unit : Cm

165C-6.6)

605(-2.8)

1234(2.5)

1700(6.4)

1885(6.4)

3.5.1-1

- 2 4 5 -

Page 264: Liquid Metal Reactor Design Technology Development ...

Insulation Support Ring

Containment dometemperature ~40C

\

Reactor Head

-230 C Normal

HeInsulationPlates (22)

Hot Pool Sodium

-530C

Ar

RV Liner

Containment Boundary(fixed seal)

RV CV

PSDRSAir out temp- 100C

Air In temp - 40C

Collector cylinder

3.5.1-2

-246-

Page 265: Liquid Metal Reactor Design Technology Development ...

250cm ArGas

RVACS Ai r9 0 ° C

3.5.1-3

- 2 4 7 -

Page 266: Liquid Metal Reactor Design Technology Development ...

3.5.1-4

Thermal analysis of SB, Liner, RV, CV, SP, EP

iiNSi'S 5.5.1MAR 13 199913:12:18NODAL SOLUTION

SUB =1 :TIME=1TEMP " (iVG)RSYS-01

Powe rGraph i osEFACET-1AVRES=Mat :'SMM =91 442SMK =403.388

-2S2.076=316.736

3.5.1-5

- 2 4 8 -

Page 267: Liquid Metal Reactor Design Technology Development ...

3.5.1-6

3.5.1-7

- 2 4 9 -

Page 268: Liquid Metal Reactor Design Technology Development ...

3.5.1-8

1.40E+008

1.20E+008

^ 1.00E+008

£• 8.00E+007cB£ 6.00E+007

K 4.00E+007

2.00E+007

O.OOE+000_1_

Inner (Uniform)Outer (Uniform)Inner (Variable)Outer (Variable)

_i L.

4 6

Distance

10 12

3.5.1-9

- 2 5 0 -

Page 269: Liquid Metal Reactor Design Technology Development ...

3.5.1-10

3.5.1-11

- 2 5 1 -

Page 270: Liquid Metal Reactor Design Technology Development ...

RV upper

part

•I

thermal stress

i\B 4>y-0.8m

-•> Sm

1

ANSYS 5.6APR 15 200011:25:05NODAL SOLUTIONSTEP=1SUB =1TIME-1SINT (AVG)PowerGraphicsEFACET=1AVRES=MatDMX =.037102SMN =342058SMX =.173E+09_ _ 342058

.195E+08

.387E+08

.579E+08

.771E+08

.962E+08

.115E+09

.135E+09

.154E+09

.173E+09

cm

ED

3.5.1-12 FEM

RV upper part thermal stres s

ANSYSAPR 1511:28:NODALSTEP=1SUB =1TIME=1SYRSYS=O

5.62000

23SOLUTION

(AVG)

PowerGraphicsEFACETAVRES=DMX =.SMN =-SMX =.A

= 1Mat037102.152E+09152E+09.135E+09

=.135E+D9

3.5.1-13 -§- £3. (Case 1)

-252-

Page 271: Liquid Metal Reactor Design Technology Development ...

RV upper part thermal stress

ANSYS 5.6APR 15 200011:29:42NODAL SOLUTIONSTEP=1SUB =1TIME=1SZ (AVG)RS2S=0PowerGraphicsEFACET=1AVRES=MatDMK =.037102SMN =-.112E+09SMX =.109E+09A =-.99SE+08

=.370E+03

3.5.1-14 (Case 1)

AKSVS 5.6APR 15 200015:07:51 ' . '•"'.*:. MODAL SOLUTION•'.

S T E P - I ' V : :•.• •'•:

S U B = 1 • . - • • • •

TIME=1 •: SIIJT ; (AVG).:

Power-Graph i c s : .E F A C E T = 1 • • • • • • ,. . • -

AVRES=Mat . •• .DMK = .03235 . ,SMW; =10699.0SfK =.162E+09,—-, 1069901 ' .181E+08'

.361E+0B, .54QE+08;•.72DE+08.900E+08.1OSE+09..126E+09.144E+09

U^-J .162E+09

RV upper part thermal stres

3.5.1-15 (Case 4)

-25 3 -

Page 272: Liquid Metal Reactor Design Technology Development ...

o

5 0 0

4 5 0

4 0 0

3 5 0

3 0 0

2 5 0

-X RV 2|° j (COMMIX)

- 0 RV Ml ni (COMMIX)

10

^eh si-el-

1 5 20

3.5.1-16 (COMMIX

500.00

450.00

400.00

OLh1 350.000|J

300.00

250.00

1

VInnerOuter

J0.00 5.00 10.00 15.00 20.00

3.5.1-17

- 2 5 4 -

Page 273: Liquid Metal Reactor Design Technology Development ...

RV with Ellipsoidal shaped bottom head

3.5.1-18

5F5JBoSo

0.00 20.00

3.5.1-19 1-51-g-71

-255-

Page 274: Liquid Metal Reactor Design Technology Development ...

3.5.1-20

1.80E+08

1.60E+08

1.40E+08

„ 1 .20E+08CO

£f 1.00E+08

^ 8.00E+07n5T

6.00E+07

4.00E+07

2.00E+07

O.OOE+00

0.00

-SINT-in

-SINT-out

5.00 10.00 15.00 20.00

zz.e] 3.5.1-21

- 2 5 6 -

Page 275: Liquid Metal Reactor Design Technology Development ...

a.

1.50E+08

1 .OOE+08

5.OOE+07

0. OOE+00

O.(J-5.OOE+07

-1. OOE+08

-1.50E+08

10.00 15.00 20.

•SY-in

•SY-out

DO

3.5.1-22

(Pa)

fir

KhofJ

1

1

5

0

- 5

- 1

.50E+08

.OOE+08

.OOE+07

. OOE+00

(

.OOE+07

.OOE+08

.50E+08

15.00

•SZ-in

- SZ-out

20.00

3.5.1-23

-257-

Page 276: Liquid Metal Reactor Design Technology Development ...

8.00E+06

6.00E+06

4.00E+06

'ab 2.00E+06srolojO O.OOE+OO

jo o.q

5° -2.00E+06

-4.00E+06

-6.00E+06

-8.00E+06

10.00 15.00 20.

-SX-in

• SX-out

3.5.1-24

Chimney(4 Places)

24m

Head and Support Ring(OD7.97m)

3.5.1-25 KALIMER PSDRS

-258 -

Page 277: Liquid Metal Reactor Design Technology Development ...

600 Thot. p|. ex

1000.0E+00 2.0E+04 4.0E+04 6.0E+04 8.0E+04 1.0E+05 1.2E+05

Time [sec]

3.5.1-26 PSDRS

600

500

3.4 3.6 3.8

3.5.1-27 PSDRS

Page 278: Liquid Metal Reactor Design Technology Development ...

700

600

5 0°400

300

200

CV max

RV max

Core out

_J 1 I I I U_J 1 i L_

20 40 60 80 100

3.5.1-28 PSDRS -ft3.7}- 75%

0

CV max

RV max

Core out

1 0 0

3.5.1-29 PSDRS7} 12^71 25%

- 2 6 0 -

Page 279: Liquid Metal Reactor Design Technology Development ...

120.0

(0CL

?5T

1 " " " I ' " " " I ' ' " " " I1.0 10.0 100.0 1000.0 10000.0100000. 100000

0 0.0

454.4C482.2C510.0C537.8C

•-565.6C+-593.3C

621.1C«*_648.9C•_676.7C._704.4C.—732.2C

760.0C. 787.8C

;; 815.6C

3.5.1-30 316SS t, Subsection NH)

8008509009501000105011001150120012501300135014001450

OJ» 10 © ~ - 10"

MINIMUM TIME TO RUPTURE, HR10

3.5.1-31 316SS -§-^ (Subsection NH)

- 2 6 1 -

Page 280: Liquid Metal Reactor Design Technology Development ...

MATERIAL - 316 SS

TEMPERATURE - 1200 F

0.2 0.4 0.6 0.8 1.0 1.2 1 4 1.6 1.8 2.0 2.2

3.5.1-32

- 2 6 2 -

Page 281: Liquid Metal Reactor Design Technology Development ...

s HOT TEC

= = C 5 1 HOUR

MATERIAL -316SSTEMPERATURE - 1300 F

1.0 1.2 1

STRAIN. %

4 1.6 1.8 2.0 2.2

3.5.1-33 316SS#^ 704 "

- 2 6 3 -

Page 282: Liquid Metal Reactor Design Technology Development ...

2.

KALIMER %7\S-%-7] ^ ^Jf^2:l-^ 7 2 4 4 ^ ^7}i 5 ^ 4 4

ASCE 4-86[3.5.2-l]

o]4 . ANSYS 5-S.ZL^[3.5.2-2]^

5flA^ ^S^o1 E - f E *(H ^ ^ } * ^ ^ t >

[3.5.2-3].

S-^^- ANSYS S-S-ZL^^r ^-^ ^ ^ ^ ^ lfloflA-1

^ IHX ^ EMP ^S- i - i - i^-§|-fe KALIMER

OJ ANSYSt-

r 444 r ^ ^ 4^ 4^1- 1- lS. 4 r 344

FLUID80 - M71 ^*V i i i ^ *irj\$-R z=0 J±4 *>2fl°fl # ^ f l ^ i ^^7\^S-~ z=0

- 2 6 4 -

Page 283: Liquid Metal Reactor Design Technology Development ...

IHX B-^17]--B- fe 4 4 4 IHX

7]

2.23m, 0.7m<?]

3.5.2-H el

0.58 0.52 HzS- ^ ^

3.5.2-H]

4-

-§-4

443.5.2-3i

4= S3s

9m

IHX ^ EMP

3.5.2-2oll

- 2 6 5 -

Page 284: Liquid Metal Reactor Design Technology Development ...

ing)

ofl^

IHX

7]- 0.4

3.5.2-4,541

EMP

O . ^ o] nfl

^ 0.3

3.5.2-1

1

2

3

l 1] ^ Ai sJ rJ ^H] *T g tlL-l i:

(d/D=O.O)

0.576

1.058

1.309

1.00

0.29

0.15

0

1

1

(d/D=0.25)

*4=(H 2 )

.525

.024

.298

* ^ *

0.79

1.00

0.34

- 2 6 6 -

Page 285: Liquid Metal Reactor Design Technology Development ...

3. 3.5.2-2

l

2

MODE

1

2

3

4

1

2

3

4

FREQUENCY

0.304730

0.506135

0.536354

0.632131

0.306638

0.502118

0.545851

0.629007

PARTIC. FACTOR

3.2816

1.9758

1.8644

1.5820

3.2612

1.9916

1.8320

1.5898

EFFECTIVE MASS

5702.42

23.0506

33.1172

4.81433

5616.16

13.0160

18.9814

6.73957

Frequency vs D/d ratios

3 4

D/d ratio

3.5.2-1

- 2 6 7 -

Page 286: Liquid Metal Reactor Design Technology Development ...

3.5.2-2

3.5.2-3

- 2 6 8 -

Page 287: Liquid Metal Reactor Design Technology Development ...

3.5.2-4 H tfltt •a

- 2 6 9 -

Page 288: Liquid Metal Reactor Design Technology Development ...

3.5.2-5

- 2 7 0 -

Page 289: Liquid Metal Reactor Design Technology Development ...

3.

KALIMER 31 *}•£.-§-71 ^ H ^ H ^ % # £ 2:71 7fl >

w>Bf^(Hemiellipsoidal) *$<#°.g, ^ & *} &t}[3.5.3-l]. H ^ 3.5.3-H

support)^ <&^£\

Radial beam ^ 4 ^ ^ 1 1 ^ ^

] §}JfS]]H^ i%^£ «-^^(Partial spherical)

[3.5.3-2]. §]-^-S|lJEL^

i

H ^ 57M1 ^>8-#

[3.5.3-3]^ ^ - S ^ H ^ ^ « l - ^ c f . n ] ^ WHAj-71-

€ ^ ^ CRBR[3.5.3-4]^ ^ ^ - ^ *§

EBR-IIfe sj^r ^ 4 \ eiAloH>H ^ l ^ ^ ^ l ^ - ^ S BN-800^

GEA}7|- 7 1 ] ^ ^ ^ PRISM[3.5.3-5]^

^L^ 3.5.3-6^

7}.

sfl^ 3 H ^ 1 ANSYS[3.5.3-6]

PLANE82

- 2 7 1 -

Page 290: Liquid Metal Reactor Design Technology Development ...

-M^^S} g>«.^HS] *H*]£ 5L^ 316

-£- 158.6 GPa, i ^ ^ a l ^ 0.291- 3-§-*}5

(1)

KALIMER € ^ ^ - § - 7 1 ^ tfl-g-^ # ^ o l o>q.n 3] 6fl yj sfl

7fl - M TJlS. -SI

380MWeS] ^ ^ ^ € ^ S ^ ] CRBR Q*}g_^7}o\} Af-g-^ a} $14.

3.5.3-2^ ^ ^ ^ 1 ^ ^ ^ 1 spfSflHt- 3.^}^ ^ c f l ^ - f r ^^ .^ sH

PLANE82 A i 13371]S}

6687]]^ *i$<LS. ^ ^ 5 ] ^ 4 . J ^ ^ O J ^ o ] ^j-tL^H «}7J^ ti>^ 5.3m

20cm 2]

SI 71

(2) ^!#

^ ^ 1 ^ ^ # ^ 130MWeo]jl

f - i ^ ^ ^ S . ^ BN-350i

-g-71 i f l - f i o S 7 H 7171

430°Ci

H^ 3.5.3-3TT QW %

£ i f iL^^rJL S l ^ l ^^fl^1 S?d-i- -T-^tt PLANE82

70371] ^ ± S . ^ ^ 5 ] ^ 4 . ^11

Jfs] ^^Jf^-^r ^-l-^r^-i- 20cm

- 2 7 2 -

Page 291: Liquid Metal Reactor Design Technology Development ...

20cm*

(3) 3%&

- 1963^1 %^ 20MWe£] # ^ -M^^1?] EBR-II

. EBR-IIfe #7ll- ^<5fl

r -§-71S ^r^aT-^ W ° l 7H1"

371 °C

3.5.3-4^ ^ ^ ^ ^ ] l ^ ^ l R

51 $J fe^ ^ ^ ^ o l S^ i^ r ^<^*> PLANE82 J l i 1 2 3 7 ^

(4)

s]^lo>fe BN-3504 BN-600^- 7]^\ %^ 800MWe ^ f £ ^

BN-800-1: 7^ ^°\] 3X^ €^}^-§-7l5] EL7]±r ^ ^ ° ] 12.9m,

7 H

fl^]-Jl <m± # ^ o ] 1580MWe<

17.2m) ^--§-^<?l

=L& 3.5.3-5^ ^ ^ ^ 1 } ^ l }

3.-€£ i ^ ^ J l $l^t11 ^cfl^l 2 ? i # ^-^t\ PLANE82

50371] *i^°.

- 2 7 3 -

Page 292: Liquid Metal Reactor Design Technology Development ...

(5)

300MWe i l ^ £ ) 1 - ^ -tf-§-5.<y PRISM-I: 7l] j - j i <&

3 . 7 ] ^ Lfl 7jo] 9.im , n ^ l 5cm, ^ o] 7> 19.4m <£] ufl «}

I ^ l ^ S FFTF5]-

3.5.3-6^- ] ^ ^ 1 l ^ ] l

rJ l Xi^tll ^cfl^J 2:?d^: ^ - ^ ^ PLANE82 i i 13071]4

7] tflJf H - 7 } ^

1.671 HJ- ^ £ ^ 1 4 . ^ ^ > 5 . - f 7 l ^ ? i ^ ^ ^7}A] Jl^Sflo]: ^ 7}^-

A]O] ^-53] 5] O ^ ^ ^ O.^ ^ ^ § * t 20071 «y- ^ £ S ]

l 2 7 7 ] ^

^ S 5 7 H §>^«flH

107l«a-(1.013MPa)^ ifl^-^.

l ; a 3.5.3-H M-^-Ml^^^ ^-^-^=-51 2]rfl i g ^ i r ^ ^ 2

136.1cmM- 51 fe t f l ^ ^ # §>fe ^ o _ ^ q-El-q- ^ ^ i ^§1]

^^=^-tr M-El-iflji Jf^-^l 2 ^ 4 «}B}^ 2 1 * 1 zj-z]- 0.74cm

^ ^ ^ 1 4^ - ^ - oj- ^ o^t}.. ^ ^ 7 j - s . « - i ^ 4 1 - Z L ^ 3.5.3-2

- 2 7 4 -

Page 293: Liquid Metal Reactor Design Technology Development ...

3.5.3-6^ t+El-iflSife^ ti>^ S.^% z\}$)*}3L~ £ ^ ^45.-§-71

3130MPaS] e -g-^

I- ^ <r Si3. ^ S-^ol 73MPaS. 7R> 4 ^ ^ t l - <£SZ3. H

S-loj 210MPaS. ^-^r ^ ^ .

5} 400°C

ASME B&PV Code, Section III, Subsection NB[8]2] ^ -§-^£^1 ^ ^^f JL

o]o]] tc|.s. g ] ^ - ^ ^ | ^ - ^ 7 j - c ( S m ) ^ HlMPaolrf. Subsection N B i tcf - >g

Subsection N B i a f s ^--g-^o] ^ ^ ^ t ^ Sm(ll lMPa)^ JL

-& 1.5Sm(166MPa)olcf.

£14 4 «

4.

530°C4

#4 . ^4300°c

57>x] §}^-S]lH S ^ i tflsfl i f l ^ i ^ 400°C,

- 2 7 5 -

Page 294: Liquid Metal Reactor Design Technology Development ...

ANSYS^ 8 ^ ^ t f l ^ ' S ^ ^ ^ i ' y PLANE78-S.il-

PLANE82^.il-

a 3.5.3-2^

4 ^-g-^ol 7-1S]

10.6cm

°)\ <ii&.*$^°) ^ ^ ^ ^ r °av ^ & 4 . ^ - § - ^ i tfl^ ASME B&PV Code,

Section III, Subsection NB[8]^ Q$] ^\^^k^ 3SmA£ 333MPa<ycll

- 2 7 6 -

Page 295: Liquid Metal Reactor Design Technology Development ...

S. 3.5.3-1

(cm)

0.74

1.9

136.1

1.9

1.11

(MPa)

331

527

3130

72.5

210

(MPa)

-187

846

-287

171

-2350

2550

32

72

-128

98

Sx(MPa)

-121

149

-321

387

-2860

3060

-1

35

-15

91

Sy(MPa)-185

245

-268

320

-1760

1800

-1

45

-49

115

3.5.3-2

^£€

#^

(cm)

10.6

10.6

10.7

10.6

10.6

(MPa)

201

207

216

196

201

(MPa)

-201

196

-204

197

-197

198

-196

195

-199

198

Sx(MPa)

-196

195

-179

177

-201

199

-196

195

-196

194

Sy(MPa)

-199

199

-204

203

-197

196

-196

195

-198

197

- 2 7 7 -

Page 296: Liquid Metal Reactor Design Technology Development ...

2l3(cnO

737(3.1)

702(3.(687(2,!

0 (-8.0)

30.0(-7.7) •

285(-5.6)

500(-3.8)

1200(2.2)-

1290(2.9)

1681(6.3) •

1771(7.0)

1846(7.7)

1910(8.0)

U n i t : Cm

•165(-6.6)

. 605(-2.8)

• 1234(2.5)

3.5.3-1

- 2 7 8 -

Page 297: Liquid Metal Reactor Design Technology Development ...

L

ANSIS 5.5.1HAS IS 1SSJli.ii :'•(•PLOT .VO. I

SUS =1

£»« -,5C7-!W

be-ccon. h^^tt Cparcu^S

3.5.3-2

AJT5VS S.

tuyr so.N'ODAL S•J

SO3 - 1

any. =.551i!*C?

3.5.3-3

- 2 7 9 -

Page 298: Liquid Metal Reactor Design Technology Development ...

ANSVS i . 5 .1MAE i J "i3t>t>! 7 : 0 2 ; 4 2PLOT NO- I

CT3 - :

22 i

SV iwtto.- head rplac ehapei

3.5.3-4

i .rays 5 .5 .1HAR 13 155S

S72P-1SU3 -1

EKX =.3C19C3Slfl; -,333EiC'P,5X5: - . ?25E^CS

H - .556E.ee

3.5.3-5

- 2 8 0 -

Page 299: Liquid Metal Reactor Design Technology Development ...

RV fccttcxn h t a d I £ l l i i

3.5.3-6

STO 5 . 5 . 1H.\z 15 135317=03:3«

SU3 - 1

SINT (AVGI

BKX =SKN -

tins -

4.

fe KALIMERS]

^-[3.5.4-1 ~3]t- ^ § H ^.a . 7)7] *\ 3.7]

KALIMER ^

Sfl IHX-SG5]

7l7]

afl^S

Chaboche

IHX

A}

cfl

- 2 8 1 -

Page 300: Liquid Metal Reactor Design Technology Development ...

^[3.5.4-4,5]

^r 10002,

KALIMER IHTS fl£ fl^^l fll fl4 ^

KALIMER IHTS «fl#

-id

7\. KALIMER

(1) 7]7l ^

3.2.4-3^ ^ 7 f l ^ IHTS

^

(2)

(71-) Sfl^j .2..gig

ZL^ 3.2.4-34 IHTS

SG 4 ° 1 ^ f ^a^e l l - 8m, 12m, 16m ^ 11.5mS.

-fe- ^3.2.4-24

tifl^^.^w-Ei Tee

20"SCH40^

7] ^*fl hanger 4 4 ^ S # ^ r ^3. ^^}%v}. KALMER IHTS ufl

^ l ^ r 77fl51 hanger 4

fe 316 ^

- 2 8 2 -

Page 301: Liquid Metal Reactor Design Technology Development ...

£ 30451

ABAQUS[3.5.4-6] 3.5.4-H]

PIPE31

^yM(co-axial piping)

IHTS ^*b ANSYS sfl^S-l^r H& 3.5.4-2^

^ 4 ^ ^ ANSYS[3.5.4-7] sfl^H^fe ^

(3)

^ ^ 3.5.4-34

8m, 12m, 16m, 1

Mises -g-sj ^ slcfl

6.89 MPaS. DFBR2J- MDP^]

DFBRKALIMER4

Von Mises ^?l°]

^7] - s] ^ t f . Mises -g-

Tee ^ ^ - ^ f ^ l ^ SG ^

29mm«1 ^ ^ . ^

14

(4)

KALIMER IHTS

LBB[3.5.4-8] ^ ^

- 2 8 3 -

Page 302: Liquid Metal Reactor Design Technology Development ...

BDS[3.5.4-10] ^ 3.^^

tflSfl^

RC-3600[3.5.4-13]

ASME Section III NH-3600[3.5.4-9]2f

RCC-MR RB-3600[3.5.4-ll] *]%<>] *1H £] <H 9X

ASME Code Case N-253-6[3.5.4-12]4 RCC-MR

- ^ 014. z

Tr KALIMER IHTS -# ^ Sfl

KALIMER IHTS

4s} . IHTS

j£ 3.5.4-1 Case study results by inelastic study

\

Mises

(MPa)

Max Disp

(mm)

DFBR

26.7

25.6

MDP

51.0

7.28

KALIMER

Case

I*

73.5

18.7

Case

II*

50.0

22.8

Case

III*

23.7

25.3

Case

IV**

21.4

19.1

Casey***

22.2

40.0

Caseyj****

8.69

29

IHX-SG 8m, ** : 12m, *** : 16m, **** : 11.5m

- 2 8 4 -

Page 303: Liquid Metal Reactor Design Technology Development ...

S. 3.5.4-2 The evaluation results of KALIMER IHTS piping

per design codes

events M3£ or

equation

ASME NH-3200

ASME CC

N-253

BDS

RCC-MR

RC-3600

Design Condition

Level A,B

Level DDesign Condition

Level A,B

Design Condition

Level A,B

Design Condition

Level A,B

Eqs. (1), (2)

Eqs. (3),(4),(5)

Eq.(12)Eq. (8)

Eqs. (9),(10),(ll)

Eqs. (5.2.1), (5.2.2)

Eqs. (5.2.3),(5.2.4)

RC 3651.1.1

RC 3651.2

Yes

Yes

YesYes

Yes

Yes

Yes

Yes

Yes

l*r «

2*} H M

2x> BM

3.5.4-1 ABAQUS model for inelastic analysis

- 2 8 5 -

Page 304: Liquid Metal Reactor Design Technology Development ...

3.5.4-2 ANSYS model for elastic analysis

T(°C)'

530

365

50 1000 t(sec)

3.5.4-3 Thermal transients

- 2 8 6 -

Page 305: Liquid Metal Reactor Design Technology Development ...

SECTION POINT 1HISES VALUE

•4.28E-O1•1.09EKW•1.74E>00*2.40E>0O•3.06E-00•3.71E>00•4.37E-0O»5.O3E»OO•5.69EMW

•7.00E»00-*8 .69E«»

3.5.4-4 Distribution of Von Mises stress

Ul

XMIN .OOQE+00XMAX 1 . 0 0 0 E + 0 0

IBM -2.930E+D1

JTMAX 3.877E-01

D

SPLACEMCi

NI

-

1

0 .

- 5 .

- 1 0 .

- I S .

-20 .

-25 .

- 3 Q .

— 1

-

-

-

\\

/

/

i

/

/

/

i

/ -

/ _

-

-

i

. 0 .2 .4 .6

DISTANCE

1 .0

3.5.4-5 Distribution of displacement, ul for Tee-SG span

-287 -

Page 306: Liquid Metal Reactor Design Technology Development ...

5.

7}.

(l) >H ^

<sUfl ^ifloflx-] 711^:^*1 ^ a f l ^ S . * ? ! KALIMER

530°C5L

nf l^ i [3.5.5-2]

KALIMER €^fS-^-

^ ^ SX i 71 (Seismic isolation

design)[3.5.5-3]7l- ^ -

KALIMER

ASME 2 E f

427°C(800°F )°l5-]-<y 7 ] ^ ^ ^ ^ - i ^ ^ l ^ ASME Code Section III,

Subsection NG7> Aj-g-sH^ a ^ ] ^ ^ J l ^ i ^ i i ^^fl>Hfe ^ 3 . 1 ^

H S 7-11 A] Z\JL 01^ ASME Code Case N-201-4[3.5.5-4]£|

^ 014. ^ iLJLA^jA^ KALIMER

Level

- 2 8 8 -

Page 307: Liquid Metal Reactor Design Technology Development ...

(2) KALIMER

! ^ 3.% 3.3.1-35]

43^1^11-(Core Support), -fi-^^(Inlet Plenum),

iflJf^]^]^-(Support Barrel), #*}£,-%• 7] eHL1(RV Liner),

Plate), £ ^(Separation Plate), n e | a l -fi-^^tfll^Flow Guide) S

KALIMER ^ l ^ l - S ^ J f ^ a l - ^ ZL^ 3.3.1-2^

^:7] (Primary Intermediate Heat Exchanger)^ 27fl5]

(Electro Magnetic Pump)S.

» 7-1

KALIMER

- 2 8 9 -

Page 308: Liquid Metal Reactor Design Technology Development ...

3, KALIMER ^ ^ } S

fuel) J M

=L7fl

316

(3)

3.5.5-1^ -^-^

^ ANSYS 5.5

SOILD701: 4-g-^jL ^ - § - ^ ^ ^ ^ 1 ^ SOLID45 i i f

7H*>

1/4 -H-^riLi « f l ^ £ l 1 M-E}M- Sl^ ^51^2} ^ e l ^ i ^ 2}-Z]- I7fl

5] 7 l.2m

- 2 9 0 -

Page 309: Liquid Metal Reactor Design Technology Development ...

51 fe PSDRS^r

PSDRSS -^-£51^ cfl -(Convection),

(Conduction),

n ^ 3.5.5-2^ <!-&--§• ^-§-*ll^SH*l COMMIX 2

KALIMER

temperature)#

3 .

- 2 9 1 -

Page 310: Liquid Metal Reactor Design Technology Development ...

3 . 5 . 5 - 3 ^ 1 * } 3 | | * i ] * *}•%•*}*} ^^r

n 4.

3.5.5-5^-

3.5.5-10^ o] s . tfl

3.5.5-74

7]7]

3.5.5-8^

3.5.5-9

24

7]7l -g-^o] 3.5.5-10^

- 2 9 2 -

Page 311: Liquid Metal Reactor Design Technology Development ...

3.5.5-1^ 4 ^S^-^ofl tfl^H ASME ^ . S H ^ i *H S}^ -g-sj

(4) ASME

^ ASME Code Section III, Division 1 NG

^ 427°C (800°F) o]

ASME Code Section II, Part D<*fl*| ^ l ^

11^^ tfl^ Section III^ i ^ ^ l ^ l

ASME ^^Sl i^-1 §«] ^ i XI4- 4 5 M Section II, Part

A ^ Subsection NG l tfl -o^ ASME Code Case N-201-4S] Part A ^fe

Part B£ ^ ^ / ^ ^ s l fl-^1:^- ^-g-^ ^ S i £ ^ §>i Si4-

ASME Code Case N-201-4^ Part AS]- Part B£ T 1 - ^ ^ ^ Sl-^1^

Subsection NG j ^^^d °]Ao1- ^ ^ ^ £ ° l l ^-§-"§: ^ - 2 - 5 . Subsection

NG1- ^^*>7]i4 ^A*F ^ ^ l - ^ i i l^rS]^ S14- Part A ^ 3 ^ 4

Stress-ruptureJl f l- ^ ^ 7>^^r ^^]^] £ ^ 4 * 1 Subsection NG# ^ - ^ ^

^o]^]n> Appendix XLX$\ Time-at-temperature limits^ tfl^ Tf- go] s^ - j i

fl £-ofl 3 ^ 3 } Stress-ruptured ^ -§1 JlBl^t 7A% -S-

11 Part B ^ 3 . ^ 4 Stress-rupture JL3)-# ^ ^*1 3 ^

Subsection NGi cH«} fl-^-t^ ^ ^ i ^ t ^ 3 H 4- Part A

- 2 9 3 -

Page 312: Liquid Metal Reactor Design Technology Development ...

$] Appendix XIX5] Time-at-temperature limits^1 tfl tb

£ Part A cfl Aloj] p ^ B # 4 - § - ^ ^ $14-

£ ^ H H ^ 3 ^ 4 Stress-rupture i 4 # : M ^ Part

3-§-§}-JIT-} *>4. sfl^oil 7 l s ^ -i3]*r-§-(Design Acceptability)

Code NG(<>1S> NG)4 Code Case N-201-4(^l •&]- N-201)7V ^ s .

NGofl^fe ^ # € -§-^^°l ASME Section II, Part D, Subpart

2A, 2B

•§•

Table

Flow

ASME Code Case N-2015]

^(Appendix Y)^.S.

11^^r NG-3000i

4-

4-

ufl ^-

Sit]-.

27H

^r 13

Appendix

fl-^ (Appendix Y)-^

-294-

Page 313: Liquid Metal Reactor Design Technology Development ...

(7ft

Pi)A

NG-3220.1)i ^Tjsfl^ ^7\^o\°\ %t\. 6\ ± ^ 5

t - § - § 5 ^ ^ ^ Table NG-3217-1 <>1 ^ ^ 5 ] o j o jo .^

o | ^ Tableo]]

Level

(Operating Basis Earthquake)^] tfl ^ ^ -^ -g -^ [3.5.5-6]^

Check 1 :

P* * SM (3.5.5-1)

KALIMER^) ^ ^ i ^ ^ ^ l 30\d4

AI (3.5.5.1)^

-!: 5L?f- ^ V ^ ^ H ^ ^^^1^11- -

^ ^ ^ - ^ ( ^ ^ ^ f ^ 4)2]

(3.5.5-1)2]

Check 2 :

^ + n ^ S C T (3.5.5-2)

- 2 9 5 -

Page 314: Liquid Metal Reactor Design Technology Development ...

(3.5.5-3)

A1 (3.5.5-3)o]H

£=1.57}- 4-§~44-

3. 3.5.5-35] ^ £

Check 3 :

P^+PJK. <S* ' " i — ui (3.5.5-4)

^ (3.5.5-4)oflAi

K,=(K+l)/2 (3.5.5-5)

SJ5] Check 2 11 *\ *}•%••$

Check l^x\£\- 4 t ? } ^ £ KALIMER } ^ ^ ^ ^ 4 l ^ f ]

^cfl rf^5j5--^£ r=455°C4 r=500°Ci cH*V - g - ^ 7 0 V £ ^ ^ ] 5,fe ASME

Code Case N-201-45] Table 5 . 3 B A S ^ f B| z ^ z | 5(=140MPa, 5,=124MPa^ 1

a 3.5.5-3i

(3.5.5-4)^ t

Check

(M-)

- 2 9 6 -

Page 315: Liquid Metal Reactor Design Technology Development ...

, 2)

, 3) =L$-v\S,5%7}, 4) 5)-

, 5) ^ - 8 - ^ , 6) Isochronous -§-^-^^#

71

Check 1 :

ffSi.0% (3.5.5-6)

3.5.5-15] ^ ^ # ^ 1 cfl«]: §H

(3.5.5-6)2}

Check 2 :

Membranes,,, <\.0%^Bendingsb < 2.Wo^LocalsL < 5.0% (3.5.5-7,8,9)

No. A-l, A-2, A-3)

-297-

Page 316: Liquid Metal Reactor Design Technology Development ...

Test No. A-l

* ss, (3.5.5-10)

x^+zy/O^^r^e*)™^ (3.5.5-11,12)

°14- ^ (3.5.5-10)^1 Syt

^ ^ • ^ r : ^ ^ %%# 27fl4

i 5^120MPa(455°C), AA^$\ ^ - f 5V=118MPa(500°C)o)

104*1 # : 4 21^ ^ ^ 5 - £ £ l - 4-§-*}^ l ^ t b 1.255,4 ^

^^ l^ i 4 ^ ^ ^ 4-§"tl-4. ^ - ^ ^ ^ ^ ^ f i Sa = Min[1.255f , Sy ] =

Min[1.25xl42MPa, 120MPa] = 120MPao]ol ?*?]$-$] ^ ^ ^ l f e Sa =

Min[1.255, , Sy ] = Min[1.25xl35MPa, 118MPa] =

(3.5.5-10)4

^ (3.5.5-12)011

-T1 (Maximum range of secondary stress intensity)

^^J-Efl ^ £ S ? H cfl*}^ TJIA]-^ ^ ^ ^ - g 3 ( a 3.5.5-1)^-

o)*}%.&<>) §^^ -^°flAi t ! ^ S 7 } Startup*}^ Hotstandby^4°$

4 c ]^-§-^ A o^Sl-^ 7}^*}3L oil- 2]cfl o lx l -g-^ 7 ^^^ o^^ ^ ^

a 3.5.5-3^ *1 (3.5.5-10)^ tfl

4 14%

Test No. A-2

^ + 1- 1 (3.5.5-13)

ASME Code Case N-201-4^ Table Y-1323^1

^ s ? i ^-f^l rflsH 1 (3.5.5-13)4

°1^1 ^flS Type 316 SS4 ^- f

- 2 9 8 -

Page 317: Liquid Metal Reactor Design Technology Development ...

544°C(1011°F)S

£ ^ A } ^ ^ 500°C# ^ ^ * V 4 . ^ M " ^ (3.5.5-13)^

Test No. A-H^ 4.$$. SJSy=l.03\- £ £ S ^ A ^ i ^ £ ^ 4 ^ 3.

3.5.5-34 <H

Test No. A-3

(3.5.5-14)

^•=2.628x105hr l ^ 4 . zie]5l ^fe ^ " # ^ £ 3"/^ 1.5Sy| - ^ cfl*H ASME

Code Case N-201-4^ Fig. 5.55.-?-El

T=500°Cl- J l ^ § | - ^ 1.5Sy|n =180MPa(26.1ksi)ol4.

N-201-4 Fig. 5.5^ Stress-to-rupture x}£.°\] tfl«r ^ ^ ^ ^ - ^ ^ i

ufl ^-g-Al^V^. 1 ^ ^ } ^ 4.61xl05hrS 4^-M-1^ ^ (3.5.5-14)1

(4)

fe- oflH] ^ ^ 1 ^ KALIMER

ASME Code Case N-201-H

ASME J l - ^ 2 : ! - - i ^ lSH^A^ fl-^«>fe 4 ^ « 1 1 ^ ^ i ^ 1 ^ Level A/B

Service Loadings^

- 2 9 9 -

Page 318: Liquid Metal Reactor Design Technology Development ...

3.5.5-1 Calculated Thermal Stress Intensity and Strain

Me

mb

ra

neBe

ndi

ngTotal

e

(%)

With Thermal Barrier,

(MPa)No. 1

21.3

55.7

66.4

0.059

No. 2

49.3

144.5

152.7

0.147

No. 3

51.4

109.8

113.3

0.143

No. 4

91.4

127.9

130.6

0.146

No. 5

26.3

125.5

127.4

0.167

W/O Thermal Barrier,

(MPa)No. 1

48.6

106.4

105.0

0.092

No. 2

54.2

165.4

173.2

0.166

No. 3

58.0

125.2

129.2

0.162

No. 4

118.6

151.6

151.6

0.166

No. 5

26.6

135.1

137.1

0.178

i t 3.5.5-2 Service Limit Check for Load-Controlled Quantities

With

Thermal

Barrier

W/O

Thermal

Barrier

Check

PartNo. 1No. 2No. 3No. 4No. 5No. 1No. 2No. 3No. 4No. 5

Check 1

(Pm Smt)

Pm21.349.351.491.426.348.654.258.0118.626.6

Smt108108106108106108108106108106

Check 2

(Pm+Pb KSm)

Pm+Pb30.180.263.5122.138.457.485.170.1149.538.7

KSm159159159159159159159159159159

Check 3

(Pm+Pb/Kt St)

Pm+Pb/Kt28.474.061.1116.136.055.778.967.7143.336.3

St140140124140124140140124140124

* Pm : Primary membrane stress due to thermal load of steady state condition

* Pb : Primary bending stress due to OBE load

- 3 0 0 -

Page 319: Liquid Metal Reactor Design Technology Development ...

5L 3.5.5-3 Service Limit Check for Deformation-Controlled Quantities

WithThermalBarrier

W/OThermalBarrier

CheckPart

No.lNo. 2No. 3No. 4No. 5

No. 1No. 2No. 3No. 4No. 5

Check 1(X+Y<Sa/Sy)

X+Y

0.23 + 0.29 = 0.520.62 + 0.79 = 1.410.51+0.50 = 1.010.97 + 0.30 = 1.270.30 + 0.84=1.14

0.47 + 0.48 = 0.950.65 + 0.93 = 1.580.57 + 0.57 = 1.141.19 + 0.28 = 1.470.31+0.92 = 1.23

S./S.1111111111

IHX Hole

Thermal

Barrier

turns' 11

J|1

EMP Hole

Reactor Vessel

3.5.5-1 Finite Element Model

- 3 0 1 -

Page 320: Liquid Metal Reactor Design Technology Development ...

500°C (Gas Region)

4

II 480°C

440°C

C I 380°C

3.5.5-2 Thermal Boundary Conditions

- 3 0 2 -

Page 321: Liquid Metal Reactor Design Technology Development ...

ANSYS 5.5.1APR .3 199910:13:11NODAL SOLUTIONSTEP=1- '.:S U B = 1 \";- '•;'••

T I M E - 1 ..:•'.T E M P "-••••.• ( A V G )

RSY.S=0 \.'-•'•' - ' ':;P.owerGraphics ,E F A C E T = 1 "•:.•":' '.' -AVRES=Mat,"-, "".• ^SMN =38Q.087SMK ,=519.998I——, 380.087:fed -395; 6-333

411.1:79426.724.442.27457.815 •,473.361

.'••4:8 8; 907r— , ' 504.452 :•.:L— J 519.998

3.5.5-3 Calculated Temp. Distributions

3.5.5-4 Calculated Temp. Distribution at SP

- 3 0 3 -

Page 322: Liquid Metal Reactor Design Technology Development ...

No.3

No.5

No.4

3.5.5-5 Section Numbers for Service Limit Check

202372: :;.805E+07.159EH-08:.237E+08.316E+08.394E+08.473E+08.551E+08.630E+08.708E+08

3.5.5-6 Stress Intensity Contour around Section No.l

- 3 0 4 -

Page 323: Liquid Metal Reactor Design Technology Development ...

3.5.5-7 Stress Intensity Contour around Section No.2

923417.142E+08.274E+08.407E+08.539E+08.672E+08.804E+D8.937E+08.107E+09.120E+09

3.5.5-8 Stress Intensity Contour around Section No.3

- 3 0 5 -

Page 324: Liquid Metal Reactor Design Technology Development ...

.227E+07'.204E+Q8..3.86E+08V568E+08.750E+08.S31E+08.lllE+09:.129E+0S.148E+09.166E+09

3.5.5-9 Stress Intensity Contour around Section No.4

9234.1T•

.-3.76E+08,

.166E+09

3.5.5-10 Stress Intensity Contour around Section No.5

- 3 0 6 -

Page 325: Liquid Metal Reactor Design Technology Development ...

( l )

KALIMER ^ j - 5 L § } ^ 2 : i - ^ ^ 2 ^ * 1 ^ 1 - ^S.«>7l 3R> ^ °] 4 .

^ ^ ^ f e - ANSYS ^

(2) 7-3,^^

Sfl^oi] 4-g-^ t f l ^ 3 H ^ ASNSYS

fe- ANSYSoiH ^l^^l-fe SOLID

3.5.5-11^8: 4 § fl^i ^ \ ^

^ ] ^ g ^ 1 4 ^7j ]2 :^^- M-E}^} ^O]T^ z i ^ 3.5.5-12

Bulk

(3) Sfl^^il-

3.5.5-13^8: f

Smax = 336 MPa > 3Sm = 327 MPa (800°F)

(4)

o]

- 3 0 7 -

Page 326: Liquid Metal Reactor Design Technology Development ...

Vertically Constrained Nodes

P, = 1720 kPa

Reactor

Vessel

RV Bottom Head Core Support Structure

3.5.5-11 1/4-Model of RI Lower Part and Applied Dead Weight

- 3 0 8 -

Page 327: Liquid Metal Reactor Design Technology Development ...

Assumed Bulk Temperatures

I ^ H j 300°C

350"C

386°C

450°C

3.5.5-13 Applied Bulk Temperatures for Normal Operation

- 3 0 9 -

Page 328: Liquid Metal Reactor Design Technology Development ...

AWSYS5/5.3KOV 3 199910:15:33NODAL SOLUTIONSTEP=1 .: -/"SUB =1 :,-.:. .'.".TIME=1SIWT.,-;.-; (AVG)PowerGraph ic sEFACET=1AVRES=MatDMX =.026903SMN =.206E+07SMX =.336E+09

.206E+07

.392E+08

.763E+08

.U3E+09. . vl50E+09;.188E+09

3.5.5-14 Stress Intensity Contour for Dead Weight and Temperature

Conditions of Normal Operation

- 3 1 0 -

Page 329: Liquid Metal Reactor Design Technology Development ...

6.

KALIMER

7>

ANSYS ^ 2 : ^ s £ a ^ [ 3 . 5 . 6 - l ] l S ^ ^ 7fl

0.3g ^ 5 J ^ 0.2g

191

/«=— o V—^T^ ' ^ ^moment of inertia, m=mass per unit length.Z7r v / m

o] o.74m, vfl^o

^ a 3.5.6-14

^ A A 50%4 28% ^ ^-

l)

- 3 1 1

Page 330: Liquid Metal Reactor Design Technology Development ...

ANSYS

shell 63 1 4 : 5 } mass21 ]4 | ^

3.5.6-HI SL f-

i 3.5.6-25}

2) ^

[3.5.6-3,4]. ^ -^- i f l^ -^^ i i - i cfl^ ^-^ l -^ t 7fl<LH^ -fi- 171-

3.5.6-3^

5m ^<ifl 3m# i f ^ f l ^M $ITT ^ ^ -S ^ f- JL^§}^ tfl/fi]^. i f o f l

^Sfl #311 ^ 2 : # ^ ^ £ ^ r 100% o]Ao>

3) 7fltiol-

ANSYS

7\)

• 3 1 2 -

Page 331: Liquid Metal Reactor Design Technology Development ...

3.5.6-31 A-] 3 1 ^ ^-7}-^^7Jl^r(Hydrodynamic Mass Coefficient)

4 tl]

4.07HzS,

10% ^ 5 .

^ S 3.5.6-4i M-B}>S4. a 3.5.6-41

|- 4.04Hz7|- E)o]

I 014

f^ J I - * - ^ 1 ^ ^ ^ s. 3.5.6-51 ^ . ^

0} 3.74Hz^ 7 ] £)cH 3D -M_9_£» ^l-g-*t ^ 4 4 ^ ^ ^ ^ 4 . *fl^fl^E^ I47} ifl^ifi

8% 3-TII 4 4 i d 4 .«> ^ - f i 11,405 7]-

4402:^ ^-xflM Af-g- ^-fs] 4%

44^4.

3.5.6-14 ^ 4 ^ 1 6.03Hz

- 3 1 3 -

Page 332: Liquid Metal Reactor Design Technology Development ...

4.3Hz^ Hjiilf- nfl o}=# ^ o . # £ M-^-^fli Si4-

4) 7HHo>

25cm x 50cm°] ^? io] ^ ^ £ ) o ^ 014. o

a 3.5.6-64 z i ^ 3.5.6-2^1 ^ A ] ^ ^ V \ . %_ 3.5.6-6^: i L ^ X yo

v^^-

S} 2%\ J I ^ - ^ 1 ^ ^ 7 > ^yJf 3.49Hz^f

Y «oT-«j:o_^^ 3.93Hz5]- 19.96Hz^ X ^

37.17HZS

1) ^ ^ ] S

- 3 1 4 -

Page 333: Liquid Metal Reactor Design Technology Development ...

-g-^ 4

0.3g 0.2g

3.5.6-34 ^ ^ 3.5.6-4011 a]

US

X yoV

0.362gS,

Jl, Y

^. 0.175gS.

50%

ANSYS

X,Y

T

3.5.6-54 ^ ^ 3.5.6-6*1]

7>#5. ^ ^ ^ 3.5.6-7^

2)

AA # ANSYS

85% O]AJ-^

- 3 1 5 -

Page 334: Liquid Metal Reactor Design Technology Development ...

SRSS ^ £ . 0.3g

r J2.

0.2g

-fe X £ 4.12cm, Y « 0 H ^

0.83 cra7f

0.52cm, Z w o H ^ 0.054cm7l-

4.96cm7l-

3.13cm, Z « 0 H ^ 0.34cm 7}

2.5cml- 2,^t\^r

., 0.5Hz

^ X «J-^^- 0.72cm, Y

3.5.6-1

^(Hz)116

£11

.9903

3 3

1.4m) ^ • T - 2(^1

5.4

92.3

0.74m)

1 4 ,i ^J^

201.358.9

3.5.6-2 i

195.13 x 109 N/m2

7965 Kg/m'0.3

2.07 x 109 N/m2

850 Kg/mJ

0.95 x 10-3 m2/sec

- 3 1 6 -

Page 335: Liquid Metal Reactor Design Technology Development ...

3. 3.5.6-3

UIS 4J?le| i f ^ ? i l 2 ! l ( m / m )

1.40/ 6.87

0.74/ 6.87

0.74/ 3.74

1.40/ 3.74

Hydrodynamic Mass

Coefficient (Cm)

1.09

1.03

1.08

1.33

M= r. *(0.74)2 =365Kg/m, M2 =

Cm =(l+((d/D)2)/(l-(d/Df)

Added Mass/Unit Length

(Kg/m)Outside Sodium

1.09M2

1.03M1

1.08M1

1.33M2

4 /4*(1.40)2 =

Inside Sodium

1.0M2

1.0M1

1.0M1

1.0M2

= 1308.5Kg/m,

3. 3.5.6-4

MODE

1

2

5

(3D -fMli

FREQUENC

Y4.07108

21.6836

62.8089

l ± *]••§-)

EFF. MASS

6974.32

4510.91

364.526

3. 3 ] f;

FREQUEN

CY4.40655

24.0790

69.6307

EFF. MASS

5889.21

3628.60

330.787

%t7iFREQUEN

CY4.03972

21.4656

61.3738

EFF. MASS

7791.97

3979.69

374.020

3.5.6-5

MODE

1

2

5

(3D -n-^ l J l iFREQUENCY

3.76699

19.3206

55.9472

4-B-)EFF. MASS

8404.75

5894.82

401.543

FREQUENCY

3.74194

19.2028

55.2605

EFF. MASS

8849.7

6075.3

511.737

- 3 1 7 -

Page 336: Liquid Metal Reactor Design Technology Development ...

S. 3.5.6-6 JL-f

X-direction Y-direction Z-directionMODE

1

2345678

FREQU

ENCY3.49

3.939.29

14.5719.9632.8134.0337.17

PARTI.

FACTOR-121.70

22.9015.5464.96-7.403.47

-18.96-0.80

EFF.

MASS14810.20

524.68241.72

4220.8754.7712.04

359.630.64

PARTI.

FACTOR-23.65

-120.402.416.63

73.065.475.51

-1.06

EFF.

MASS559.61

14496.605.84

44.025338.65

29.9430.45

1.13

PARTI.

FACTOR0.978

0.901.24

-2.138.38

-37.08-11.91105.32

EFF.

MASS0.95

0.811.554.55

70.321374.77141.85

11093.10

3.5.6-1

RH5YS 5 .5 .1HW. 20 200019:39:58

1

1I

.VISITS 5.5 .1

- .CSSSS

— s . s *

3.5.6-2

- 3 1 8 -

Page 337: Liquid Metal Reactor Design Technology Development ...

Acceleration (g-value)

M

b\

uail

Acceleration (g-value)

mid

I

5

21

10

•equenc

<XN,

\

1

•i/'

1

1

t

ii

i

\

\

|

js

\'

\

f

/

/

iii

i

>

V .

(</.

/ ,

/ . •

; {

)iiii

• r

I

)

\

ioca.npu

1

i—io>

w/l

BO

S

o

^ > -

HOnI W

/Oiso

l

o"

11

<w/ Is

o5io

• ^ ^ *

*

<w/o

ISO

li

ID

r*.

ion

\i

5

Acceleration {g-value)

Page 338: Liquid Metal Reactor Design Technology Development ...

too

uLh

X

Acceleration (g-value) Acceleration (g-value) Acceleration (g-value)

-Jo

J2,

Hi os

Acceleration (g-value)

IV

Wit!

OJD

Ji

5ojo

Acceleration (g-value)

u

J2,

OJD

5

Acceleration (g-value)

Page 339: Liquid Metal Reactor Design Technology Development ...

7.

Many components and subcomponents in liquid metal fast breeder reactor

(LMFBR) primary and secondary systems are exposed to sodium from more

than one source, and it is common to find the impinging fluids at

significantly different temperatures. When this occurs, portions of the surfaces

of such components and subcomponents are subjected to fluctuations between

the hot and cold sodium which are the coolants of LMFBR. This exposure of

a surface to alternating hot and cold fluid temperatures during steady state

reactor operation has been termed thermal striping. The thermal striping

phenomenon, which occurs due to an imperfect mixing of sodium streams

with different temperatures is one of the most significant problems in

LMFBR.

Thermal stresses arising from thermal striping can initiate surface cracks

by high cycle fatigue. These types of thermal fluctuations induced the cracks

in reality such as the crack in the expansion tank of Phenix secondary loops,

the crack at the tee-junction of Superphenix and the crack at the cold trap

system of BN-600[3.5.7-l]. Through-the-wall failures of mixing tees have been

reported several times in the test loop and FBR plant, which demonstrates this

mechanism for component failure.

In this section, an efficient numerical method based on the Green's

function concept and Duhamels integral theorem was utilized to calculate

thermal strains and the SIFs(stress intensity factors) to evaluate fatigue damage

and crack propagation under thermal striping loads for the tee-junction of the

secondary piping system. Compared with the standard finite element method,

the present method was confirmed to be effective from the viewpoint of

computational aspect without sacrificing the solution accuracy.

- 3 2 1 -

Page 340: Liquid Metal Reactor Design Technology Development ...

(1) Description of Benchmark Problem

The present benchmark problem is based on an industrial problem which

has occurred in the secondary circuit of the French liquid metal reactor,

Phenix. It deals with the thermal striping phenomenon. Phenix is a 250 MWe

prototype fast breeder reactor with three secondary loops operating since 1974.

Problems on pipes induced by thermal striping phenomenon have effectively

been observed during the course of inspection, after 90,000 hours of

operation. This technical problem deals with the mixing of two flows with

different temperatures in the secondary circuit of the Phenix during normal

operations. The sodium in a branch line flows into the main pipe of the

secondary circuit as illustrated in Fig. 3.5.7-1. A small bored pipe, connected

with a tee junction to the main pipe discharges sodium at 430C into the main

pipe. Two convergent flows with temperature differences of 90C are mixed

in the tee junction area.

There is a circumferential weld at 160 mm downstream from the

horizontal axis of the tee-junction. The circumferential weld on the main pipe

is as-welded condition at both inner and outer surfaces. The internal pressure

is 2.2 bar for the main pipe and 2.9 bar for the small bored pipe. The

thermal striping damage is to be evaluated after 90,000 hours of operation.

No creep was taken into account due to the low temperature level. Only

steady state operating conditions need to be considered because the operating

transients induce no significant stresses in the area of interest and

corresponding fatigue damage is negligible. The materials of the base metal

for both pipes are AISI304 stainless steel, grade Z5 CN18.10, while the weld

material of the main pipe is 16Cr-8Ni-2Mo and the circumferential welding

was carried out by a plasma welding.

This benchmark problem brings opportunities to compare results of

numerical analysis and observations on a practical problem, not idealized but

industrial, involving a lot of parameters and different aspects of phenomenon

- 3 2 2 -

Page 341: Liquid Metal Reactor Design Technology Development ...

on thermohydraulic, thermomechanical and fracture behaviors. All numerical

evaluations should be as close as possible to reality without including any

margin.

(2) Thermomechanical Analysis

(7J-) Green's function approach

In the present study, Green's function approach for the crack propagation

problem of a pipe under random type thermal load was proposed, which can

dramatically reduce the amount of calculation in the elastic regime. In

addition, the proposed approach was also applied to the fatigue analysis of a

pipe.

The Green's function is defined as the response of a system to a standard

step or impulse input. The Green's function contains all essential information

of the system when it is properly defined. Based on the Green's function

concept and the Duhamel theorem when it is properly defined, the change of

thermal stresses at time t due to a small change of the boundary temperature

at time can be expressed as follows

(3.5.7-1)

where the stress Green's function, G-» (' ~r) can be determined from the step

change of the boundary temperature. The Green's function needs to be

computed only once for a set of boundary condition under unit step loading.

Equation (3.5.7-1) can be written as

°r*=1™ZAer/''O (3.5.7-2)

From equation (3.5.7--1) and (3.5.7—2)

- 3 2 3 -

Page 342: Liquid Metal Reactor Design Technology Development ...

' . . = l™2X(r - r ) ^Ar (3.5.7-3)

Equation (3.5.7-3) can be expressed as

"••('>= K( / - r )^ r f r (3.5.7-4)

Equation (3.5.7-4) can be separated as follows

where td is decay time for the Green's function. The decay time is determined

from the response of the system for unit step input.

Since the Green"s function G",ST^ is constant for r-ld, equation (3.5.7-5)

can be reduced as

o- (0= lt G*. ('- T)^dr+ G., (',){©(» -',)-0(0)} p 5 7_6^

Equation (3.5.7-6) shows that the integration over the time range td only

is necessary no matter how long the elapsed time may be for the calculation

of the parameters such as stresses, strains or the SIFs. Then equation

(3.5.7-6) can be expressed as follows with the time range, td divided into n

steps for numerical integration.

a, W = S G: {l ' T< ){®(r<} " ® ( r - 5} + G.t (t,, ){©(/ - td ) - 0(0)} ^ 5 ? _ 7 ^

where r = r., + A r .

Similarly, c«, under a unit step change of boundary temperature can be used

to determine the SIF[3.5.7-2].the Green's function for the SIF,

•324-

Page 343: Liquid Metal Reactor Design Technology Development ...

(3.5.7-8)

The Green's function method (GFM) for the SIF enables these fracture

parameters to be calculated very efficiently using a simple integration scheme

under thermal loads. The validity of GFM for the SIF of the present

geometrical model is shown in Fig. 3.5.7-2 under triangular thermal loads for

a temperature difference of T=45C from the average temperature of 384.6C

with 0.033 Hz (1 period = 30 sec). The SIFs by GFM showed good

agreement with those by standard FEM as shown in Fig. 3.5.7-2.

(1-4) Description of the model

For thermomechanical analysis, an axisymmetric model with 1540

isoparametric quadratic elements for the heat affected zone of the welded joint

were used as shown in Fig. 3.5.7-3. The model has 14 elements along the

thickness (7mm) direction. The axial displacements were constrained at the

bottom line of the model.

In the present analysis, the ABAQUS version 5.7[3.5.7-3] was used for

heat transfer, thermal stress and fracture mechanics analyses. In addition, some

programming was carried out for stress and fracture analyses using Green's

function method, and for damage evaluation per design code. In this study,

the procedure specified in the ASME section III subsection NH was used for

fatigue damage evaluation.

Loading conditions

- Thermohydraulic(TH) loading

The thermohydraulic behavior of the turbulent flow under thermal striping

phenomenon should be evaluated by using numerical analysis to predict the

thermomechanical and fracture assessment of the tee-junction. An important

- 3 2 5 -

Page 344: Liquid Metal Reactor Design Technology Development ...

part of this benchmark problem is to evaluate the T/H behavior of the

striping phenomenon described previously. In the present analysis, the random

type fluid temperature history predicted by UK AEA[3.5.7-4] as shown in Fig.

3.5.7-4 was used. The temperature history was computed for 32.5 seconds at

the location of 80 mm downstream from the centerline of the small pipe,

which is the random type as shown in Fig. 3.5.7-4. It was assumed that the

temperature at the inner surface of the pipe was the same as that of the

sodium fluid and the temperature history of the inner surface was the same.

- Mechanical loading

The reaction forces and moments at the location of A and B in Fig.

3.5.7-1 due to the weight and thermal expansion of pipes during nominal

steady state are given in Table 3.5.7- 1.

The residual stresses in a welded joint may have an influence on the

behavior of the crack initiation and propagation because it may change the

levels of mean stresses. However, the residual stresses in a welded joint are

mostly relaxed due to high operating temperatures or by post weld heat

treatment. Therefore, the effects of residual stresses were not considered here.

(sf) Stress Analysis

The thermal stresses were calculated using Green's function approach. The

history of stress intensity is shown in Fig. 3.5.7-5 and every three output

points was plotted. The maximum value of it at welded location of C in Fig.

3.5.7-3 was 173.3 MPa. The stress components at the welded joint under the

random type thermal loads calculated by GFM are shown in Figs. 6 & 7.

The maximum values of stress components were rr = 42.67 MPa, = 186.67

MPa, zz = 211.05 MPa, and zr = 57.05 MPa.

It is interesting to note that the magnitude of the shear strain (zr) level at

the welded joint is as high as that of radial strain (rr) as shown in Fig.

- 3 2 6 -

Page 345: Liquid Metal Reactor Design Technology Development ...

3.5.7-8 due to the geometric discontinuity while the other strain components

(zz,, ) are relatively small. The variations of the equivalent strain range (eq)

for random type loads is shown in Fig. 3.5.7-9, which shows that the

maximum value of eq at the welded joint is 0.00183. The sampling time of

the T/H data is 0.1 second.

The calculated stress results due to the reaction forces and moments at the

welded joint of the inner surface were very small. The hoop stress due to the

internal pressure was computed to be 7.863 MPa, the axial stress due to

bending at the outermost location of the pipe was 1.838 MPa and the shear

stress due to torsion of the pipe was 0.39 MPa. These stationary stresses

would act as mean stresses in fatigue and crack propagation analysis.

However, the contribution of these stresses under the stationary load to

striping damage was evaluated to be very small. The magnitude of the

equivalent plastic strain was about two orders lower than the elastic total

stain.

(v\) Results of Fatigue Damage Evaluation

The fatigue damage evaluation was performed according to ASME code

subsection NH[3.5.7-5]. The evaluation results of fatigue damage at the

welded joint showed that the number of allowable cycles in design fatigue

curve was 65,000 for the total strain range of 3.77% and the number of

applied repetition of the cycle was 1.08107. Therefore, the calculated usage

factor for this case was 166.15 during 90,000 hours of operation. It was

shown that initial fatigue failure occurred at t = 541.67 (hours) at the same

location.

(2) Fracture Mechanics Assessment

(7J-) Description of the criteria

The propagation law with the effective SIF parameter for AISI304 stainless

- 3 2 7 -

Page 346: Liquid Metal Reactor Design Technology Development ...

steel was employed as follows ;

JL = C(AKe/ry (3.5.7-9)

where c = 7.5xi(r13, « = 4.

Keff is effective SIF range described in reference [3.5.7-6], and the unit of

the SIF is MPa(m)0.5.

(MO Evaluation of Crack Propagation

The crack propagation analysis using GFM requires determination of the

SIF range, K for the incremental crack lengths. Then, the fatigue lifetime can

be easily determined by integrating the crack propagation formula. To

determine the fatigue crack lifetime, it is necessary to express K as a function

of the crack length a in the crack propagation law of equation (3.5.7-9). The

variations of K for each stage of the incremental crack length were calculated

using the Green's function for the corresponding crack length. The initial

crack length was 0.5 mm. The variation of the SIF is shown in Fig. 3.5.7-10.

The polynomial expression of K for the random type load is

AK = 7 .45- 9724.97a + 7.97x 10'a2 - 3.32x10'a1 +7.36x10"a'

-8.11xlO'V+3.46xlO'V. (MPaJm) (3.5.7-10)

The estimated lifetime up to a=5 mm under the random type thermal load

was 42,689.9 hours.

As for the crack propagation for a>5.0 mm which is over 70% of the

thickness, the validity of Paris law is uncertain because plastic deformation

occurs throughout the remaining ligament.

The instability analysis would show if the crack will propagate through the

thickness or not. In the present analysis, the tearing modulus based on

J-integral was employed to evaluate the crack instability. The calculated

tearing modulus under this thermohydraulic load at welded joint was 0.58

- 3 2 8 -

Page 347: Liquid Metal Reactor Design Technology Development ...

while the tearing modulus for this material at 427 C based on the

multiple-specimen JR-curve procedure was 612[3.5.7-7]. Therefore, the crack

will be arrested between 5 and 7mm along the thickness direction.

(t}) Reduction of striping damage

The prevention of failure due to striping damage is important in a piping

system of this type where mixing of the two fluids with different

temperatures occurs. Fig. 3.5.7-11 shows the observation results for Phenix

after the operation of 90,000 hours, which shows that the crack was initiated

and propagated in two directions along the welded joint. It was observed that

two cracks were propagated along the radial direction as shown in the left

hand side of Fig. 3.5.7-11. Three kinds of approaches can be proposed to

avoid the striping damage in the welded joint of the main pipe with a

tee-junction;

- Extension of a small pipe into the main pipe

As shown in Fig. 3.5.7-12, the striping damage at the welded joint can be

reduced by shifting the mixing zone from the welded zone by extending the

branch line into the main pipe.

- Change of fluid velocities

The two fluid velocities of vl and v2 in Fig. 3.5.7-12 can be changed to

move the mixing zone from the welded joint. However, this requires overall

thermohydraulic analysis as well as thermomechanical analysis in detail.

- Change of welded location

The welded location can be shifted to the downstream of the main pipe so

that mixing may occur apart from the welded zone.

It can be shown that the third method of shifting welded joint is relatively

simple but Phenix chose the first method to reduce the striping damage. The

reduction of the thermal load at the welded joint due to fluid mixing was

confirmed by measuring the surface temperatures near the welded zone after

- 3 2 9 -

Page 348: Liquid Metal Reactor Design Technology Development ...

modification of the branch line carried out for Phenix. It was found that the

geometrical bead shape has a very strong influence on the integrity of the

welded joint because it induces a sensitive strength reduction factor due to the

geometrical discontinuity.

As conclusions, the evaluation of the thermomechanical fatigue and fracture

behavior on the tee-junction of a Phenix secondary circuit having a welded

joint at the downstream of its main pipe was carried out using Green's

function method as well as standard FEM.

The evaluation by Green's function method showed that the fatigue failure

under the random type load occurred as early as 541.67 hours of operation at

the circumferential welded joint of the inner surface.

The crack propagation analyses showed that crack would be propagated

over 5mm during 90,000 hours of operation. The crack would be initiated and

propagated up to 5 mm through the thickness direction for 42,698.9 hours.

The instability analysis with tearing modulus showed that the crack would be

arrested at the location between 5 and 7 mm along the thickness direction.

An efficient numerical approach using Green's function concept was mainly

employed for this random type thermal load case. The approach enabled the

calculation of fatigue usage and the crack propagation lifetime by simple

numerical integration.

From the viewpoint of industry, it is important to note that striping

damage can be reduced by shifting the welded joint or moving the mixing

zone from the critical locations with discontinuities in geometry or material.

- 3 3 0 -

Page 349: Liquid Metal Reactor Design Technology Development ...

i t 3.5.7-1. Forces and moments in the pipe

Location

A

B

Weight

Mx = -4.3 106 N.mmFy = -91 N

My = 2.1 106 N.mmFz = 165 N

Mz = 5.3 105 N.mmMx = 4.3 106 N.mm

Fy = 91 N

My = -2.1 106 N.mmFz = -165 N

Mz = -4.6 105 N.mm

Weight + Expansion

Mx = -1.1 106 N.mmFy = 2,500 N

My = -2.1 106 N.mmFz = 910 N

Mz = 8.7 105 N.mmMx = 1.1 106 N.mm

Fy = -2,500 N

My = 2.9 106 N.mmFz = -910 N

Mz = -2.8 106 N.mm

Small PipeTh = 430'CDi=68mm, t=2.5tnmQ=7 kg/s, p=2.9bar

Main PipeTc = 340'CDi^94mm, t=7mmQ=800 kg/s, p=2.2bar

3.5.7-1 Geometrical configuration of Phenix secondary piping

- 3 3 1 -

Page 350: Liquid Metal Reactor Design Technology Development ...

Temp(cC)

384.6

AT = ± 45 °C

(a) input thermal load

4x10'

3x10'

2x10*

1110°

1x10*

2x10*

3x10'

p

30

\

\

\

25 40

t

——

i ,

\

45

(sec)

- Green's Fn MethodStandard FEM

/

/

50 55 60

(b) Variation of stress intensity factors

for triangular thermal load of 0.033 Hz

3.5.7-2 Validation the Green's function method in fracture evaluation

- 3 3 2 -

Page 351: Liquid Metal Reactor Design Technology Development ...

3.5.7-3 Axisymmetric FE model of the main pipe near welded joint

-40

10 20

t (sec)

30

3.5.7-4 History of thermohydraulic data computed by UK AEA

- 3 3 3 -

Page 352: Liquid Metal Reactor Design Technology Development ...

2.0x10*r

3.5.7-5 Variation of Mises stress

6.0x10 "

4.0x10 "

0.

-4.0x10 -

-8.0x1030

3.5.7-6 Variation of radial and shear stress components at welded point

- 3 3 4 -

Page 353: Liquid Metal Reactor Design Technology Development ...

2.0x10

1.0x10

inin

-1.0x10

-2.0x10

3.5.7-7 Variation of hoop and axial stress components

1.50x10'

1.00x10

5.00x10"1 "

(O

to

0.00

-5.00x10'* "

-1.00x10'

3.5.7-8 Variation of welded strain components

- 3 3 5 -

Page 354: Liquid Metal Reactor Design Technology Development ...

0.0020 r

0.0015 -

0.0010

0.0005 -

0.0000 -

— As

t (sec)

3.5.7-9 Variation of equivalent strain range

4 . 0 -

3 . 5 -

3 . 0 -

2 . 5 -

ii

\

1

i

i

\

\

AK for random data

f

y•-••-w—•""""•

/

/

' 1

\\

\

\

h\\

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

a(m)

3.5.7-10 Stress intensity factor range as a function of crack length

- 3 3 6 -

Page 355: Liquid Metal Reactor Design Technology Development ...

small pipe axis

,«] 00 mm

3.5.7-11 Actual observation of the damaged pipe of Phenix

weld

V2Main pipeRi=247mm

3.5.7-12 Reduction of striping damage at welded zone by extending

small pipe into main pipe

- 3 3 7 -

Page 356: Liquid Metal Reactor Design Technology Development ...

4-

-tf.

t j-^ji ASME Subsection

KALIMER

(1)

^ - g - ^ KALIMER[3.5.7-8]^ ^

530 °C ^ i ^ j :n£-o]ji ^ A ] OIA^L ^ ^ . ^ ^£^>7> 146 °C

S. 1967\i ASME B&PV Code, Section III, Code Case

I975\i Code Case 1592, 1977^d Code Case N-47^

t}o^ 19951^ Subsection NH[3.5.7-9]S.

Code Case N-47^-E^ 5L-& 7 } i

$14-

- 3 3 8 -

Page 357: Liquid Metal Reactor Design Technology Development ...

Superphenix[3.5.7-10]^ 7 f l ^

1 9 7 0 ^ ^ 1 ^ nl^-S] Code Case N-47^- A f - g - ^ ^ ^ l T%X\S>\

1967^ ? i ^ t b ^ ^ S RAPSODIE^ ^ ^ ^ ^ #

7 l l^# ^ ^ § H Code Case N-47S ^-g-o] Jf^|flrfj7

RCC-MR[3.5.7-12]

71]^1-^tj-. RCC-MR 3 E r ^ ^ S RAPSODIE^ Phenix^l

S Superphenix^l ^ ^ ^ ^ - ^ ^ ^ -

^ S . JOYO^l ^^Alo]]^- ASME Secion III^j- Code Case 1331

3L ^ ^ ^ € ^ S MONJU# 7fl\| ^ ^ 1 ^ : xtfli£

fe^l Code Case 1331^ fM^Til ^ l ^^ l 145} -i

ufl^o] 3fi£*> ji^A^ ^ o f l x^J^ ^ ^ £]o] oil- #0^

1978Hi all:S:'s^l^l^]<y PDS£(- -§-7l Aj Tjl l ^ °] VDS# 7fl1i:§l-^ 1984\1

H l | o j BDS[3.5.7-13]S. 1>^ i^ l ^4 . BDS

FFTF5]- CRBRP5] ^ - f^ l 4^«H^ | ^ ^ l 4 ^ - ^^l7>

ASME SiEL#

- 3 3 9 -

Page 358: Liquid Metal Reactor Design Technology Development ...

ASME

Severud[3.5.7-14]3 ^ ^ ^q-® N-47-29(1989\£^-)^r ^ ^ - i i - ^ °}7A

•§• 1995^ Subsection N H S

7}

(2) 3 ^ 3 X ] S

(7}-) ASME Subsection NH 2 H S ] yov^

Subsection N H ^ Section III, Subsection NB<^

Subsection N H i

3.5.7-13^1

AA3.5.7-13^

3 4

3^1 ii°ltf| ^^(Neuber

- 3 4 0 -

Page 359: Liquid Metal Reactor Design Technology Development ...

(3.5.7-11)

2) A £ m o d =mod

(3.5.7-11)

3)

K

3.5.7-14*^1

Aiojt-1]

(3.5.7-12)

= ^ y A £ m o d + X Ae (3.5.7-12)

- 3 4 1 -

Page 360: Liquid Metal Reactor Design Technology Development ...

S.(isochronous stress-strain curve)0!] /

5,- = S; 0.8G (S; — Sr)

^ (multiaxiality factor)

3.5.7-154

i ^ - ^ 1 (envelope stress-time history curve)-^ ^

^ ^ ( ( j c ) 2 l 1.25UH1- ^1*> ^V^t^l -%-n°}

^- z i ^ 3.5.7-155]

q fl5]

1.

Subsection

] 3.5.7-13)

- 3 4 2 -

Page 361: Liquid Metal Reactor Design Technology Development ...

RCC-MR 2 H

Subsection NH4 <|J££) BDS^fe i H %A^.^ ^\-%-$] A

\ 3.^-%: ^A)^V &£. ^(negligible creep)4 £EL^# J j ^ -g

^(significant

i RCC-MRS

7R>

3

(3.5.7-13)

3.5.7-16i

As = Aey+ Ae2+ Z?£3+ Ae4 (3.5.7-13)

7)7} ^ £ ^ ^ ^ T T 0 1 S ^SJ

il 45} (3.5.7-13) q*\ ^ . ^ ^ ^

717} ^ T ^ o ^ (3.5.7-14) ^ ] ^

^ K v f i ^ j ^ j r o i H go} 1-11 i fl «J-# (3.5.7-15)

- 3 4 3 -

Page 362: Liquid Metal Reactor Design Technology Development ...

(3.5.7-14)

(3.5.7-15)

3 ASME Subsection

4-

ASME Subsection

(3.5.7-16) ^ j A S

~Ak = ~Alel+pl+~Alcr (3.5.7-16)

oj-

T\ ^\% ^°}$] 3 g ^ ^ ^ - g - ^ 70>E 1 . M e a n p5 -g-

(3.5.7-17)

= Mean ~P + K^A~o* (3.5.7-17)

- 3 4 4 -

Page 363: Liquid Metal Reactor Design Technology Development ...

[3.5.7-15].

fe 4 ^ £ ASME Subsection

6\%7)

3.^3]-

3.A] 4

o}<g- ^-^-3g7]-fe- ASME Subsection

3.5.7-1351 o] z) A] a.

(4) BDS

7] ASME Subsection

shakedown ^TJll-

014.

fe (3.5.7-18)

(3.5.7-18)

i - o . (3.5.7.19)

iT£ = ( 5* / "S ) • K2 when

K£ = MBC[( S* /H)-K2, K-Ke] when

Ke = ! + (<?-1) • { l - ( 3 5 ^ / Sn ) }, « = 3.0

> (3.5.7-19)

= SrH + 1.5Smc , T > 425 °C (3.5.7-20)

(3.5.7-20)

- 3 4 5 -

Page 364: Liquid Metal Reactor Design Technology Development ...

^ ° l BDS SH<H]^fe Neuber ^ 4 E J - ^ ^ ^ 1 - 4 ^ ^ 5) cfl

^ i l s L * ! Neuber ^ 4

^ ^ ; ASME Subsection

Dc = Z?d + D'o + ±D* + ^n,DT (3.5.7-21)

Dc = DCN + DCP S

71]^ *J"€61 DCN^- M-B}^4- Dci^ Sg

o.3# Af-g-^^ji, (/)i=-

M ^ i l ^ I ^ ^ A S M E

Subsection NH^f ^o ] ^ e ] 3.5.7-13^1

} . BDS 3

ASME Subsection

(3)

- 3 4 6 -

Page 365: Liquid Metal Reactor Design Technology Development ...

3.5.7-183]-

3.5.7-19^1 1 4 S ^ # 10051

ANSYS[3.5.7-16]<3] 8*1^ ^ t f l ^ t ^ ^ h S - i * ] PLANE78 &±% 3677fl

fe PLANE82 JSLi-i- 4-§-*V^^-^ 1 ^ 5

l ^A3L7A^ =L^ 3.5.7-18 11

440^1

ASME Subsection NH# rc|-Bf ^7}«t ^ 4 ^ ZL& 3.5.7-19^1

^o] 1003

^ - f 0.541

0.2671- ^*1-^31 (yo^3)^l ixf^ ^ ^ # - i : A}-§-*> ^ 4 . 0.317^

ZL^ 3.5.7-13^1 ^^2x15. ^>S" ^ 7 > ^ A J ^ -

7} 4 4 3.2331- 40000 1 slSfecfl H^^^^1^7l- €- 1-H- RCC-MRa

Til ^^^^J ^^.s ^84€4. BDS ^ H^ 1.33, a^^^ -^ l^ fe 0.309O] S l ^ ^

- 3 4 7 -

Page 366: Liquid Metal Reactor Design Technology Development ...

.3, n& 3.5.7-20^] l A l ^ i a 3.5.7-2i

ASME Subsection NH5] («O>^1)# 4 4

RCC-MRo] 7}Q

. Chaboche

£ f lJ ABAQUS[3.5.7-18]^f

^ ASME Subsection

(3.5.7-22)

3.5.7-21^

- - 1= [ cr f+ (7

0.157} 51 o] H B ] 3.5.7-20^

(3.5.7-22)

0.28

- 3 4 8 -

Page 367: Liquid Metal Reactor Design Technology Development ...

(4) ^

a 3.5.7-2^ 3 ^ 5 ] ^

^ 7 } ^ 4 # ^ -^ 3.5.7-20^1 7 H ^ ^ ^ . ^ a ^ l ^ l - ^ ^ ^ ASME Subsection

NH3 (Hc^i)°l «1^^ tim^AQ 7}% 7f4£ ^ 4 # ^ J I BDSI- 4^-

7l nfl -ofl ^Aj^ofl^ 3 - ^ 3 - ^ ^7>§]-7l^ ^^^ l 1 ?} ASME

s

Subsection NH7J- i ^ ^ ° l 4^ - ^ 4 # ^ S J J I ^ - ^^5} ^ 3 ^ ASME ^

ASME Subsection NH3 ^ 7 J - ^ ^ 1 - KALIMER J l ^ ^ S ^

Subsection NH#

- 3 4 9 -

Page 368: Liquid Metal Reactor Design Technology Development ...

S. 3.5.7-2

ASME Subsection NH ( ^ 1 )

ASME Subsection NH (HJ-^3)

RCC-MR

BDS

W11H3 « H WJ- (Subsection NH)

0.54

> 10

3.23

1.33

0.28

0.267

0.317

40000

0.309

0.15

Df

3.5.7-13 NH)

Zero time as curvewith a\s' coordinates

3.5.7-14 -g- ^7]l£(Subsection NH)

- 3 5 0 -

Page 369: Liquid Metal Reactor Design Technology Development ...

3 . 5 . 7 - 1 4 - g - ^ o ) ^

AcrtotAa*As = constant

3.5.7-15 (RCC-MR)

- 3 5 1 -

Page 370: Liquid Metal Reactor Design Technology Development ...

(c

/

/

....[AStraincontrolled

*ep)

Load controlled

\

K p o Sepc)

8

3.5.7-16

R =3555 mm

LI =3486.47 mm

L2= 1840.28 mm

L3 = 1500 mm

L4 = 1500 mm

t 1 = 15 mm

t 2 = 50 mm

pi = 60 mm

p2 = 200 mm

<|> =20 °

3.5.7-17

- 3 5 2 -

Page 371: Liquid Metal Reactor Design Technology Development ...

Temp <JC)

550

250

0 201 1

420 440

Time(hr)

840

3.5.7-18 (1003])

RCC-MR

o

Df

10

3.5.7-19

140

120

100

80

60

40

20

00

a|S£ TT-S #^(409)

11~~—~-

/

/

500000 1000000 1500000 2000000 2500000 3000000 3500000

3.5.7-20

- 3 5 3 -

Page 372: Liquid Metal Reactor Design Technology Development ...

8.

o]

* ] - ^ . ^ | ^

£-£-*] 47}x]

2.

3.

4.

- 3 5 4 -

Page 373: Liquid Metal Reactor Design Technology Development ...

^l^-(solidification)^

4

l-i tflsfl # i^^^ 4#-4 7EVc|-. ^ s ^ i i ^ ^ 2 # ^ 7]

r 2.4 ^

4.

change)^

*fl» ^

- 3 5 5 -

Page 374: Liquid Metal Reactor Design Technology Development ...

^r ANSYS

i : sg 7>*V7l

3 ^ 3.5.8-1^

.5.8-3]. n ^ 3.5.8-2

3.5.8-1 -g-^

34 V

450 A

88.9 Cm/min

85 %

13005 W

(1)

.1= AISI 316L

13.2 mmS d

3.5.8-1 i ^ ^ § } ^ r f . -g-^ 3-7%$

> ^ ^ ^ tf|^ 610 mm2 ^ 31 ^

grooved SAW(Submerged Arc

-356-

Page 375: Liquid Metal Reactor Design Technology Development ...

Welding)-!: 4-§-«M 2-*fl4 ^ 4 - ^^91 316 i^Ufl

13005W

(2) <

(71-)

3.5.8-3^ f ^fl^A] J I ^ S ] 2 ^ - ^ ^ tfl J

PLANE 551- 4 - § - ^ ^ ^ ^ l ^

^ l S ] -a-S yj 3 ] ^ ^ ^ 1 ^ ^ 3 ] ^ ^ 6.6mm o] jr.,

610 mm ^ -r-TlIfe 13.2 mm <>

SAW -§-^oflAife -§--§-#0]

[3.5.8-5].

(4 ) ^ ^ ~

- g - ^ ^ -§--§-°fl tfl^ AJ-^S].A1 3>«i(latent heat)

-357-

Page 376: Liquid Metal Reactor Design Technology Development ...

(3)

(7\)

7]]A]!-

hardening °j *£-£

(4)

^ , ±<% A ^(tangent modulus),

free materials.^ 4^1 3Z. H

Von Mises

mle )^ bilinear kinematic

kinematic isotropic hardening

^ ^ t f . -§-•§-^ S-^flfe- damage

- 3 5 8 -

Page 377: Liquid Metal Reactor Design Technology Development ...

Kinematic hardening S.1^)>H -g-§-£5. °lAoHl^^l i ^ ^ r f e 0°S-

-g-^5] 0.5% ^ #

(4)

2 7H

- -S 4

4-fl

iS£ ANSYS =q Birth and Death Option #

3.5.8-7 ^ ^ 4^^-^^ 1*11 £11: 44^4- A

Lumped passS 2.^^*>fe ^ - i : ^llAl§r^4. °1 tf % Lumped

passfe - g - ^ ^ ^ l ^ S i?-7}&

- 3 5 9 -

Page 378: Liquid Metal Reactor Design Technology Development ...

(5)

o.S 10, 20, 30 mm

1.72 sec ~ 2 sec

7}t}jL ^2,7d^r ^O] ^7}t\^X^. ZL& 3.5.8-5^ •%•%!?- ^ ^

i^W-E-] x # # 4 ^ 90 mm ^ ^ 7> 1 ^ 7 } ^ ^yj-^(longitudinal)

cf. X-ray ^

3.5.8-8 ~ ZL^ 3.5.8-13^- Sfl^H

- g - ^ J g ^ ^ ^ 5 L o ] ^ ^ - q-B]-v£4.

10, 20, 30 mm 5] ^^6 f l cfl fV sfl^ 1 4

JEit

- 3 6 0 -

Page 379: Liquid Metal Reactor Design Technology Development ...

Substep

Convergence

criteria ^r^

• mesh 'generation

converge

Output

.Latent Heat

User' Subroutine

thermal: load

3.5.8-1

- 3 6 1 -

Page 380: Liquid Metal Reactor Design Technology Development ...

Fixed(mm)

Welding Line

AnalysisArea (2D)

Heat Affected Zone

% 3.5.8-2

^ 3.5.8-3

- 3 6 2 -

Page 381: Liquid Metal Reactor Design Technology Development ...

1H

O1J

— • — 20(AnalyO—&— 30(An aly.)

20(Data)

— I —so

— I —100

—I1S0

—I I 1—200 2S0

1—aoo

3.5.8-4 ^^1^(10,20,30 mm)

AN

3.5.8-5 -g-^

- 3 6 3 -

Page 382: Liquid Metal Reactor Design Technology Development ...

• • • • • •

J •1 v A \ \ \ \\\y

3.5.8-6

"t:i

L

1.V.\:\- I ; V1

M Y I I I I I I film

3.5.8-7

-364-

Page 383: Liquid Metal Reactor Design Technology Development ...

3.5.8-8 1 pass^f^ •ZrS.&g.

(t=1.9)

3.5.8-9 2

(t=8001.9)

AN

3.5.8-10 ^111(10,20,30 mm)

- 3 6 5 -

Page 384: Liquid Metal Reactor Design Technology Development ...

Z2.5] 3.5.8-11 1 passes]

(t=1.9)

3.5.8-12 2 pass^M

(t=8001.9)

"" i

3.5.8-13 ,20,30 mm)

-366-

Page 385: Liquid Metal Reactor Design Technology Development ...

9. #-§-

3.5.9-3*11

ABAQUSS S ^ 4 ^^[3.5.9-1].

0.3g ^ ^ ^ ^ 4 0.2g

3.5.9-1^ ZL^ 3.5.9-2

US

^ ^ 1 ^ ^ - f fe 0.173g5L M - B } ^ , Y

0.676gS, ^^1=1 ^-ffe- 0.175gS

0.362g

ti]

fe 0.558g5L 50%

RV w/ Isolation• ' ' " Top w/o isolation

Top w/Isoaltionground input

0.1

100

Frequency fHz)

3.5.9-1 X

- 3 6 7 -

Page 386: Liquid Metal Reactor Design Technology Development ...

10

g5

B<

0.1

RV w/o IsolationRV w/ Isolation

• ' • • Top w/o isolationTop w/ Isoaltionground input

1 10

Freauencv (Hz)

3.5.9-2 y

D) 1 -

g|

0.1

RV w/o IsolationRV w/ IsolationTop w/o isolationTop w/ Isoaltionground input

10

Freauencv fHz)

100

3.5.9-3

368

Page 387: Liquid Metal Reactor Design Technology Development ...

X,Y

3.5.9-H

3.5.9-4Sf ZL^ 3.5.9-5i

3.5.9-6«=fl

-I: S. 3.5.9-3, £ 3.5.9-4 3.5.9-7, H ^ 3.5.9-8 3.5.9-9^

3.5.9-34 a 3.5.9-4 11 *]

4-

- 3 6 9 -

Page 388: Liquid Metal Reactor Design Technology Development ...

3. 3.5.9-1 Enveloped Response Spectrum at Reactor Support for Fixed and

Isolated Cases (Hori.)

Fixed-Base Building

Freq.

(Hz)

0.2

0.54

1.0

2.1

4.0

5.4

7.0

7.5

10.2

Accel.

Response

Spectrum(g)

0.1

0.34

0.5

0.95

1.19

2.6

3.4

3.4

1.05

Freq.

(Hz)

11.9

12.9

15.6

17.7

22.5

23.7

26.5

33.0

100

Accel.

Response

Spectrum(g)

1.0

0.98

1.88

2.1

0.83

0.83

0.85

0.75

0.685

Isolated-Base Building

Freq.

(Hz)

0.2

0.4

0.49

0.59

0.7

0.82

1.0

1.38

1.7

Accel.

Response

Spectrum(g)

0.11

0.4

0.69

0.69

0.45

0.45

0.295

0.295

0.22

Freq.

(Hz)

2.6

3.2

3.7

7.6

9.8

10.3

12.2

22.0

33.0

Accel.

Response

Spectrum(g)

0.22

0.21

0.190

0.183

0.225

0.225

0.188

0.192

0.179

i t 3.5.9-2 Enveloped Response Spectrum at Reactor Support for Fixed and

Isolated Cases (Verti.)

Fixed-Base Building

Freq.

(Hz)

0.2

0.54

1.0

2.1

3.5

5.4

7.0

7.5

10.2

Accel.

Response

Spectrum(g)

0.1

0.24

0.26

0.5

0.72

0.68

0.73

0.75

0.8

Freq.

(Hz)

11.9

13.8

15.0

17.3

22.5

23.7

26.5

33.0

100

Accel.

Response

Spectrum(g)

0.88

1.7

1.8

0.95

0.5

0.48

0.45

0.42

0.365

Isolated-Base Building

Freq.

(Hz)

0.2

0.54

1.0

2.1

4.0

5.4

7.0

7.5

10.2

Accel.

Response

Spectrum(g)

0.1

0.24

0.34

0.5

0.75

0.75

0.85

0.95

1.29

Freq.

(Hz)

11.9

12.9

15.6

17.3

22.5

23.7

26.5

33.0

100

Accel.

Response

Spectrum(g)

3.2

3.6

1.5

1.1

0.75

0.73

0.65

0.62

0.56

- 3 7 0 -

Page 389: Liquid Metal Reactor Design Technology Development ...

S. 3.5.9-3 Enveloped Response Spectrum at Top of Building for Fixed and

Isolated Cases (Hori.)

Fixed-Base Building

Freq.

(Hz)

0.2

0.54

1.0

2.1

4.0

6.1

7.0

7.5

10.2

Accel.

Response

Spectrum(g)

0.1

0.34

0.55

1.2

1.85

10.4

10.4

10.4

3.1

Freq.

(Hz)

11.9

12.9

15.6

17.7

22.5

23.7

26.5

33.0

100

Accel.

Response

Spectrum(g)

2.5

2.25

2.4

2.5

1.9

1.85

0.80

1.68

1.65

Isolated-Base Building

Freq.

(Hz)

0.2

0.4

0.49

0.59

0.7

0.82

1.0

1.38

1.7

Accel.

Response

Spectrum(g)

0.11

0.45

0.70

0.70

0.46

0.46

0.3

0.3

0.223

Freq.

(Hz)

2.6

3.2

3.7

7.6

9.0

10.3

12.2

22.0

33.0

Accel.

Response

Spectram(g)

0.223

0.22

0.2

0.21

0.27

0.27

0.195

0.186

0.182

i t 3.5.9-4 Enveloped Response Spectrum at Reactor Building Top for Fixed

and Isolated Cases (Verti.)

Fixed-Base Building

Freq.

(Hz)

0.2

0.54

1.0

2.1

3.5

5.4

7.0

7.5

10.2

Accel.

Response

Spectrum(g)

0.1

0.24

0.26

0.50

0.71

0.73

0.85

0.9

1.15

Freq.

(Hz)

11.9

13.8

15.0

17.3

22.5

23.7

26.5

33.0

100

Accel.

Response

Spectrum(g)

1.3

3.4

3.5

1.85

0.9

0.85

0.75

0.68

0.565

Isolated-Base Building

Freq.

(Hz)

0.2

0.54

1.0

2.1

4.0

5.4

7.0

7.5

10.2

Accel.

Response

Spectrum(g)

0.1

0.24

0.26

0.52

0.80

0.90

0.95

1.1

2.0

Freq.

(Hz)

11.9

12.9

15.6

17.3

22.5

23.7

26.5

33.0

100

Accel.

Response

Spectrum(g)

5.2

5.9

2.5

1.75

1.15

1.15

1.15

0.98

0.85

- 3 7 1 -

Page 390: Liquid Metal Reactor Design Technology Development ...

Acceleration (g-value)

MAcceleration (g-value)

uAcceleration (g-value)

U

Ln

\>

mid

Acceleration (g-value)

2Qti

o|o

|m

OJD

5

¥fL

1

Envelopi

Analysis

3dResults><

Acceleration (g-value)Acceleration (g-value)

Page 391: Liquid Metal Reactor Design Technology Development ...

Acceleration (g-value) Acceleration (g-value) Acceleration (g-value)

u

re.

ft

Kiolo

IV

Inl

r.a

<&

Acceleration (g-value)

3 o • i

u

oo

IV r.a

x&L

mjd

J2.

> m

velopea lysis F

c

(X)s

u

Acceleration (g-value)

0%

5

Acceleration (g-value)

Page 392: Liquid Metal Reactor Design Technology Development ...

7],

#3]f-, 2) ^xj-Stfl^-^ai-, 3)

4)

KALIMER ^^>S7flf- ^J£L7l7l, ^ S # ^ Hfl^^lf^l tfltb 7fl

IHTS

KALIMER

KALIMER ^ ^ t ^ ^ ^ f - S ] 7 l ] ^ ^ 7 i l i A ^ ^ ^ . 7\7]9\

U.SmS.

KALIMER

- 3 7 4 -

Page 393: Liquid Metal Reactor Design Technology Development ...

S\^z]n. 441- *> ^ 4

44 *J4^S ^ f ^ i ^ ^ l 4 4 # <H«> 4^ l.2m4 £^o) 87l]7|-

fe # 30cm4 €

f-^ 14 «}^-5L^H4 ^ 4 7 ^ ] ^ ^ 67i]4

B4C1-

^ ^ 4 ^°<H SASS 4 ^ 1 -

4*11 B4C5L 4 # ^ 4 ^ 7H4 4^s-o) U S S ^

.^r KALIMER

0.3 m O]T^ 3|tfl ^ ^ - A ] 0.9 m

317] ^ ^ ^

°J

4

- 3 7 5 -

Page 394: Liquid Metal Reactor Design Technology Development ...

A|-J17>

KALIMER^] Jl-^- ^ -^ - i - J15]-Sfjl ASME Section XI Division 3

} 7} Pfl-f #-Q-l> 71-

-§-71 lfl^-51 ^j£. ^-f-31- tfl

- ] ^ i # ^ ^ ^ . ^ 7} KALIMER

. KALIMER

71^4 ^1^ #^7l# ^ -§-

^1^ 71^,

KALIMER

KALIMER

21 th 2 > 7^1^ ^^V^ssq- ^7l^A^7i^ ^ ^ ^ 2 - ^ . ^ s a d d l e a n g l e

- 3 7 6 -

Page 395: Liquid Metal Reactor Design Technology Development ...

plate *1#*fl, KALIMER

il4- ^ t> ^ e | ^(Baffle plate)4

(Separation plate)!- ^ ^ * | - ^ AA%°\ AA$\ ^A %

7fl

r IDEAS

KALIMER } 1

1: 5J7>«} ^ 4 KALIMER

IDEAS £

if- lmm ^

KALIMER

- 3 7 7 -

Page 396: Liquid Metal Reactor Design Technology Development ...

9X1827]]

71 ^

uflSV

5cm<y ^ ^ .

KALIMER

PSDRS

KALIMER

, KALIMER

KALIMER ^ 4 § ]2 1 ti}4 2 1 ^ ^ 1 4 ^ £ f 2 ] 57J-4

- 3 7 8 -

Page 397: Liquid Metal Reactor Design Technology Development ...

4.

KALIMER IHTS a f l ^ l ^ cflti] ^ 2 : ^ 7 ] - ^ s f IHX-SG^

KALIMER IHTS ti

- ASME

^iS^i (Level A/B Service

Loadings)^ *Ml^?i 7 j s ^ 4 iflJf*!*!^ tfl^ofl l

S]

- 3 7 9 -

Page 398: Liquid Metal Reactor Design Technology Development ...

r °-} 50% ^ 4 4 ^r ^ i L 4 4 ^ 4 -

4 4 4 #^r°l] 3«fl*1 ^ £ # al-fi-^^V 15% jJE. *W*

2.5cm

Phenix °1*H|:& Tee-Junctions]

90,000

^ 42,698.9

Til (tearing modulus)

4- -0--8: t 4

S- 4 ^ ^ : y^fe ^^ ^ 3 : # ^ rfl^H ^7}*V ^ 4 « «1 iH^lH 1" ^sj^j. ^ 4 4 tiling ^ 4 , 3 -S} ^ 7 i l ^ ^ 4 ^°llAi ASME Subsection NH

ASME ^^1^1 ^ 7 ] - ^^ |7f l^^.S£. 7}

^ ^ : ^ ] ^ 1 fl ASME Subsection N H #

KALIMER

^tjf Subsection

- 3 8 0 -

Page 399: Liquid Metal Reactor Design Technology Development ...

.3.*!

^ 316 L i

0.3g

KALIMER

44

7]

- 3 8 1 -

Page 400: Liquid Metal Reactor Design Technology Development ...

7fl

H, 2) *]^*]H 3.B. ^ 3)

IDEAS, ANSYS<4 ABAQUS ^-g-^*b-Q-i§H^ M 2 ^ | *] -%•

^ ^ i i ^ x l ^ l ^ ^ ^ <$*}; SAC-CORE

(Seismic Analysis Code-Core) 2 E f

KALIMER i ^ ^ ^ l ^ l ^ ^ i - T*8^}3

ANSYS S.

21

-](Revision A)#

-l- ABAQUS ] ^ - £ l 2 | i £ 7fl ?V NONSTA-VP

-§-^ NONSTA-EP 2

. SI 7

- 3 8 3 -

Page 401: Liquid Metal Reactor Design Technology Development ...

- t > 8 £ -

Fv i?svaai

-tz-Its

^P ffv fa-st^ro # ^ i te& &

•-b

fn ^ ^ l ^ F r ^ T t ir 3

Page 402: Liquid Metal Reactor Design Technology Development ...

2.

7}.

KALIMER

ASME

^ NSSS ^

ANSYS ^-g-

ASME

^^[4.2.2-1, 4.2.2-2]. n f 4.2.2-1^

Stress Intensity), ^-^-g-^^-S(Bending Stress Intensity),

Stress Intensity), a e j j l ^^-^7j-£(Total Stress Intensity)!-

ASME A | ^ ] S t = i tq-s. ^ - 2 - ^ ^ A J 3|7>1- pfl - -§-0] si-Til

tf 51 t t J l ^ ^ S # ^ 7 f l f e ANSYS ^ S H l

:*j f--g-lj7j\E(Peak

tf

ASME

ABAQUS

4

Model)

4.2.2-2^ ANSYS#

- 3 8 5 -

Page 403: Liquid Metal Reactor Design Technology Development ...

°H

IDEAS Structure for LMR Design; K ^ ^

Modeler

-Part Design.ConstrucfiVireframi:.Build Section.Create Solid Mode]using Extruding anRevolving Features

-Modify Part-Create Drafting

-Design Data of LM|RComponents &Structures

Assembler &Mechanism Design

-PreMechanism Design. Creating StandardJoints

. Constraints

T-Internal Solver

-PostMechanism Design

. Review of Results

. Interference & MaiProperties

Simulation

-FEM Meshing. 2D, 3D, Beam Elements

-Loading & Boundary. Pressure & Forces. Displacements

i-Solver. External Solver(ANSYS, ABAQUS)

. Internal Solver-Results. Natural Frequency. Stress & Displacement

Analyses

4.2.1-1

- 3 8 6 -

Page 404: Liquid Metal Reactor Design Technology Development ...

ASME B&P Section III, NB, NG, NH,ASME Code Case N-201-4

4.2.2-1 H ^ NSSS

- 3 8 7 -

Page 405: Liquid Metal Reactor Design Technology Development ...

(Substructures)

STATIC/SOLSPECTR/SOL

( S M E J -No

Yes

4.2.2-2 ANSYS1- °]

• 3 8 8 -

Page 406: Liquid Metal Reactor Design Technology Development ...

1. ^ s f l ^ S H (SAC-CORE)

7}. *\ &

71

z |z [2] oi^o]] Load padf-

| A] ] ^ ^ ^ ^ ^ ^ ^ ^ l

IAEA

4.3.1-2,4.3.1-3].

^r €*U ^ " ^ i ^ 7]]^^*] KALIMER ^ ^ l ^

SAC-CORE(Seismic Analysis Code-Core) 3.B.% 7

KALIMER i ^ ^ l ^ l ^ ^ i - ^*S«>J1 ^ ^ 3 ] 7 } i i

S ^ " ^ RAPSODIE S-^ic

SAC-CORE

4 . SAC-CORE

(1) sfl^S^

l SAC-CORE

2E2] ^y}^^l ^ ^ ^ ZL^4.3.1-14 ^"4. H ^ i ^ 4 ^o] SAC-CORE S

^- SAC-MODAL,

-389-

Page 407: Liquid Metal Reactor Design Technology Development ...

SAC-FRS, HZ\3L

^:^•s}7} 3 $ - SAC-PLOT, *13l * H J2. *i 4 SAC-MODAL 3

f ^ 3«V SAC-POST 2.

SAC-CORE3" SAC-MODAL^ FORTRAN <£°]S- ^ 5] °1

y SAC-PLOT^]- SAC-POST^- Microsoft-C <£°]S. s)

SAC-PLOT s

£ ^ 7 ] ^ , Zooming 7]^ ^o] o^cj.. SAC-POST

(2)

r }+[K]{xr }=- [M]fe}. (4.3.1-1)

3 3 ^ i ^ [M], [C]

3. ^ 5 ^

Load padi

Runge-Kutta ^ I ^ ^ ^ i 5 ] # ^ o]^.^- ^^^w.^^ . 4^^^nf. o]

(4.3.1-2,3)

3 3 *) (43

I (4.3.1-4)

(4.3.1-1)3 (n x n) *$%£: 4 ^ - 4 Q°] (2n

- 3 9 0 -

Page 408: Liquid Metal Reactor Design Technology Development ...

x 2n) *J€^1

o / 1 , f o(4.3.1-5)

x»i«=^+j:i. iOi I=^+- i6>^is=-*r+^ (4.3.1-6,7,8)

^.S Runge-Kutta ^ l ^ y j - ^ cff 2 ] ^ ^ o ] l H ] ^ ti] s.

- SAC-CORE SS-oflA

°11- ^ * > ^ 7 ^ ^ ^ ^ ^ l i tfltb -S-^7] ^(condensation technique)^-

(4.3.1-9)

AA M-Bf^4. A (4.3.1-9)^^1 AA*}^-A ^ffe ^ ^ ^ B - ] ^

uc = K-:c{Rc-Kcaua) (4.3.1-10)

(4.3.1-1

f/c

^ = A/« + K]a frj Mcc K: Kca. (4.3.1-12)

Ls°»-Ks°p - (4.3.1-13)

- 3 9 1 -

Page 409: Liquid Metal Reactor Design Technology Development ...

Kgap,

Gap

4 . 3 . 1 - 2 ^ SAC-CORE

Gap

3-1-71 ^SH SAC-CORE^Mi

i l i i , GapS -l-

(3)

SAC-CORE Batch

, Gap

- Gap 7}S. : ID, KX, KY, KRI, KRJ, CX, CY, CRI, CRJ

^ i ^ ^ i X , X, Y, Z

A

X Dx, Dy, Dz

: X, 2: Y, 3: Z),

Gap ID

Dx, Dy, Dz^

KX, KY, CX, CYfe i i ^

- 4 4 ^ 4 KRI, KRJ, CRI, CRJ^r I

AX, Y,

- 3 9 2 -

Page 410: Liquid Metal Reactor Design Technology Development ...

(4)

4.3.1-3^ KALIMER

Cluster £ f | ^ f q-Ej-^ 3Mi}[4.3.1-4]. n e ]

°11 i Cluster Afif C ^ Radial blanket, Gas expansion module, Reflector, B4C

shield, In-vessel storage, H^JL Shieldf-fi]

Cluster B^r S ^

SAC-MODAL-I:

^ KALIMER^l ^^1

^ . ^ ^ . o^^o^ £_ 4.3.1-131}- 7EV^ s]cfl

4.3.1-5^ Cluster BS] ^ f

^ ° l ° l ^^4 .3 .1-6^ 4 § } ^ 2 ^ s . o ] ] rfl«]. Gap

-§-#!• M-Hfvfl ^ 0 ) 4 . n^of lAi^ 7EVo] ^ ^ 1 ^ ^

# < H # ^ , --&1 Load p a d i A ^ ^ ^ ^ ^ nj 3L717T-

M-. SAC-CORE 3 E ^ f

SAC-CORE aJE.fi] ^ ^ - ^ 4 - ^^*}7 l ^ « H ^ ^ " ^ RAPSODIE S . ^ t

^ ^ 4.3.1-7^

1 9 7 ^ ^ ^ ^

* 6l-§-tr ii^^l^l-e-^ Sfl^-I: T s l*}^4- ^ ^ 4.3.1-8^ ^m

SAC-CORE^l

4.3.1-2^

- 3 9 3 -

Page 411: Liquid Metal Reactor Design Technology Development ...

4[4.3.1-2]4 SAC-CORE^)

j ^ s f l ^ S H . SAC-CORE7]-

$14-

4-

SAC-CORE

KALIMER

elJL ^ 4 ^ ° H A i ^ i ^ 1 - ^ RAPSODIE

4 7Hyav€ SAC-CORE

SAC-CORE ^ H # -43*11

A

4

I£ 4.3.1-1 Loading Conditions Used in Analyses

Load Case1234

Core

Ace.1.28g1.28g0.22g0.22g

Support Excitation for SSE

Conditions (0.3g)Freq. Remarks

8.1 Hz Non-Iso, RI Freq.4.3 Hz Non-Iso,Core Freq.4.3 Hz Iso., Core Freq.0.7 Hz Isolation Freq.

i t 4.3.1-2 Comparison of Maximum Disp. Responses at Top Nodes

Row 1 Row 4 Row 5 Row 10 Row 15 Row 16 Row 19

ExperimentCASTEM2000CORE-SEIS

FINASFINDSSAFA

SALCONSAC-CORE

9.0-

12.28.06.66.510.59.2

8.47.68.36.55.86.18.18.0

15.219.414.413.212.812.514.612.3

12.614.614.312.411.312.311.113.9

17.412.814.812.413.913.513.611.7

9.56.28.26.56.45.711.38.1

8.6-

10.78.75.86.6-

9.2

- 3 9 4 -

Page 412: Liquid Metal Reactor Design Technology Development ...

Analysis Part

|

Input Data

- Seismic Model

- Gap Conditions

- Input Motion

1SAC-C(Nonlin

Histor

ORE

ear Time

y Analysis)

r

SAC-FRS(Calcul

Respo

SAC-CORE Code

V

ation of Floor

nse Spectrum)

w

w

r

Graphic Part

SAC-POST

- Seismic Model Plot

- Mode Shape Plot

- Mode Shape Animati

SAC-MODAL(Modal Analysis)

w

an

SAC-PLOT- Response Plot

- Check ZPA

4.3.1-1 Contents of SAC-CORE Code

- 3 9 5 -

Page 413: Liquid Metal Reactor Design Technology Development ...

START

Systenupg

•System Matrix Generation

1t t

Core Elements[M]c.[C]c,[K]c

Gap ElementsMgapl INjap

g

Fluid Effects

i 1

Global Assembled Matrices[MLniq^IKJo

iMatrix Condensation

[M]R , [qR , [K]R

tApplied Boundary Conditions

[M]B.c,[C]B.c,[K]B.c

in Matrixrade

YES

YES

Solution Phase(Step=1,...,N)

^ Step>N ^ >

Gaps Closed ? ^ >

STOP " )

—Initial Gaps,

System MatrLUpgradeKj=0.0

i

<

4.3.1-2 Analysis procedures of SAC-CORE Code

- 3 9 6 -

Page 414: Liquid Metal Reactor Design Technology Development ...

ACLP

Core Shroud

Core SupportPlate

4.3.1-3 Clustering of Sub-Assemblies

Former Ring

480.0

Upper Shielding

380.0

Upper Gas Plenum

230.0

Core

130.0

Lower Shielding

30.0Nose Piece

0.0 Cm

tCluster 1

(26 Assemblies)

t tCluster 2 Cluster 3

(51 Assemblies) (26 Assemblies)

4.3.1-4 Core Seismic Analysis Model

- 3 9 7 -

Page 415: Liquid Metal Reactor Design Technology Development ...

I . , . , , . . , ,

4.3.1-5 Relative Disp. Time History Responses at Node 22

- 3 9 8 -

Page 416: Liquid Metal Reactor Design Technology Development ...

4e+5

0.0

4.3.1-6 Impact Time History Responses at Gap 1

- 3 9 9 -

Page 417: Liquid Metal Reactor Design Technology Development ...

2.0

1.5

3 1.0too

Q] 0.5

0.0

-0.5

19 Single Row Model(RAPSODIE Mockup)

W////////A

Nodal PointsGaps at TopGaps at Pad

Fuel Assemblyi i i i i i i i i i i i i i i i i i i

0 1 2 3 4 5 6 7 8 9 1011121314151617181920

Row Numbers

4.3.1-7 Core Seismic Analysis Model of RAPSODIE

-400-

Page 418: Liquid Metal Reactor Design Technology Development ...

30

.§ 20

a>o

a.«5

re

10

0

-10

-20

Range

Positive Direction ExperimentExperimentExperimentSAC-CORESAC-CORE

Negative Direction

i i i i

6 8 10 12 14 16 18 20

Locations (Top Nodes)

4.3.1-8 Maximum Disp. Response at Top Nodes (in Air)

- 4 0 1 -

Page 419: Liquid Metal Reactor Design Technology Development ...

2.

*> ^41 SH^ 1^11- H ^ 4.3.2-14 "°1 ANSYS

#^4[4.3.2-l].

ANSYS1-

FLUID80 fiI ^

l ^*> A i S ^ i ^tfl3|-S z=0

z=0

^ ^ ^1-g-

-402-

Page 420: Liquid Metal Reactor Design Technology Development ...

BUILD MODEL(PREP7)

Define Element Types

Define Material Properties

Define Real Constants

Create Model Geometry

Generate finite element mesh

iMODAL ANALYSIS(SOLUTION)

Set Analysis Type: Modal

Define Boundary Conditions

SPECTRUM ANALYSIS(SOLUTION)

Obtain Modal Solution

Set Analysis Type: Spectrum

Specify Load Step

TDefine Spectral Values and

Frequencies

RESULT SUMMARY(POST1)

Resume Full Database andDisplay Mode Shapes

Other Postprocessing

TRANSIENT ANALYSIS(SOLUTION)

Set Analysis Type: Transient

Set Time and Substep Option

Define Boundary Conditions

Define Load Step

RESULT SUMMARY(POST26)

Time-History Postprocessing

3.4.2-1

- 4 0 3 -

Page 421: Liquid Metal Reactor Design Technology Development ...

3.

(Eigenvalue Buckling Analysis) yJ"1tlI!} yl^d^l 2f#*l]-^ (Nonlinear Buckling

Analysis) t^1^0] SX^- -2-~ff ] Sj-'^^fl'^ ^ ^ - ^ r Al — *<§ H-£] j3--n"^] \r4|:£-

-rLS-§-^] o ] ^ - ^ 3j-^"7d'S.(Bifurcation point ) ! ° j ]^

Snap-through

KALIMER TJ 7sV ^ . ^ 3--S- 5] #4iAl ^ V ' i 0 ! ! cH ®V ;?SAl* '-S- 4 - ^ ^3 :^1

^^"^1~S" ^s 71 ^Jll' ]"^f7] -r] ft is Til- l"^^"! f S-^C-^-^ 4.3.3-1)TT T^^"-2} 'E

ul 7fl1s^l i i ^ l 1 ^ ^ ^ ^ ^ ] ^ : 1 ^ 7}"^A1 2.5-§-

4.3.3-22f ^

(1) 114

(7f) 71] ^ .

- 25 KN Hydraulic Actuator* ol-&-*>^ Slide Moving Test*

- 4 0 4 -

Page 422: Liquid Metal Reactor Design Technology Development ...

7] Si Bench, Sliding Base ^ Actuator 4 ^ - i : $\ & Support Bracket^]

(M-) 7f^ ( Standard )

( KS )

(Jis )

(4 ) # $ ^ -S-^ ( Dimension and Language )

Metric System-!- 4 ^ - ^ q - . s . ^ £ i g ^ Data

- 4 0 5 -

Page 423: Liquid Metal Reactor Design Technology Development ...

-%-%•£: K S -g

-&3-g-£ KS

o] 6\] ^ *> 7^ A}

A.

B.

C.

D. ^ ^

. ^c^TJA)- ( Deflection ^ Bending )

^ - ^ w - ^ i - X-Ray %X

- Bearing £

F. ^ ^ 2 :^

- A ^

- 4 0 6 -

Page 424: Liquid Metal Reactor Design Technology Development ...

(4)

7 l s ^A> ^ PIT

Hydraulic Actuator

- 4 0 7 -

Page 425: Liquid Metal Reactor Design Technology Development ...

- z j - ^ 7JA]- SHEET

(4) fl ^ ^

(7)-) BASE PLATE I

- Material : SS41

- Dimension : 2000x1800xl25t

- Anchor Hole : 20 Points

- 3 Line T-Slots

BASE PLATE II

- Material : SS41

- Dimension : 2000xl800xl25t

- Anchor Hole : 20 Points

- Taping Hole : 20 Points

( 4 ) GUIDE BASE PLATE

- Material : SS41

- Dimension : 1800xl300x80t

- Taping Hole : 80 Points

ACTUATING BASE PLATE

Material : SS41

Dimension : 1500xl000x80t

- 4 0 8 -

Page 426: Liquid Metal Reactor Design Technology Development ...

- Taping Hole : 150 Points

K ) ACTUATOR SUPPORT BRACKET

- Material : SS41

- Dimension : 900x900x30t

- -g-^ ^ S *\]^

- Hole : 15 Points

(B» ACTUATOR CONNECTING BRACKET

- Material : SS41

- Dimension : 400x210x3 Ot

- -g-3 ^3i 4^

- Hole : 10 Points

(4) 4# ^ ^ ^ ^ Jf#

- LINEAR BEARING ( HSR 55B Type ) — 8 each

- LINEAR RAIL ( 2020L ) — 2 each

- § } ^ ANCHOR BOLT ( PSD 24/25 ) — 12 each

- JL:f^ BOLT & NUT — 200 each

M-. INSTRON SCHENCK TESTING SYSTEMS

(1) HYDRAULIC ACTUATOR ASSEMBLY 1 SYSTEM

- Hydropuls Actuator (PL25N /I)

Load : 25 fcN(3}Srir) / 20 k N ( ^ } ^ ) , Stroke : 250 mm

- Set of ball joints (PK25L /I)

- Sevoblock (SBL63/63N /I)

- Servo Valves (SV63 /I) 63 lpm

- Damping Throttle (SB-DD /I)

- 4 0 9 -

Page 427: Liquid Metal Reactor Design Technology Development ...

- Dampling Throttle Adaptor (SB-DP /I)

- Flushing Block (SB-SB /I)

- Loop compensation system (8800-264 /I)

- Load Cell (PM25K /I)

10kN-4000kN (1. step increments) 2500-7000Hz (without any additional mass)

- Adaptor plate actuator piston (PZ263A /I)

- Bearing-Oil Pump Unit (LPL /I)

- Set of hose lines (SS16/20A6 /I)

- Set of hose lines (SS16/20B6 /I)

(2) HYDRAULIC POWER SUPPLY

- Hydraulic power pack

(3) DIGITAL CONTROL ELECTRONICS

- Modular Multi-Axis digital control console

(5) TEST S/W

- RS CONSOLE

- Supplied on CD-ROM

- RS PLUS 32

- Supplied on CD-ROM

- Export Packing & Handing Charges

- Inland Freight & Forwarding Charges

KALIMER

- 4 1 0 -

Page 428: Liquid Metal Reactor Design Technology Development ...

,irr4-JU-

JELJ- f+M-t 1 H-+- -f H -

. - , - - ACTUATORA l b BENCH ASS1 Y 3S-K-A.B-O1

z • I • • • • I •

^ 1

I I I I

I .

3£ MR

4.3.3-1

- 4 1 1 -

Page 429: Liquid Metal Reactor Design Technology Development ...

00

0-

0

A T S BASE BRACKET 3S-K-A.S-11

9

8O

"8

8

8

8

8

8

8

8

t8B

08

8

8

c°8

1

t

-•"•

• •

4.3.3-1 Til5.^1

- 4 1 2 -

Page 430: Liquid Metal Reactor Design Technology Development ...

Is- •1 0

It--r*:-it*.

•8-

•8-

T•8-

. o ]

•8-

•8-

8

o 0

• 8 :

. oiO

•> o

tT+

—1—|—I

-i-4-i U:.

ATS BASE PLATE I I OS-K-A.B-05

'I

• 1

ii

Q

o o f o o

4.3.3-1

- 4 1 3 -

Page 431: Liquid Metal Reactor Design Technology Development ...

'd:

" i i ;j i | ! I | i l 1 1 1 . ;

ii i i i i i "1 1 ! I I

3S ATS GUIDE PLATE

4.3.3-1

4.3.3-2

- 4 1 4 -

Page 432: Liquid Metal Reactor Design Technology Development ...

4. ^

7\. 7fliL

7fl1£^<y ^ s f l ^ S . KALIMER(Korea

Advanced Liquid MEtal Reactor)^ ^

]^Ai(Revision

evision A)!-

SCOPE

APPLICABILITY

- afl 3 ^ MAIN DEFINITIONS

- 4 4*} DESIGN REQUIREMENTS AND ANALYSIS METHODS FOR

SEISMICALLY ISOLATED SYSTEM (SIS)

- afl 5 # DESIGN REQUIREMENTS AND ANALYSIS METHODS FOR

ISOLATED STRUCTURES, SYSTEMS AND COMPONENTS

- afl 6 # DESIGN REQUIREMENTS AND EVALUATION METHODS FOR

SEISMIC ISOLATOR

- all 7 # DESIGN AND PERFORMANCE REQUIREMENTS FOR SEISMIC

ISOLATION SYSTEM

- all 8^> DESIGN REQUIRMENTS AND ANALYSIS METHODS FOR

INTERFACE SYSTEM

- all 9 # QUALIFICATION OF SEISMIC ISOLATOR, ISOLATION SYSTEM

AND ISOLATED STRUCTUES

- 4 1 5 -

Page 433: Liquid Metal Reactor Design Technology Development ...

- all 10^- ACCEPTANCE TESTING OF SEISMIC ISOLATORS

- all 1 1 ^ SEISMIC ISOLATION RELIABILITY

- 4 12# SEISMIC SAFETY AND MONITORING SYSTEM

- 4 13# REFERENCE DOCUMENTS

4.

JL 5 a ^ 1 2 ^ - ^

^1 4 ^ - ^

Isolated System)^ tfl ^ ^ ^ ^ . ^ s f Sfl^iJ-^^ if^ ^ &£-^ A

Seismic Isolation Frequency

Horizontal Displacements

4.3 Seismic Capacity

4 .4^ Upper and Lower Basemat

4 . 5 ^ Soil-Structure Interaction

4.6^! Ultimate Restraint Systems

4 .7^ Seismic Analysis

71711-

Number of Earthquakes for Design

Minimum Number of OBEs

Analysis of Secondary Components

Floor Response Spectra

Static Analysis

-416-

Page 434: Liquid Metal Reactor Design Technology Development ...

Sloshing

1 4 7 ^

6.1^. General Descriptions

6.2^1 Design Procedures of Seismic Isolator

6.3 Design Vertical Loads and Capacity

6.4^ Design Displacement and Capacity

6.5 Horizontal and Vertical Stiffnesses

6.6^1 Damping

6.7^ Stability

6 .8^ Ultimate Behavior

6.9^ Limits on Scattering of Characteristics

6.10^ Environmental Effects

6.11 Creep Effects

6.12^ Design Life

6.13^ Design Tolerances

6.14^ Material Properties

1 7 ^ - ^ ^ ^ 1 A (Seismic Isolation System)^ tfl

7 . 1 ^ General Descriptions

7.2^ Design Vertical Loads

7 . 3 ^ Design Displacements

7.4^ Seismic Isolator Arrangement

7 .5^ Self-Centering Capability

7.6^ Uplift and Rocking Effects

7 .7^ Additional Isolation Devices

1 8 %•& ^^-t i l^^l ^ l ^ l f - ^

-417-

Page 435: Liquid Metal Reactor Design Technology Development ...

- 8 . 1 ^ General Descriptions

- 8.2 Design Gaps for Safety-Related Components and Systems

- 8.3 Design Gaps for Non-Safety-Related Components and Systems

- 8.4^ Interface Piping Systems

4 9

9 . 1 ^ Qualification Methods

9.2^ Seismic Isolators

9.3 Seismic Isolation System

9.4^ Seismically Isolated System

10

10.1^. General Descriptions

10.2^ Acceptance Tests

10.3 Identification of Seismic Isolators

10.4^ Documentation

11 ^-&

11.1^ Quality Assurance Program

11.2^ Evaluation of Phenomena Affecting the Reliability of Seismic

Isolators

11.3^ Life-Time of Seismic Isolators

11.4^ In-Service Inspection

12 # £

- 4 1 8 -

Page 436: Liquid Metal Reactor Design Technology Development ...

12.1 Seismic Safety System

12.2^ Monitoring System

13 # £ -

- 4 1 9 -

Page 437: Liquid Metal Reactor Design Technology Development ...

^(diffusion) , *\.4\ %^r(dislocation glide) %

ol

7flti]E)(cavity)7F

d\}A]±- o]n] s .^ ] -^ o.s. ASME Boiler and Pressure Vessel Code, RCC-MR

^ ^^r ^ T f l ^ ] ^ ^ ^ ^ § } ^ ^ ^ l ^ A S . 3-§-S|:n. S l i ASME Code

Subsection NH[4.4.1-2]S] ^-f,

7M

7}7} -

145}

7jt4

- 4 2 0 -

Page 438: Liquid Metal Reactor Design Technology Development ...

-§- 1-71 ^ « H 7 1 ^ ^ l i

ADINA^f 7Q-£- AJ-^. -^ -^ .^ sfl^ s s n ^ ^ ^]-g- l-7> ^ S ^ ] ^ ^ 7]

[4.4.1-3].

ABAQUS<HH 4-§-€ ^r $l7fl Sf^ NONSTA 2 E

> ^ XIfe NONSTA-VP57H5f f i ^ ^

•I- ^ r ^ ^ l ^ ^ JL^ -e}^^ i ^ ^ ^ 5g7>^ ^ Jl^r N0NSTA-EPSH

7}. NONSTA-VP 2

?F «HS^ ASME Subsection

^711 £)fe^ ^Ml ^ ^ # o l

- 4 2 1 -

Page 439: Liquid Metal Reactor Design Technology Development ...

(l)

(separate type model)^f ^ ^ ^ i A j 5L^(unified viscoplastic model)S_

i s . , 304 iBii<y^^70i-4 316

ORNL(Oak Ridge National Laboratory) £l[4.4.1-5]°l

(internal state variable)!-^ ^ ^ s .

711

^ Perzyna[4.4.1-6-7], Phillips^ Wu[4.4.1-8], Robinson [4.4.1-9],

EisenbergS]- Yen[4.4.1-10], Chaboche[4.4.1-11-13] f-^j < ^ M 7fl

, Bodner^f

Partom [4.4.1-14], Hart [4.4.1-15], Miller[4.4.1-16], Liu4 Krempl[4.4.1-17],

Stouffer4 Bodner[4.4.1-18] ^^} ^ A ] 7 f l ^ ^ S ^ t ^ ^

4 9XSL*\,

[4.4.1-19-22].

- 4 2 2 -

Page 440: Liquid Metal Reactor Design Technology Development ...

. Chemocky[4.4.1-23-24]^

(monotomic loading)^ 4^(unloading) £? i^ l tfltb -f- " ^ ^ ^

5] ti]57^^-i- ^r*S^r y l $14- i E ^ Abdel-Kader ^[4.4.1-25-26]^: Inconel

718-1: Af-g-Br]- Chaboche, Bodner-Partom ^ Walker S-^^l tflsflAi ^ ^ ^

l, Inoue ^§-[4.4.1-27]^

- Krieg [4.4.1-28], Schreyer

[4.4.1-29], Yoder [4.4.1-30], Oritz [4.4.1-31-32], Nagtegaal [4.4.1-33] ^ ^

(elastic predictor plastic corrector algorithm)-|r ^-§-^1-^

S . ^ ^A3^^^4: ^ ^ § 1 - ^ - ^ ^ , Tanaka^-

Miller[4.4.1 -34-35]fe Miller^ ^ " t %&-% S l i t^^x] A ] ^ ^ ^ - ^ ^ - ^

-§-5}^ NONSS(non-linear system solver)!- 7"i\^^}: n} $|jl, Honberger ^

[4.4.1-36]£ GMR(generalized mid-point rule) A]^}^«-^2f ^-A]-^(projection

method)-!- A>-g-«H Robinson f- - ^ 4 i ^ S-^-i- ABAQUSS] UMATAS.

(2)

^ ^ 37)1 ^ ^ ^ AoV^l^^(explicit state variable)^

icit state variable)^ ^ ^^S.

- 4 2 3 -

Page 441: Liquid Metal Reactor Design Technology Development ...

£(inelastic strain rate)!: ^ - £ ^ ^r $1 1 ^ 4 -

3:4

€4.

a. ^ ^ - 1 - r s] (kinematic equation )

b. -ff-W- ^ ^ | (kinetic equation )

c. ^Eflig^r^l ^ ^ 1 ^ ^ 4 (evolution equations )

strain)

+ds l h

s. 4 ^ 4^-4 7E

V4.

4

- 4 2 4 -

Page 442: Liquid Metal Reactor Design Technology Development ...

1 ; ^ Power Law creep^

fe ^ ^ . ^ ^ M i s e s =.7|. . 0 . 5 ^ ^ n] §V4. ^ ^ ^ f-

6th=cx(T)t

e e = e - e p - s t h = E -

ABAQUS5]-

JL

71 ^ ^

Hookes Lawfe ^ ^ 4 ^

] ^ ^ 014.

70VAJ «3f (elastic stiffness matrix)^ 4 -

(3)

- 4 2 5 -

Page 443: Liquid Metal Reactor Design Technology Development ...

- -S-fe- Euler Method, Runge-Kutta Method, Gear Method, Stoer-Blush

Method ^-o) &tf[4.4.1-37]. *}*]*)• ^ ^

^(Generalized Midpoint Rule)-!: 4-§-*H

4 5 3 ^ y l^ i^ ^ ^ ^ ^ 1-71 ^^fl Newton ^ t f c ) m^ l o c a l

convergence^ ufl ti}4 TJl^V^r} sfls^l ^ ^ ^ iL^-t]-^ globally

convergent strategy^ ^ ^ - * > ^ <£31 ^[44.1-38]% A}-§-*r8^-[4.4.1-39].

OJOB] NONSTA-VP S£L<2l ^ ^ 1 ^ ^ # £ ^ r n ^ 4.4.1-H

$14. ^ .^-^ ^ ^ ^ ^A^Al -o]l ^ ^ T J l ^ ^ S 71-^- ^5 ] ^ 5 ] ^

Chaboche S . ^ ^ : ^ ^ * H 7^^ NONSTA-VP 3 S i

(4)

.4.1-39] -g- ^ ^ ] ^ ^ r =L^ 4.4.1-25}

f j ^1S 6cm

p - ^ ^ 4.4.1-34

USERINIT01,

USERFUNCOl, USERDERVOl ^ f l # i ^ ^ ^ ^ 4 - yl

Chaboche %±<% S.^-%:

- 4 2 6 -

Page 444: Liquid Metal Reactor Design Technology Development ...

g-3(22)5]1 0 0 ^ *4|5] -g-3(22)5

4.4.1-25]

100s o]:f o] -g-

200MPa ^l^-o]

^ 4 6. 0] 7H1-

$14- ^, 44.4.1-4(b)^4

-S-^ ^^ (22)1 - A A

4.4.1-5(a)4

9X

4.4.1-6(a)4 (bH>H «1

^5 ] 7^-f A;*HH OO

] oo ^ H ^ l 4 4 4 45o «oH^

n ^ 4.4.1-7(a)4 (b)fe

Mises -g-^ & i f H lS^ ^ ^

4- NONSTA-EP S H 7fl^

- 4 2 7 -

Page 445: Liquid Metal Reactor Design Technology Development ...

HL r 7 1 ^ ^ ^ ^ -

ABAQUS[4.4.1-3]5]- ^ ^

-fi-S. §>^r

NONSTA-EP

^(generalized midpoint rule)

Newton methodl: o] -g-0^^^ ^ ^ i ^ ^ * J 1 ^ - -fr

^ %^JL^*1 [4.4.1-40]oil

(1)

(External state variable) £} wc

^ ^(Internal state variable)S.

- 4 2 8 -

Page 446: Liquid Metal Reactor Design Technology Development ...

ife- 4 i ^ ^ ^ ^ ^ 1 3 7 | f M-BJ-tfl plastic multiplier^

-i- 4Ef\S4.(4.4.1-1)^)- ^ o ] Hookes Law^l

(4.4.1-2)4 (4.4.1-3

f=(-)iEf(cr,X,R,T)o|rf.

JF < 0 elastic region

= F(CT, X, /?, 7") [F > 0 plastic region

(4.4.1-1)

(4.4.1-2)

(4.4.1-3)

^sfl ^ ^ . t b plastic multiplier i

consistent conditional ^IS}^ ^ ^ ^ 4 -

JTJ. ^ o ] ^ - ^ ^Efl^ a^^-o .S .^1 Work hardening

Strain hardening^ nf5} 4^7fl

27fl o]

- 4 2 9 -

Page 447: Liquid Metal Reactor Design Technology Development ...

(2)

5 - ^ forward

gradient, backward gradient, central difference u j " ^ -§"ol %14- °1

y y= f(t,y), "At ' = ytieat (4.4.1-4)

(4.4.1-4)^ ^ £ )

yl+eA, = y1 + f(t+eAt,y,+M,)At (4.4.1-5)

^ 97]- 0^1 ig forward gradient method, 87> 1 ^ ] ^ backward

gradient method, 87} 1/2^1 ^ central difference method7J- S]^T>11, 9 1 - 0<e<i

>. 7 | . ^ ^ ^ _ <^ti} ^ ^ - ^ ^ ( G e n e r a l Midpoint Rule; o]§]. GMR)

ov

f (cre,Xe,Re,Te,X.)At (4.4.1-6)

AX = XeAt = g(oe,Xe,Re;T9,i)At (4.4.1-7)

AR = R9At = h(ce,Xe,Re,Te,A.)At (4.4.1-8)

^(4.4.1-6) ~ (4.4.1-8)^1 2 ^ ^ ; - f ^ ^ . 5 . 1 *J-§>JL g<q ^ l l - i "

(4.4.1-9)

X9=X,+0AXt=Xt+eg(oe,Xe,Re;T6,l)At (4.4.1-10)

= RI+9h(CTe,Xe,Re,T9ll)At (4.4.1-11)

= F(a9,Xe,Re) (4.4.1-12)

^"Efl ^ ^ ( o e , X 9 , R 9 , T 6 ^ ) ^ ^ ^

- 4 3 0 -

Page 448: Liquid Metal Reactor Design Technology Development ...

-idNewton method

-3M4- ^ U"4 Plastic multiplier^

(4.4.1-13)

System^ (stiffness matrix)^

(4.4.1-11) (4.4.1-12)

d(Ao) = dai+,

d<*,+, + 9XdX,, ,+-

3 R .dX At (4.4.1-14)

d(AX) = dXi+1 =

d(AR) = dRi+1 =

, 1+1 ax i+1 i+1 aR i+i '+ di JT (4.4.1-15)

dh_

do : ., +ax

dX At

,*"'••+ ax i+l

(4.4.1-16)

(4.4.1-17)

df'\ _ df' fop

(4.4.1-18)

(4.4.1-14) ~ ^} ( 4 . 4 . 1 - 1 7 ) ^ ^ dXj+I>dRi+1)dl

dai+1=Hdei+1 (4.4.1-19)

27fl

- 4 3 1 -

Page 449: Liquid Metal Reactor Design Technology Development ...

(4.4.1-14)

dy" = At ap3y~

(dy)+E'd8

7 ] ^ dy- = (dcr,+, dXi+1 dRitJ 0)T dy = (doi+1 dXi+1 dRi+1 dl ) 1

P = ( f g h F )7

*\ (4.4.1-20)

E* =

Diagonal *J-<5l 0<?]

(4.4.1-20)

(4.4.1-21)

H* = H x

(dy)= I*-At ^ E*dE = H'de

da=HQdE,

,dR=HRde,

271]

(4.4.1-22)

. o]

NONSTA-EP

4.4.1-8^

- 4 3 2 -

Page 450: Liquid Metal Reactor Design Technology Development ...

ABAQUS/STANDARD

Initial stressInitial state variable

strain incrementtemperature increment

time increment

USERINIT

USER

.—-—'

FUNC

I — •

r

MEM_MAPStore the information into

common block

INITIALInitialize state variables

CORRECTORintegrate constitutive

equation

CONSISTENTCalculate Tangent Modulus

UPDATEUpdate State Variables

USERDERV

<C^TTime Control ? J ^ >

No•

Return to ABAQUS

-Yes>KTIME

time control w.r.t localtruncation error

4.4.1-1 NONSTA-VP 3.B.&1 Jif-J

- 4 3 3 -

Page 451: Liquid Metal Reactor Design Technology Development ...

Stress a22 (MPa)

u

r-fc

s o

33

3 «•

Stress a (MPa)

_4i.

r|r

Pressure (MPa)K)

o

ofit

Page 452: Liquid Metal Reactor Design Technology Development ...

S 2 ;

FT-".21E*01

.•J1E.

. 15E-

. 7 7 E -

. '.'HE*

01

02

)2

02

02

6.9OE.

.29C-

-18E-

.50E.

.B2E-O:

4.4.1-5

:• * i *

B

(b)

Banff*1 «*_s>

ti] B]-AJ §1] ^

p

1.1 • • •- r

44.1-6

f l iSbS •//.

|ffl--: j^:

^ ^ * — -1 .81E

0 0

"

02

02

02

02

<. i

(a)

4.4.1-7

(b)

- 4 3 5 -

Page 453: Liquid Metal Reactor Design Technology Development ...

1Consistent Tangent

Modulus

i

Con.trc; Tine Incrensnt

IConsistent Tangent

Modulus

<

Return to ABAQUS

4.4.1-8 NONSTA-EP £

- 4 3 6 -

Page 454: Liquid Metal Reactor Design Technology Development ...

2.

^ 1-10 7 l ^ , ^ ^ ^ - £ f e 500-550

^ x f ^ # < y ^ £ 51*1-71- 4 150 °C

30 °C ^

^(progress ive inelastic deformation)o]

[4.4.2-1,2].

(constitutive equation)

(dimensional

instability)-^ ^>7lAl^ ^ S l ^ - H S n] [4.4.2-6], ^^-^[4.4 .2-7] ,

[4.4.2-8] ^ ^

0) 1

i 44

- 4 3 7 -

Page 455: Liquid Metal Reactor Design Technology Development ...

•§-3-1- >A^ A %W ^ H ^ H 4 4^^(progressive inelastic deformation)

4.4.2-1^

(2) 'g 4^1^ l

actuatorl-

(4)

- 4 3 8 -

Page 456: Liquid Metal Reactor Design Technology Development ...

] ?] r A] £ o]

A] 7 } ^ ^ « V y j - ^ i

^ S V S W . 4 . 2 - 4 , 5 ] .

(3) s f ^ l ^ A]

n.^ 4.4.2-1 : 1 B}^1^ ^^J- 7fl^£

H ^ 4.4.2-2 : 1 2 } - ^ ^ 2 ^ 1 ^ ^ ^ H ^ l ^ 2]-^7fl^^ i+E]-\fl ^ ^ .

7 ^ ^ ^ ( o v e r f l o w

4.4.2-3 : ^ 2 : ^ ^ ^ o ] x ] - ^ - ^ ^ 9 O

4.4.2-4 : ^ 0 ] £ ^ \ ^ ^ $ ^ M } f l ^ ^ ^

^ £ 1 ^ l ^ 12fe A j - ^ a - 5 . - g - 2 ] o ] ^ ^ . 3 . A]

i 20^ ^ ^ 7 ] ^ , 21^ ^Iscl, 22

A] ^ ^

4.4.2-5 : ^2 :A] f ^^o]] 7 ] ^ ^ t } ^ ^±r }L3:%x]3.x\ 25

s.rg 3L^$r, 27£ actuator, 2 8 ^ S

- 4 3 9 -

Page 457: Liquid Metal Reactor Design Technology Development ...

4.4.2-6 :

4.4.2-7 :

4.4.2-8 :

4.4.2-9 :

(4)

4.4.2-2

4.4.2-2S] H JL^Sjfe- ^ ^ ^ l ^ a l 2

: 42] ^ K r 0 - ^ 5

4.4.2-2^1

2: A] ^

7£| ^ ^ H $l7fl

6 4 £0] v^z]-^ ig t^Coverflow hole)!-

=L^ 4.4.2-3^

7]

o]

4 4 0 -

Page 458: Liquid Metal Reactor Design Technology Development ...

3 c m

M- $14. H ^ 4.4.2-4^1 <#

^ 5 0 0

4.4.2-4(a)i

10^- 47fl5]

24 27fl fi]

7}t\7]

4.4.2-5*11^ 2 5 ^ Aj-«.<2]

^- ^71 ^ 27^

4.4.2-5S}

^ 014.

4.4.2-2^1

S ^7]

2 8 4

^ o f l 71 741

2 9 *

-441

Page 459: Liquid Metal Reactor Design Technology Development ...

(5)

4.4kg) ol

600

^ Sj-cf.

(M-) ^ ^ ^ a l ^ bed

^ . S . 1 ~ 10 cm/min^

O]:

: 0.1 mm)

^

rolling & pitching

- 4 4 2 -

Page 460: Liquid Metal Reactor Design Technology Development ...

^(Thermocouples : T/C)4 ^ - ^ l - *}•-§-

28

600 °C?H, ^ ^ i ^ V f e 1 °C

i c m ^ V ^ ^

50cm

fe 10 mm,

4-Strain gage*

work coil §

3cm

overflow

sloti:

- 4 4 3 -

Page 461: Liquid Metal Reactor Design Technology Development ...

- 32 ^ o]Aj-d] T / c

S/Wf-

4.4.2-7^ ^ Al^^loflA-] Af-g-§>

Ovality^r ^ ^ ^ ] 0.1%

^ - f ^ ^ a l - ^ ^ A ] 0.6cm

3 c m ^^Vo]]A-j 500 °C

4.4.2-8^

A]

- 4 4 4 -

Page 462: Liquid Metal Reactor Design Technology Development ...

Temp.

V

Temp. Front

V

t CyclicMoving

V

Accumulation of circumferential plastic strain

4.4.2-1 Concept of Thermal Ratchet Phenomenon

- 4 4 5 -

Page 463: Liquid Metal Reactor Design Technology Development ...

4.4.2-2 Concept of Thermal Ratchet Test

4.4.2-3 Concept of Moving Temperature Distribution

- 4 4 6 -

Page 464: Liquid Metal Reactor Design Technology Development ...

19 •18

10-^

11—5

12

14

15

•21

16 -17

c:i

Ah

22

/n\

23

24

4.4.2-4 Elevation System of Test Specimen

4.4.2-5 Auxiliary Device for Ratchet Test under Primary and

Secondary Loads

- 4 4 7 -

Page 465: Liquid Metal Reactor Design Technology Development ...

70mm

10mm 150mm 10mm

Tab M6

© .0...

0

7mm

30mm

8mm

480mm

4.4.2-6 Configuration of Laser Displacement Sensor

- 4 4 8 -

Page 466: Liquid Metal Reactor Design Technology Development ...

0H!- PncBEEalSteppiriK WbtorDiftibal tfO *i- E A/P Doardj

' U n i t Caba

Printsr,J

oL Unit Digibi VO UuiW Analog Input

(a)

(b)

4.4.2-7 Data Acquisition and Control System

- 4 4 9 -

Page 467: Liquid Metal Reactor Design Technology Development ...

:3™2 O600

H=500mm

M I : 3mm

316SS

ovality7j- 3mm

: 300mm

4.4.2-8 Configuration of Structural Test Specimen

- 4 5 0 -

Page 468: Liquid Metal Reactor Design Technology Development ...

(a)

(b)

4.4.2-9 Thermal Ratchet Test Facility

- 4 5 1 -

Page 469: Liquid Metal Reactor Design Technology Development ...

1. ii^^l?I*fl^-§- SAC-CORE(Version 1.0)

7]-. SAC-CORE S E ^ ]

SAC-CORE 2 E 5 ] # # 2 ] SI ^ £ H f 4.3.1-14 ^ 4 - j i f

SAC-CORE 3 H ^ r

SAC-MODAL,

s}7] ^ SAC-FRS,

4 1 - n s f l s g ^-^§|-7l ^ t b SAC-PLOT,

SAC-MODAL^|

} SAC-POST £

SAC-CORE^ SAC-MODAL^ FORTRAN

J SAC-PLOT^ SAC-POSTfe- Microsoft-C

SAC-PLOT |

7]-#i -g-^ ^ - ^ 7 1 ^ , Zooming 7}^ -fo] 014. SAC-POST

71 f-

(1)

)• (4.5.1-1)

[C] ne|ji [K]fe i i^sHl

- 4 5 2 -

Page 470: Liquid Metal Reactor Design Technology Development ...

# AA

Load pads*]]

Runge-Kutta ^ ^ ^ ^ < t J l ^ # ^

^ (4.5.1-1)^ 4-g-

(4.5.1-2,3)

\ (4.5.1-4)

(4.5.1-1)4) (n x n) ^ t £ ^-§"

(2n x 2n) * 3 1 ^

(4.5.1-5)

^ , = ^ + ^ . ^ = ^ + ^ 6 . xabs=xr+xb (4.5.1-6,7,8)

Runge-Kutta 1

. SAC-CORE

^(condensation

technique)^

(4.5.1-9)

- 4 5 3 -

Page 471: Liquid Metal Reactor Design Technology Development ...

(4.5.1-10)

1 q (4.5.1-10)^ ^ (4.5.1-9)^1

I -O- cA Ji. s=. ol

-c] RC (4.5.1-11)

(4.5.1-1 Uc

(4.5.1-12)

SAC-COREofl^

, Gap S - l ^ r ^*> Gap

(2)

SAC-CORE SJE.oi

22 ^>^ ^ ^ l i tfl^-Uri, UXJ, Uyj, Urj]

1/30 A

0 C

1/6

0 E

0 - ,

0 0

0 0

)(r,0) -F(r,f

1/600

1/300

0 0

0A(rJ)

p = Density

m = Added Mass per Unit Length

ein = Prestrain

(4.5.1-13)

(4.5.1-14)

- 4 5 4 -

Page 472: Liquid Metal Reactor Design Technology Development ...

13/35 + 7/10^+1/3^+6/5(/7Z)2

9/70 + 3/10jzS+i/6jZ*2-6/5(r/L)2

(11/210 + 11/120^+1/24(0

(13/ 420 + 3 / 40^ +1 / 24JZJ2

(1 /105 +1 / 60{?i +1 / 120(Z*2 +

( l /140 + l/60(Z* + l / 1 2 0 ^ 2 +

2+(l/10-l/2^)(WL)2)L

-(l/10-l/2^)(r/Z,)2)Z,

+ 1/ 2 .

)L2

r = 11— = Radius of Gyration\J A

^ = Y1E1 I GAsL2

E =Youngs Modulus

L = Element Length

I = Moment of Inertia

G = Shear Modulus

As = A/Fs

A = Cross-Section Area

Fs = Shear Deflection Constant

AE

T0

0

\2E1

0

F0

6EI

0

12EI

6EI

El (4 + </>)

0

6EI

L2 (I + f)

EIQ-f)

L

0

0

12£7

6£7

0

12^7

6EI

0

0

6EI

(4.5.1-15)

- 4 5 5 -

Page 473: Liquid Metal Reactor Design Technology Development ...

q (4.6.1-14)4 q (4.6.1-15)1- °l-g-sH

{3 ^

q (4.5.1-17)^1^

(4.5.1-16)

(4.5.1-17)

(3) Gap

Load

SAC-CORE

ei*V Gap

(4.5.1-18)4 q

q Gap

10

0

- 1

0

0

1

0

0

- 1

0

0

0000

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

_ 10

0

1

0

0

- 1

0

0

1

0

0

00

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

Gap ^ . i *

(4.5.1-18)

(4.6.1-19)

Gap

C =K.(\-s2)Ts

(4.5.1-20)

- 4 5 6 -

Page 474: Liquid Metal Reactor Design Technology Development ...

Kx, s, nejJL Ts±= AA Gap 7<H§,

4 - ^ ^ l ^ ^ S . #(Steel)3 ^ - f ^ T f l ^ f e - 0.557}

SAC-CORE 2H<Mfe- Gap 2 . 1 ^ ^

4-

0 0 0 0 0 0

0 0 0 0 0 0

0 0 KXi 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 K «J

(4.5.1-21)

(4)

SAC-CORE 3 £ « l | ^ r

mxi

0

0

0

0

0

0

myi

0

0

0

0

00

m - i

0

0

0

00

0

0

0

0

0

0

0

myj

0

00000

m(4.5.1-22)

SAC-CORE 2 £ 1

SAC-CORE 2H-g-

, Gap AS.,

Batch

, Gap Master

- 4 5 7 -

Page 475: Liquid Metal Reactor Design Technology Development ...

(1)

[ NOTE, TNE, TNN, TNM ]

NOTE = user defined note

TNE = total number of elements

TNN = total number of nodes

TNM = total number of material

[ NOTE, MID, EX, El, A, AS, DENS, MU, Fl, F2, Dl, D2 ]

NOTE = user defined note

MID = material ID

EX = Youngs modulus (N/m2)

El = moment of inertia (m)

A = cross sectional area (m)

AS = shear area (m)

DENS = material density (kg/m3)

MU =

Fl

F2

Dl

D2

GAP 7%-

[ NOTE,

Poisson ratio

1st

2nd

1st

2nd

^ <s

natural

natural

modal

modal

TNG ]

frequency (Hz)

frequency (Hz)

damping ratio

damping ratio

NOTE = user defined note

TNG = total number of gap elements

- 4 5 8 -

Page 476: Liquid Metal Reactor Design Technology Development ...

(4) GAP i i

[ NOTE, GID, KGX, KGY, KGRI, KGRJ, GS ]

NOTE = user defined note

GID = gap ID

KGX = gap stiffness X axis (N/m)

KGY = gap stiffness Y axis (N/m)

KGRI = rotational gap stiffness at I node (N/rad)

KGRJ = rotational gap stiffness at J node (N/rad)

GS = gap size (m)

* TNG # 0 °] ^ - f ^ °J^

(5) GAP

[ NOTE, GID, DGX, DGY, DGRJ, DGRJ ]

NOTE = used defined note

GID = gap ID

DGX = gap damping X axis (TV. sec/m)

DGY = gap damping Y axis (N. sec/m)

DGRI = rotational damping at I node (N. sec/rad)

DGRJ = rotational damping at J node (N. sec/rad)

* TNG % o ?! ^-fofl^ <y^

(6) H

[ NOTE, NN, X, Y ]

- 4 5 9 -

Page 477: Liquid Metal Reactor Design Technology Development ...

NOTE = user defined note

NN = node number

X = x - local coordinate (m)

Y = y - local coordinate (m)

(7)

[ NOTE, ET, EN, NI, NJ, MN, GN ]

NOTE = user defined note

ET = element type ( ET=1 for beam, ET=2 for gap )

EN = element number

NI = I - node number

NJ = J node number

MN = material number

GN = gap number ( GN=gap ID for ET=2, GN=0 for ET#2 )

(8) ^ 7 } ^ ^ 7^ og^

[ NOTE, TNM ]

NOTE = user defined note

TNM = total number of added mass

(9) ^ 7 > ^ ^ < ^

[ NOTE, NN, AMX, AMY, AMR ]

NOTE = user defined note

NN = node number for the added mass

AMX = added mass X axis (kg)

AMY = added mass Y axis (kg)

-460-

Page 478: Liquid Metal Reactor Design Technology Development ...

AMR = rotary inertia (kg. m2)

* TNM # 0 91

(10) ^A^d^r ^

[ NOTE, TBC ]

NOTE = user defined note

TBC = total number of boundary nodes

[ NOTE, NN, XDOF, YDOF, RDOF ]

NOTE = user defined note

NN = node number

XDOF = X DOF ( XDOF=0 for fix, XDOF=1 for free )

YDOF = Y DOF ( YDOF=0 for fix, YDOF=1 for free )

RDOF = Rotation DOF ( RDOF=0 for fix, RDOF=1 for free )

(12)

[ NOTE, G, FC ]

NOTE = user defined note

G = gravity (m/s2)

FC = force control factor

- 4 6 1 -

Page 479: Liquid Metal Reactor Design Technology Development ...

(13) sfl-&

[ NOTE, TI, NTS, STS ]

NOTE = user defined note

TI = time interval {second)

NTS = number of time step

STS = sub-time step

TI/STS

(14) 7}^£-g -^ 3 ^ ^ 7 I ^ °d^

[ NOTE, NARF ]

NOTE = user defined note

NARF = number of acceleration response files

(15) 7H f5L-g-# QQ*M ° J ^

[ NOTE, ARFN, MNN1,MNN2,MNN3,MNN4 ]

NOTE = user defined note

ARFN = acceleration response file name

MNN1 ~ MNN4 = master node number ( MNN#=0 for no-print )

* NARF + 0 9\ ^^-^l1?} °g^

(16) ^ ^ ^ g - ^ - Sj-^

[ NOTE, NDRF ]

- 4 6 2 -

Page 480: Liquid Metal Reactor Design Technology Development ...

NOTE = user defined note

NDRF = number of displacement response files

(17) ^ ^ - g - ^ 3 ^ ^ o ^

[ NOTE, DRFN, MNN1,MNN2,MNN3,MNN4 ]

NOTE = user defined note

DRPN = displacement response file name

MNN1 ~ MNN4 = master node number ( MNN#=0 for no-print )

* NDRF # 0 <

(is) ^ n ^ ^

[ NOTE, IRFN ]

NOTE = user defined note

IRFN = impact response file name

(19) GAP A i 2 ] MASTER NODE

[ NOTE, GID, MM, MNJ, GL, IRP ]

NOTE = user defined note

GID = gap ID

MNI = master node I

MNJ - master node J

GL = gap location ( GL=0 for inner gap, GL=1 for left end gap, GL=2

for right end gap)

IRP = impact load print option ( IRP=0 for no-print, IRP=1 for print )

- 4 6 3 -

Page 481: Liquid Metal Reactor Design Technology Development ...

GL Option :

&fe Gap io] G a p _Q

GL=2<?1 ^-ffe i f a ^ ^ o ] 7>^l^<y Gap

* Master node r $*$$. #*H ^ °1H M ^z|- ^^s-ofl ufl

SAC-CORE(Version 1.0) 2 £ r t ^ ^ l ^ l ^^l%fl^-g-

SAC-MODAL, SAC-FRS, SAC-POST n e ] j l SAC-PLOT

SAC-CORE(Version 1.0) 2 £ ^ 1 Upgradel- ^

^]*> SAC-PRE 7fl - 25)

2. J 1 ^ ^ 2 : ^Tf l^-g- NONSTA 3

KALIMER ^^T-S^r 530°C^ Jl

NONSTA-VP ±£.Ii$^r 71]^[4.6.2-1]^}^

- 4 6 4 -

Page 482: Liquid Metal Reactor Design Technology Development ...

•t ^ ^ NONSTA-EP S.S.n.^4: 7^^%4[4.6.2-2].

N0NSTA-VP5} NONSTA-EP^l

7>. NONSTA-VP 2 £

NONSTA-VP

(1) NONSTA-VP ^

NONSTA-VP^- ABAQUS-t

ABAQUS[4.6.2-5]

(7}-)

NONSTA-VP ^ ^ Z i e f l ^ J l f - i l - 3L5] 4.5.2-H

USERINIT, USERFUNC, USERDERV

Chaboche model ^ ^ - f <g £ ^JL7> O3o]5-S <=»! xifl q

- 4 6 5 -

Page 483: Liquid Metal Reactor Design Technology Development ...

USERINIT03, USERFUNC03, USERDERV03

t*{7]x\ Chaboche viscoplastic modeler

4- Chaboche viscoplastic models §-^[4.6.2-6]^

^ 304 316 ^ l ^ l

© USERINIT

71

Subroutine*

*

userfuncO3(srate,tvrate, svrate,

stress,tv,sv,

stran,dstran,dtime,temp,dtemp,

ntens,ntv,nsv,nprop)

implicit real*8(a-h,o-z)

dimension

dimension

dimension

dimension

props(nprop)sratefntens),tvrate(ntens,ntv),

Stress(ntens) , stran (ntens) , dstran

tv(ntens, ntv),sv(nsv)

props,

svrate(ntv)

(ntens)

Cflfl-

stress : -§-^ ^ ^ r s 4 ^ 4 ^ tiT] H

tv : &H4 AJ-Efl^^(Tensorial state variable)-^ 4 ^ 4 ^ HH 1

sv : ^2}-4" ^Bfl ^1 -(Scalar state variable)!? 4 4 ^ H^

n L e n s . v | ^ I i*. i —j -^3-/1 ~^\"i _ (2> —i o T _ —"i f

ndi : ^ 4 -g-^4 T1 (-§-^4 ^-f 11 , 22 , 334 ^ # 44)

nshr : ^ 4 -g-^4 (-§-^^ ^-f 12 , 23 , 134 A^% 44 )

ntv : ^14 4-T- ^n^^l ^

nsv : ili-51- ifl - ^ ^ 4 41

- 4 6 6 -

Page 484: Liquid Metal Reactor Design Technology Development ...

itvar : $\X] #EJ] ^ O | £ $ ^(dimension)t- ^#3)-fe ufli

(0: stress dimension, 1: strain dimension, 2: other dimension)

param : *fl£

nparam : ^

ntens, ndi, nshrfe

^ i ^-S. 4-§-s)fe i t A i i tfl§}^ °1 € * r i : ^ ^ ^ [4.6.2-6]

3. 4.5.2-

ntv, nsv, itvar, tv, sv, stress, nparam, param °1

Chaboche

Chaboche models] ^ - f ^ 7fl5] ^ ^ ^^ (n tv : l ) 4 f 7 ^ i

1 ^ ^ 107fl

(nparma:10) ^S. ^^^ param^1 tf^^&ty-. Chaboche model ^ ^:

USERINIT^ S. 4.6.2-24 7^x\.

(E) USERFUNC

USERFUNC^ ^ ] ^ - ^ ^ tfla- ^ ^ 5 ]

- 4 6 7 -

Page 485: Liquid Metal Reactor Design Technology Development ...

Subroutine**

*

implicit

dimension

dimension

dimension

dimension

userfuncO3(srate,tvrate, svrate,

stress,tv,sv,

stran,dstran,dtime,temp,dtemp,props,

ntens,ntv,nsv,nprop)

real*8(a-h,o-z)

props(nprop)

srate(ntens),tvrate(ntens, ntv) , svrate(ntv)

Stress(ntens ) , stran (ntens) , dstran (ntens)

tv(ntens, ntv) , sv (nsv)

srate : M 3 g ^

tvrate

svrate

stress

tv : ^

sv : *

stran :

dstran

dtime

temp :

dtemp

props

ntens :

ntv :

nsv : ^

nprop : 4S.

- 4 6 8 -

Page 486: Liquid Metal Reactor Design Technology Development ...

g ^ ^ srate, tvrate, svrate o)\^

^ 3.7\7\ ntens*ntv <(\ 2?\Q a f l ^ ^ j i tvrate(

fe 3.7171- nsv^l tifliolji sv( i WM ife ^

tvrate^ svratei

Chaboche

3 s - an = —

(4.5.2-5)^

*P=P" (4.5.2-1)

J(s-a)-K-c

K / (4.5.2-2)

2J(s-a) (4.5.2-3)

- a ) ^ s - a ^ Mises-^Sl ^ - ^

-a) = A||(SU -SK8u -°u) (4.5.2-4)

J(s-o)j (4.5.2-5)

(4.5.2-6) ofl ^

£ A1 (4.5.2-7) 0]] ^

K = b(Q-K)p (4.5.2-7)

316 i ^ l ^ I ^ i

^ q (4.5.2-7)44 3.7]$.

EflS. 3. 4.5.2-3 1 ^ el 4 ^ 4 . Chaboche modeler ^ ^ ^ USERFUNC

4.5.2-44 ^ 4 .

- 4 6 9 -

Page 487: Liquid Metal Reactor Design Technology Development ...

USERDERV

USERDERV^ Newton method £] ^j-Stil^V * S l ^ r ^^"^V^l -^ § H -g-

Subroutine***

implicit

dimension

dimension

dimension

dimension

userfuncO3(srate,tvrate,svrate

stress,tv,sv,

stran,dstran,dtime,temp,dtemp

ntens,ntv,nsv,nprop)

real*8 (a-h,o-z)

props(nprop)srate(ntens),tvrate(ntens,ntv),

Stress(ntens) , stran (ntens) , dstran

tv(ntens, ntv) , sv(nsv)

props,

svrate(ntv)

(ntens)

^ ^ # X, r i^e} ^ ^ 1 - R,

DstrDst : % , , -g-^ ^ S . # -§-^Ai^ nl^*V

DstrDtv : %x, ^ ^ ^

DstrDsv : % R , -g-^

DstrDe : % , -g-^

DstrDtp : %r , -g-^

DtvrDst : 5^ao, € ^

DtvrDtv : % , € ^

DtvrDsv : % , ^^^-Efl^^ ^ E f

DtvrDe : a % , , W

- 4 7 0 -

Page 488: Liquid Metal Reactor Design Technology Development ...

Dtvrdtp :

DsvrDst :

DsvrDtv :

DsvrDsv: 5 % R ,

DsvrDe :

DsvrDtp :

3.717}

7] 7} ntens*ntv*ntens

Chaboche

< 11- s.^[ DtvrDst^ ^ - f tvfe

st^ 37l7> ntens*] Hfl^oj^S DtvrDstfe 3.

( 00] 5}

JCs-CO-K-CTj

K

5K

m/J(s-a)-K-gy

K

dnk 1 (3

2) -g-

dai

(4.5.2-8)

(4.5.2-9)

(4.5.2-10)

(4.5.2-11)

(4.5.2-12)

- 4 7 1 -

Page 489: Liquid Metal Reactor Design Technology Development ...

dai v Jdaj (4.5.2-14)

da, , .p dp-^- = (-)tiknk— (4.5.2-15)

&7=ATE ' J (4.5.2-16)

da, 1^T = (-)^EiJ«; (4.5.2-17)

4] (4.5.2-17)5] j

3)

; + 3 % p (4.5.2-18)

(4.5.2-19)

ddl _(2 ~)dp_ = _Cn i-Ya1j— (4.5.2-20)

9KK ) a ^ (4.5.2-21)

= b ( Q K ) ^ (4.5.2-22)

dk ,' dr>

_ = _ b p + b ( Q _ K ) _ (4.5.2-23)

Chaboche 3.^-k °im-et USERDERV^r 3. 4.5.2-5^

NONSTA-VP!-

i ^1 ^ ^ * > Chaboche

- 4 7 2 -

Page 490: Liquid Metal Reactor Design Technology Development ...

*material,name=316ss

*depvar

10,

*user material, constants=4

3, 0.5, 0.001, 0*user subroutines, input=nonsta_vp.f

*material,name=316ss

°1 17]] o] j i ^ ^ - ^ ^-g-o] l fl <y ^ ^ - ^ depvarl- 10 ^

^ H > ^ 1 o . ^ EiUi ^ « - 4 ^ ^ e f ^ ^ ^ 7 f l ^ ^ . 7^7\ n t v ,

depvar^- 6 x ntv + nsv g.t\-

*user material,constants=4

3, 0.5, 0.0Q1, 0

Chaboche model^

midpoint coefficient: ) # ^) nl

^ (fully implicit integration)°] 5] 31, 0°l

explicit integration) 61 14-

: Newton ^ ^ ' r ^ «t7ll(RTOL)# 51

?~x < RTOL

trucation error7]-

- 4 7 3 -

Page 491: Liquid Metal Reactor Design Technology Development ...

''user subroutines, input=nonsta vp.f

NONSTA-VP 3.B.

UTILITY SUBROUTINES

- Sinv : -§-^ ^-§-^1 first invariant^ second invariant 1r

- KMULVV : « ] E ^ tfj E ^ ifl

- KMULVT : «

- KMULTV : i

- KMULTT : 3

- KDIADIC : ^B\( xl )Sf ^t]( yj ) # o l ^ ] . ^ ( XI yj

- ESTIFF : ^ # 4

- KTIME : ^]^}^^:4r

^. NONSTA-EP S ^

N0NSTA-EP4 ABAQUS1-

ABAQUS[4.6.2-5]

(1)

i£^<4 Plastic multiplier^ ^ S . 4 4 ^ 1 ^ 4-§-

- 4 7 4 -

Page 492: Liquid Metal Reactor Design Technology Development ...

USERINIT, USERFUNC

Chaboche[4.6.2-7]

-s}4. Nonlinear kinematic hardening f h ± ^ n ^ ^ - c

[4.6.2-3]i ^ s . ^ ^Bfl* Aj-§-§}$34. °1 S . 1 ^ 304 * 316 ^

(7]-) USERINIT

(4) USERFUNC

F = j(s-X)-R-p3 (4.5.2-24)

J(s-x)-^-(slj-xli)(siJ-xu) (4.5.2-25)

2J(s-a)J (4.5.2-26)

(4.5.2-27)oll <5^H ^ ^ ^ 4 -

<J = E(8-8p) (4.5.2-27)

] ^ ^ (4.5.2-28)4 ^ (4.5.2-29)4

- 4 7 5 -

(4.5.2-28)

Page 493: Liquid Metal Reactor Design Technology Development ...

(4.5.2-29)

(2) NONSTA-EPf- ABAQUS4

4 &TT

4.6.2-241

Chaboche

^material,name=316ss

*depvar

10,

* u s e r m a t e r i a l , c o n s t a n t s = 7

1 4 4 . d 9 , 3 . d - l , 7 0 . d 6 , 1 .3d3 , 6 7 . 5 d 6 , 12, 3 0 . d 6

* u s e r s u b r o u t i n e s , i n p u t = n o n s t a e p . f

ntv,

^^1 I7flolji i

depvarfe- 6*ntv+nsv

4^87fl

^ depvarl- 10

- 4 7 6 -

Page 494: Liquid Metal Reactor Design Technology Development ...

: nonsta_ep^ < ^

Q

NONSTA-EP i

^ i - f - common blocks]

^ ^ ) o j r i g i d rotation^ 5L

Plastic multiplier!-

Plastic multiplier^

-Mem_map

-Rigid :

-Predictor :

-Corrector:

-Continuum

-Consistent

-Update : ^

-Reform :

-Rtsafe : Newton method#

-Newt : Newton method^

-Fdjac: ^ H l S *] -*S l(Jacobian matrix)^:

-Lnsrch : - ^ ^ ^ ^ ( L i n e search technique)^- ^r

-Lubksb : * S 1 ^ ^ ^ ^ ( B a c k substitution)^:

-Ludcmp : LU decomposition^:

-Estiff : ^ ^ 7 j - ^ * S t 4 ^

-Sinv : -§-^ A^^:^l First invariant^ Second invariant^

-Ktime : Time step^-

^r-=r

4.6.2-63]- i 4.6.2-7oll

- 4 7 7 -

Page 495: Liquid Metal Reactor Design Technology Development ...

USERINIT3}- USERFUNC ^ H

4.5.2-8^1

S. 4.5.2-1 ntens, ndi, nshr

Element type

Beam element

Plane stress element

Plane strain element

Axisymmetric element

3-D element

ntens

1

2

3

3

3

ndi

1

1

1

1

3

nshr

0

3

4

4

6

4.5.2-2 Chaboche model USERINIT

1

c

Subroutine userinitO3(stress,tv,sv,ntens,ndi,nshr,ntv,nsv,itvar,

* param,nparam)

implicit real*8 (a-h,o-z)

parameter (np = 50,nv=10)

dimension stress(ntens),tv(ntens,ntv),sv(nsv)

dimension param(np)

dimension itvar(nv)

number of tensorial components

ntv = 1

number of scalar components

nsv = 1

type of tensorial components

do 1 i=l,l

itvar(i) = 1

Initial value of state variables

do 10 i=l,ntens

- 4 7 8 -

Page 496: Liquid Metal Reactor Design Technology Development ...

stress(i) = O.dO

10 continue

do 20 j=l,ntv

do 20 i=l,ntens

tv(ij) = O.dO

20 continue

do 30 i=l,nsv

sv(i) = O.dO

30 continue

c number of parameters

nparam = 1 0

c Value of parameter value

param(l)= 196000

param(2)= 0.3

param(3)= l.d-5

param(4)= 151

param(5)= 24

param(6)= 82

param(7)= 162400

param(8)= 2800

param(9)= 60

param(10)= 8

return

end

S. 4.5.2-3 Chaboche 3.^2$

7}5L

E

K

n

196GPa

0.3

151 MPa

24

WlJL

Youngs modulus

Poissons ratio

CTE

y

c

b

Q

82

162400

2800

8

60

Hi JL

-479-

Page 497: Liquid Metal Reactor Design Technology Development ...

S. 4.5.2-4 Chaboche model^ °J ^ *t USERFUNC

subroutine userfuncO3(srate,tvrate,svrate,

* stress,tv,sv,stran,dstran,dtime,temp,dtemp,props,

* ntens,ntv,nsv,nprop)

c tv : tensorial variable tvrate : rate of tv

c sv : scalar variable svrate : rate of sv

implicit real*8(a-h,o-z)

dimension props(nprop), tv(ntens,ntv),sv(nsv)

dimension srate(ntens),tvrate(ntens,ntv),svrate(ntv)

dimension stress(ntens),stran(ntens),dstran(ntens)

dimension eerate(ntens),devstr(ntens),devmat(ntens,ntens)

dimension dummy(ntens),dmat(ntens,ntens),direct(ntens)

c material parameter

young = props(l)

enu = props(2)

gamma = props(3)

eK = props(4)

en = props(5)

yield = props(6)

C = props(7)

ro = props(8)

Q = props(9)

b = props(lO)

shydro = (stress(l)+stress(2)+stress(3))/3.dO

xhydro = (tv(l,l) + tv(2,l) + tv(3,l))/3.dO

do 10 i=l,3

10 devstr(i) - ( stress(i) - shydro ) - ( tv(i,l)-xhydro )

do 11 j=4,ntens

11 devstr(j) = stress(j) - tv(j,l)

call kmulvv(devstr,devstr,smises,ntens)

smises = dsqrt(1.5dO*smises)

perate = ( dmaxl(smises-sv(l)-yield,O.dO)/eK )**en

if (smises.ne.O.dO) then

do 12 i = l,ntens

12 direct(i) = 1.5d0*devstr(i)/smises

-480-

Page 498: Liquid Metal Reactor Design Technology Development ...

else

do 13 i = l,ntens

13 direct(i) - O.dO

endif

c define stress rate

do 30 k=l,ntens

30 eerate(k) = dstran(k)/dtime-perate*direct(k)

do 31 k=l,3

31 eerate(k) = eerate(k) - gamma* dtemp/dtime

call estiff(dmat,young,enu,ntens,3)

call kmultv(dmat,eerate,srate,ntens,ntens)

c define the rate of tensorial components

do 40 i=l,ntens

40 tvrate(U) = ( 2.dO/3.dO*C*direct(i) - ro*tv(i,l) )*perate

c define the rate of scalar components

svrate(l) = b*( Q sv(l) )*perate

return

end

S. 4.5.2-5 Chaboche models <Q ^ t t USERDERV

subroutine userdervO3(DstrDst,DstrDtv,DstrDsv,DstrDe,DstrDtp,

* DtvrDst,DtvrDtv,DtvrDsv,DtvrDe,Dtvrdtp,

* DsvrDst,DsvrDtv,DsvrDsv,DsvrDe,Dsvrdtp,

* stress,tv,sv,

* stran,dstran,dtime,temp,dtemp,props,

* ntens,ntv,nsv,nprop)

implicit real*8(a-h,o-z)

dimension DstrDst(ntens,ntens),DstrDtv(ntens,ntens,ntv),

* DstrDsv(ntens,nsv),DstrDe(ntens,ntens),DstrDtp(ntens),

* DtvrDst(ntens,ntv,ntens),DtvrDtv(ntens,ntv,ntens,ntv),

* DtvrDsv(ntens,ntv,nsv),DtvrDe(ntens,ntv,ntens),

* Dtvrdtp(ntens,ntv),

- 4 8 1 -

Page 499: Liquid Metal Reactor Design Technology Development ...

* DsvrDst(nsv,ntens),DsvrDtv(nsv,ntens,ntv),

* DsvrDsv(nsv,nsv),DsvrDe(nsv,ntens),DsvrDtp(nsv)

dimension stran(ntens),dstran(ntens),props(nprop)

dimension stress(ntens),tv(ntens,ntv),sv(nsv)

dimension thrate(ntens)

dimension dummy(ntens),dmat(ntens,ntens)

dimension amat(ntens,ntens),devstr(ntens)

dimension bmat(ntens,ntens),cmat(ntens,ntens)

dimension direct(ntens),xvec(ntens),gamma(ntens,ntens)

young = props(l)

enu = props(2)

alpa = props(3)

eK = props(4)

en = props(5)

yield = props(6)

C = props(7)

ro = props(8)

Q = props(9)

b = props(lO)

shydro = (stress(l)+stress(2)+stress(3))/3.dO

xhydro = (tv(l,l) + tv(2,l) + tv(3,l))/3.dO

do 10 i=l,3

10 devstr(i) = ( stress(i) - shydro ) - ( tv(i,l) - xhydro )

do 11 j=4,ntens

11 devstr(j) = stress(j) - tv(j,l)

call kmulvv(devstr,devstr,smises,ntens)

smises = dsqrt(1.5dO*smises)

perate = ( dmaxl(smises-sv(l)-yield,O.dO)/eK )**en

call zero 1 d(direct,ntens)

if (smises.ne.O.dO) then

do 12 i = l,ntens

12 direct(i) = 1.5dO*devstr(i)/smises

endif

beta = (en/eK)*( dmaxl(smises-sv(l)-yield,O.dO)/eK )**(en-l.dO)

call ddsdds(amat,ntens)

call kdi adi c(direct, direct,bmat,ntens)

- 4 8 2 -

Page 500: Liquid Metal Reactor Design Technology Development ...

call zero2d(gamma,ntens,ntens)

if(smises.ne.O.dO) then

do 13 i = l,ntens

do 13 j = l,ntens

13 gamma(ij) = ( 1.5dO*amat(i,j) - bmat(ij) )/smises

endif

c

c define jacobians of stress rate

c

do 20 i=l,ntens

do 20 j=l,ntens

cmat(i,j) = -l.dO*( perate*gamma(i,j) + beta*bmat(i,j) )

20 continue

call estiff(dmat,young,enu,ntens,3)

call kmultt(dmat,cmat,dstrdst,ntens,ntens,ntens)

do 2.1 i=l,ntens

do 21 j=l,ntens

21 dstrdtv(i,j,l) = -l.dO*dstrdst(i,j)

call kmultv(dmat,direct,dstrdsv,ntens,ntens)

do 22 i=l,ntens

22 dstrdsv(i,l) = beta*dstrdsv(i,l)

c

c define jacobians of tensorial component rate

c

do 30 i=l,ntens

30 xvec(i) = 2.dO/3.dO*C*direct(i) - ro*tv(i,l)

call kdiadic(xvec,direct,amat,ntens)

do 31 i=l,ntens

do 31 j=l,ntens

31 dtvrdst(Uj) = beta*amat(ij)+2.dO/3.dO!|tC*perate*gamma(i,j)

do 32 i=l,ntens

do 32 j=l,ntens

32 dtvrdtv(i,lj,l) = -l.dO*dtvrdst(i,l,j)

do 33 i=l,ntens

33 dtvrdtv(i,l,i,l) = dtvrdtv(i,l,i,l)-ro*perate

do 34 i=l,ntens

- 4 8 3 -

Page 501: Liquid Metal Reactor Design Technology Development ...

34

c

c

c

40

41

100

110

120

140

dtvrdsv(i,l,l)= -l.dO*xvec(i)*beta

define the jacobian of the scalar component rate

do 40 j=l,ntens

dsvrdst(lj) = b*(Q-sv(l))*beta*direct(j)

do 41 j=l,ntens

dsvrdtv(lj,l) = -l.dO*dsvrdst(l,j)

dsvrdsv(l,l) - b*perate + b*( Q - sv(l) )*beta

dsvrdsv(l,l) = (-l.d0)*dsvrdsv(l,l)

do 100 i = l,ntens

do 100 j = l,ntens

DstrDe(ij) = dmat(ij)/dtime

continue

do 110 i=l,ntens

thrate(i) = O.dO

do 120 i=l,3

thrate(i) = -l.d0*alpa

call kmultv(dmat,thrate,dummy,ntens,ntens)

do 140 i=l,ntens

dstrdtp(i) = dummy(i)/dtime

return

end

4.5.2-6 1*H1 tfl-g-

IA(1)

IA(2)

IA(3)

IA(4)

IA(5)

IA(6)

IA(7)

<r*l A^ ^ (NDI)

# # ^ £ *r (NSHR)t H ^ I 3.7} (NTENS)

^\^- ^ ^ r <r (NSTATV)

4S. -#<*r "T- (NPROP)

.S-dt 41 (NEL)^ ^ ^ ^ S (NPT)

^ ^

IA(8)

IA(9)

IA(10)

IA(ll)IA(12)IA(13)IA(14

Layer «iJi (LAYER)^ E J J ^ « i ^ (KSPT)

i ^ j =r (KSTEP)

^ ^ r ^ (KINC)

€^l A ^ ^r (NTV)i ^ 5 } ^ ^ 41 (NSV)

^ ^ ^[^r *r (NY)

- 4 8 4 -

Page 502: Liquid Metal Reactor Design Technology Development ...

S. 4.5.2-7 A Pfla.e| Map

N(l)

N(2)

N(3)

N(4)

N(5)

N(6)

N(7)

N(8)

E ^ iflJ=L ^ ^

N(9)

N(10)

N(l l )N(12)

N(21)

N(22)

N(23)

N(24)

^ £ ^^>

EjUi tfl^- ^ ^

Plastic multiplier

i t 4.5.2-8 Nonlinear kinematic hardening models]

subroutine userinit(ntv,nsv,theta)

implicit real*8 (a-h,o-z)*********************************************************

userinit interface card

ntv : number of tensorial variable

nsv : number of scalar variable

theta : midpoint coefficientI t * * * * * :

ntv = 1

nsv = 1

theta = l.dO

return

end

subroutine userfunc(srate,tvrate,svrate,yield,

* stress,tv,sv,eqperate,

- 4 8 5 -

Page 503: Liquid Metal Reactor Design Technology Development ...

* stran,dstran,dtime,props,

* ntens,ntv,nsv,nprop)

implicit real*8(a-h,o-z)

dimension props(nprop)

dimension srate(ntens),tvrate(ntens,ntv),svrate(ntv)

dimension stress(ntens),stran(ntens),dstran(ntens)

dimension tv(ntens,ntv),sv(nsv)

c

c userfunc interface card

c

c tv : tensorial variable tvrate : rate of tv

c sv : scalar variable svrate : rate of svf~\ T^ ^r ^^ "J *p * f *J* *^ *p *p *f» *j* »J» *|> ^^ *p |* *|* »^ "^ ' j * ^p *p 3|C JJs Jp ?|t *J» J s *^Z Jp *p 3|t 3JQ 'fi ?JN J t JJ» ?p *J* J(* * C JJC J|t Jp J]t Jp j p ?js Jjt JJ ?p J[t JJS J^% *^ T ^

dimension eerate(ntens),perate(ntens),dmat(ntens,ntens)

dimension dummy(ntens)

c < define plastic strain rate (flow rule)>

young = props(l)

enu = props(2)

do 10 i=l,ntens

10 dummy(i) = stress(i)-tv(i, 1)

call sinv(sinvl,seff,dummy,ntens)

yield = seff - sv(l) - props(3)

do 15 i=l,3

15 stress(i) = stress(i) -tv(i,l) - sinvl

eqperate = dabs(eqperate)

if (seff.eq.O.dO) then

do 16 i=l,ntens

16 perate(i) = O.dO

else

do 20 i=l,ntens

perate(i) = 1.5 *(stress(i)-rv(i,l))/seff eqperate

20 continue

end if

- 4 8 6 -

Page 504: Liquid Metal Reactor Design Technology Development ...

c < define stress rate>

call estiff(dmat,young,enu,ntens,3)

do 30 k=l,ntens

30 eerate(k) = dstran(k)/dtime - perate(k)

call kmultv(dmat,eerate,srate,ntens,ntens)

c < define back stress rate>

do 40 k=l,ntens

tvrate(k,l)= 2.dO/3.dO*props(4)*props(5)*perate(k)

* - props(4)*tv(k,l)*eqperate

40 continue

c < define drag stress rate>

svrate(l) = props(6)*(props(7)-sv(l))*eqperate

return

end

- 4 8 7 -

Page 505: Liquid Metal Reactor Design Technology Development ...

ABAQUS/STANDARD

Initial stressInitial state variable

strain incrementtemperature increment

time increment

USERINIT

MEMJ/1APStore the information into

common block

INITIALInitialize state variables

USERFUNC

CORRECTORintegrate constitutive

equation USER

iCONSISTENT

Calculate Tangent Modulus

,-—-—

DERV

UPDATEUpdate State Variables

I,<^~Time Control ? J ^ >

NoT

Return to ABAQUS

- Y e s *KTIME

time control w.r.t localtruncation error

4.5.2-1 NONSTA-VP

- 4 8 8 -

Page 506: Liquid Metal Reactor Design Technology Development ...

Elastic-PlasticTransition

State Variable Update[Inplicit Method)

Return to ftBAQUS

State Variable update[Explicit Method!

ICons'stent Tangent

Modulus

1

Control Time Increment

Co^sister.t TangentModulus

4

4.5.2-2 NONSTA-EP 3.^$) «:

- 4 8 9 -

Page 507: Liquid Metal Reactor Design Technology Development ...

^o |o_^ 7fl

%-%-Q IDEAS » -§- ^ T f l S ^

A ^ ^ ^ 3^}^ °g T S.%^ 4 ^ * H , ANSYS/ABAQUS

M- ^«fl ^i^i ANSYS ^-g- - ^ - ] ^

€ g ^ A S - ^ - B l 4.^^ ^ a ^ ^ ^ l cH3"l- ASME

^ ^v-g-^^£(Membrane Stress Intensity), ^ - g -

(Bending Stress Intensity), ^ ^ - g - ^ J - ^ P e a k Stress Intensity), ZLS^JL

Stress Intensity)!- 7fl-t>*>jl o ^ ol-g-§}^ ASME ^Til

ANSYS s F - J 5 I £ t 4 - g - ^ ^ ^^-§1 ^ * | ^ ^ oj o_q. A S M E

ABAQUS

ANSYS^f ABAQUS

«fl^^l^ll 7 U 1 M 4 ^ KALIMER ^7.1-S^

S. %-g-€ $14.

#*fl, ^]^1 §]]^5i^ ^^-^1^1 7fl^-i- ^sfl i c ^ l ^ S l H i S H SAC-

CORE 3iEL# 7H%v*r^-5-^ KALIMER

1 ^:€ SAC-CORE 3HS| ^ ^ ^ ^ ^^^j-71 ^ §H i % ^ RAPSODIE

S ^ i i ^ i ifl?} 4 ^ 1 ^ - 1 - ^r*S* 1 4 7fl^sl SAC-CORETT ^ ^ ^ 4

4 p)l - -n-4^ ^ 4 1 : - £ ^ 5 2 4 . ^ ^ SAC-CORE 3 E | ^^1 i

- 4 9 0 -

Page 508: Liquid Metal Reactor Design Technology Development ...

, KALIMER ^ ^ l - S ^ S l - ^ tfltb

^(Revision A ) ^

(Revision A)^ # 13^^-S. ^^£]<H $ 1 ^ ^ 4 -ofl

^(Revision A)!-^ ^ ] ^ 7 H ^ ^ ^ 1 4 ^ 1 - S^H^

l l^SH<a ABAQUS5]-

NONSTA-VP S H I - 7fl

^ NONSTA-EP

£ A | - 1 -

60cm?] A l ^ ^ s . , A j ^ ^ s . ^

^l«fl^-g- SAC-CORE^-

NONSTA-VP ^ NONSTA-EP 2 H i tfl^ A>-§-T.}X] A-]#

4]x]xl5fl^-§- SAC-CORE(Version 1.0) 2 H ^ SAC-MODAL, SAC-FRS,

SAC-POST ZL^H SAC-PLOT ^ 1 5 SEfif -Tfl A > ^ - ^ 014. g.

- 4 9 1 -

Page 509: Liquid Metal Reactor Design Technology Development ...

-Z6P-

^ ^ ^ £ %^V -k-U i x ^ i &-&& -bif ft Ha

oTET

to[o lira^-la 4oa^&;^ ^Po-f£ feTo t ^ s n b v e v ir-la 4ob{^fero UP

da-VlSMON ^ Efer :^^ dA-VlSMOM

H^Id-DVS

Hff (O'l uoisi3A)g^cO-DVS

Page 510: Liquid Metal Reactor Design Technology Development ...

7-7m

7\. QA^A^^Qn • %3.tf*] 100%

H, IHTS

] ^ ^ ] ioo%

uis

KALIMER € 4 S . : ? 2 : # ^ y ] ^ a ^ 7 } : ^-SnflH| 100%

1 €45.-8-71,

- €45.-8-71 ^-Tfljg7}

100%

- 4 9 3 -

Page 511: Liquid Metal Reactor Design Technology Development ...

- KALIMER

100%

3.JL*\

2. 1998\!H

7}. 71^1^1^- 7fl^^^l : ^ - i -5 tflal 100%

^ <^1«1 7 1 ] ^ 13 3151712:^ H.

M-. 713131 f- i « l ^23J7]- : ^-s S tfla] 100%

iflJf^2:# ^ IHTS «M

- IHTS afl

- 4 9 4 -

7131311- 7fl^^7^l£ ^ ^ 2 ^ 3 1 ^ H 111 - ^ : s-S. 100%

Page 512: Liquid Metal Reactor Design Technology Development ...

- IDEAS

, IHTS Hfl^

100%

100%

l^l §T]^3H(SAC-CORE) 7 ^

- ABAQUS4 ANSYS1-

H (SAC-CORE)

l ] ^ s ^ (NONSTA)

100%

4. 100%

-495-

Page 513: Liquid Metal Reactor Design Technology Development ...

100%

3. 1999^5.

l l ^ f fl^^ll^ ^ ^ cflul 100%

(1) ^

12^ ^ ^ ^

^ °fltil7flHi

^31

til 7fl ^ ^ 3 1

i t i l 7fl^-

(2)

(3)

(1827fl

- 4 9 6 -

Page 514: Liquid Metal Reactor Design Technology Development ...

(4) 7l7fl?J)-f- i Hi

- IHTS

. 71^1^1-f- ^ ^ ^ 1 ^ 1 71]MJ: : ^ s ^ a cfltil 100%

(530°C/386°C

(2) ^Jsfl^2£

^ i c^^ l^ l S|]^SH(SAC-CORE)

(3)

- 4 9 7 -

Page 515: Liquid Metal Reactor Design Technology Development ...

(4)

- ^Si iTf lSH. ^ ^ f l t (IDEAS 6.0 Version)

(5)

: SAC-CORE, J Z £ ^ 2 : s f l ^SH: K-NONSTA)

- 4 9 8 -

Page 516: Liquid Metal Reactor Design Technology Development ...

I&C,

fe 7fl > i 741

H : I-DEAS1-

: 71741741^-

: 71741741

^ 741

7 1 7 4 1 7 4 1 ^

- 4 9 9 -

Page 517: Liquid Metal Reactor Design Technology Development ...

n\ 7

[3.2.2-1] KALIMER Design Concept Report, KAERI/TR-888/97, 1997.

[3.2.2-2] SA120-SB-01/1998, Rev.O, Safety Related Design Basis Events for

KALIMER, 1998.

[3.2.2-3] -fr-g-, ^ 3 3 , °l*Rh ^ f l ^ S KALIMER1- ^ <& ^ ^ 3 ]^ l ^ ^ i (Revision A), KAERI/TR-1544/2000, 2000.

[3.2.2-4] Design Requirements for KALIMER Reactor Vessel,

KALIMER/MS111-DR-01, Rev. A, 1999.

[3.2.2-5] Design Requirements for KALIMER Containment Vessel,

KALIMER/MS412-DR-01, Rev. A, 1998.

[3.2.2-6] Design Requirements for KALIMER Upper Internal Structures,

KALIMER/MS429-DR-01, Rev. A, 1998.

[3.2.2-7] Design Requirements for KALIMER Reactor Head,

KALIMER/MS413-DR-01, Rev. A, 1999.

[3.2.2-8] Design Requirements for KALIMER Secondary EM Pump Vessel,

KALIMER/MS435-DR-01, Rev. A, 1998.

[3.2.2-9] Design Requirements for KALIMER IHTS Piping System,

KALIMER/MS414-DR-01, Rev. A, 1998.

[3.2.2-10] Design Requirements for KALIMER Reactor Support Structure,

KALIMER/MS416-DR-01, Rev. A, 1998.

[3.2.2-11] Design Requirements for KALIMER Steam Generator Support

Structure, KALIMER/MS417-DR-01, Rev. A, 1999.

[3.2.2-12] Design Requirements for KALIMER Reactor Internal Structure,

KALIMER/MS420-DR-01, Rev. A, 1998.

[3.2.2-13] Design Requirements for KALIMER Secondary EM Pump Support

Structure, KALIMER/MS418-DR-01, Rev. A, 1999.

[3.2.2-14] Design Requirements for KALIMER Control Rod Drive Mechanism,

KALIMER/MS431-DR-01, Rev. A, 1999.

- 5 0 1 -

Page 518: Liquid Metal Reactor Design Technology Development ...

[3.2.2-15] Design Requirements for KALIMER IHTS Piping Support Structure,

KALIMER/MS419-DR-01, Rev. A, 1999.

[3.2.3-1] KALIMER Design Concept Report, KAERI/TR-888/97, 1997.

[3.2.3-2] Design Requirements for KALIMER Containment Vessel,

KALIMER/MS412-DR-01, 1998.

[3.2.3-3] $•&$ ^ , PSDRSS] ^^A]}7] ^ $q, 98

[3.2.3-4] Q*}3, ^ ^^ -§ -7 ] X[o] 7}^ S f l ^ , IOC-MS-011-1999.

[3.2.3-5] KALIMER $\x}3. ^ l ^ l - 7 ] ^ ^ , KALIMER/MS416-WR-01,

1998.

[3.2.3-6] ^ - f^ ^}S.7]A] y>^, KALIMER/MS416-WR-02, 1999.

[3.2.3-7] ASME B&PV Code, Section III, Subsection NE, ASME, New York,

1995.

[3.2.3-8] ASME B&PV Code, Section III, Subsection NB, ASME, New York,

1995.

[3.2.3-9] KALIMER %x}£.-%-7] ^-^^7} A}gfl <^^(I), KAERI/TR-1064/98.

[3.2.3-10] ASME B&PV Code, Section III, Subsection NH, ASME, New

York, 1995.

[3.2.3-11] < L > * I * l } ^ ^ r S , IOC-FS-017-1999.

[3.2.3-12] A^% QAS-Qift^A^-), IOC-FS-007-1999.

[3.2.3-13] A^^r ^I^.fi.?i(-a-^l7fl-f-), IOC-FS-020-1999.

[3.2.3-14] Design Criteria and Equations for Torishperical and Ellisoidal heads,

ASME Section III, Appendices, Article A-4000, 1995.

[3.2.3-15] A^^ <$*]*&A <T^9Y, IOC-MS-001-2000.

[3.2.3-16] ^ - f € € ^ r S . ^ l ^ l U - ^ , KALIMER/MS416-WR-02, 1999.

[3.2.4-1] KALIMER Design Concept Report, KAERI/TR-888/97, 1997.

- 5 0 2 -

Page 519: Liquid Metal Reactor Design Technology Development ...

[3.2.4-2] IHTS tifl^tifl^l ^}S.^^-, 2%} (IME1-2), IOC-MS-010-1999.

[3.2.4-3] o]^c^ ; 7 j f ^ , -fi-^-, " ^ ^ ] ^ - ^ 5 - KALIMERS] f ^ ^ t

« f l ^ ii^l ^ *fl^", 99 ^ ^ ^ « ] - 5 ] ^ ^ « ] - ^ ^ s ] , 1999.

[3.2.4-4] IHTS v$Q3L7] ^ Hfl?r>£*l &.&-2Z}, OME-3-2, 1999.

[3.2.4-5] PRISM PSID, GEFR-00793 UC-87Ta Dec. 1987.

[3.2.4-6] EFR 98, Outcome of Design Study, EFR Associates, 1998.

[3.2.4-7] KALIMER IHTS tifl^l^2:^ °fl^ 71| ^ ^ ^ 1 , KALIMER/MS-419

-WR-01/2000.

[3.2.5-1] KALIMER ^ ^ S « H H i « ] 7 | ] ^ AdA^^, KALIMERyMS-413-DD-

01/1998 Rev.A, 1998.

[3.2.5-2] $%•$, * 1 ^ ^ , -fr^, "KALIMER ^ > S . ^ ^ ^ - 2 : # ^ ^ ^ - ^ ^

^Hl*1]^", t i - ^ ^ ^ s ] 99 ^ ^ I ^ ^ t f l ^ l , 1999.

[3.2.5-3] KALIMER Design Concept Report, KAERI/TR-888/97.

[3.2.5-4] ^^}S«1]^ ^u] 7fl^^7fl - US Til, KALIMER/MS-413-WR-02/2000

Rev.O, 2000.

[3.2.5-5] PRISM PSID, GEFR-00793 UC-87Ta Dec. 1987.

[3.2.5-6] ^I*|-£.*HE. ^ ^ d ^ t i m - l&A, KALIMER/MS-413-WR-03/

200. Rev. 0, 2000.

[3.2.5-7] KALIMER 31*1-5.311 H ^ ^ ^ r ^ - ^ ^ - ^ ^ . a L ^ , KALIMER/FS200-

ER-06/1999.

[3.2.5-8] KALIMER ^ 4 5 . ^ 1 H ^ H l ^ ^ g f l ^ , KALIMER/MS-413-01/1999

Rev.A, 1999.

[3.2.5-9] CFX 4.2 solver, CFX international, UK, 1997.

[3.2.5-10] LMR Design Technology, GE, USA, 1992.

[3.2.5-11] Pool Type LMFBR Plant, 1000MW Phase A-extension-1 Design,

NP-822, Vol.3 GE, 1978.

- 5 0 3 -

Page 520: Liquid Metal Reactor Design Technology Development ...

[3.2.6-1] Preapplication Safety Evaluation Report for the power Reactor

Innovative Small Module (PRISM Liquid-Metal Reactor), NUREG

1368, U.S. Nuclear Regulatory Commission, 1994.

[3.2.6-2] KALIMER Design Concept Report, KAERI/TR-888/97, 1997.

[3.2.7-1] KALIMER Design Concept Report, KAERI/TR-888/97, 1997.

[3.2.7-2] ASME Boiler and Pressure Vessel Code, Section III, 1995.

[3.2.7-3] KALIMER RRS Design Requirements, KALIMER/MS440-DR-01

Rev.A/1998.

[3.2.7-4] ASME B&PV Code, Section XI, Division 3.

[3.2.8-1] R. Curric, A. M. Judd, C. Picker, B.Tomkins, "Recent contributions

to fast reactor technology", Nuclear Engineer, Vol. 35, No. 4.

[3.2.8-2] A. M. Judd, R. Currie, G.A.B. Linekar, J.D.C. Henderson, "The

under-sodium leak in the PFR superheater 2, February 1987", Nucl.

Energy, 1992, No. 3, June, 221-230.

[3.2.8-3] J. F. Lancaster, "Metallurgy of Welding", Chapman & Hall, Vol. 389

, fifth ed., 1993.

[3.2.8-4] %q&, " ^ ^ £ . ^ 2 ^ f i ] i f - ±r%*}3L -£3§- ^ rfl^»,

KALIMER/MS400-WR-01 Rev.A, 1998.

[3.2.8-5] KALIMER Design Concept Report, KAERI/TR-888/97, 1997.

[3.2.8-6] Modular Liquid Metal Reactor Design Technology, GE, USA, 1992.

[3.2.8-7] ASME B&PV Code, Section V, 1992.

[3.2.8-8] ASME B&PV Code, Section XI, Division 3, Rules for In-service

Inspection of Nuclear Power Plant Component, 1992.

[3.2.8-9] US NRC Reg. Guide 8.8 App. A, Category A.

- 5 0 4 -

Page 521: Liquid Metal Reactor Design Technology Development ...

[3.2.9-1] J.Okada, K.Iwata, et al., "An Evaluation Method for Elastic-Plastic

Buckling of Cylindrical Shells under Shear Forces, Nuclear

Engineering and Design," Vol.157, pp.65-79, 1995.

[3.2.9-2] K. Tsukimori, "Analysis of the Effects of Interaction between Shear

and Bending Load on the Buckling Strength of Cylindrical Shells,"

Nuclear Engineering and Design, Vol.165, pp.111-141, 1996.

[3.2.9-3] ASME Boiler and Pressure Vessel Code Section III, Subsection NH,

1995.

[3.2.9-4] S.P. Timoshenko et ah, Theory of Elastic Stability, McGraw-Hill,

2nd edn, 1961.

[3.2.9-5] N. Yamaki, Elastic Stability of Circular Cylindrical Shells,

North-Holland Series in Applied Math. And Mech, 1984.

[3.2.9-6] T. Murakami, et al, "The Effects of Geometrical Imperfection on

Shear Buckling Strength of Cylindrical Shells," Proc. SMiRT-11, Vol.

E, 1991.

[3.2.9-7] ANSYS Users Manual for Revision 5.1, Volume I, II, III.

[3.2.9-8] ^ 3 ] , o]^<£? -*-:&, " ^ ^ 1 ^ KALIMER

pp.75-92, 1999.

[3.2.10-1] KALIMER Design Concept Report, KAERI/TR-888/97, 1997.

[3.2.10-2] KALIMER Qx}£_ T]T]^-^ 7 ^ ^ , KALIMER/MS416-WR

-01, 1998

[3.2.10-3] ^ - f t ^ r ^ H ^ , KALIMER/MS416-WR-02, 1999.

[3.2.10-4] Y.S.Sim, et. al, "Analysis of the Relations Between Design

parameters and Performance in the Passive Safety Decay Heat

Removal System," J. of the Korean nuclear Society, Vol.31, No.3,

pp.276-286, 1999.

[3.2.10-5] PRISM Preliminary Safety Information Document, GE, 1987.

- 5 0 5 -

Page 522: Liquid Metal Reactor Design Technology Development ...

[3.2.10-6] Rules for Inservice Inspection of Nuclear Power Plant Components,

ASME B&PV Code, Section XI, 1996.

[3.2.10-7] ASME B&PV Code, Section III, Rules for Construction of Nuclear

Power Plant Components, Div. 1, Subsection NF, Supports, 1995.

[3.2.10-8] KALIMER/TR-1062/98, KALIMER

^ *l#-§-1EJ-sfl^, 1998.

[3.2.10-9] <>]*%<$., Tj^t f , .<>-:§-, "KALIMER

A^n$\, 1999.

[3.2.11-1] Design Requirements for Steam Generator Support Structure,

LMR/MS417-DR-01 Rev.0/99, 1999.

[3.2.11-2] Design Requirements for EM pump Support Structure,

KALIMER/MS-418-DR-01 Rev. A, 1999.

[3.2.11-3] ASME Boiler and Pressure Vessel Code, Section III, Division 1,

Subsection NF, 1995.

[3.2.11-4] USNRC Regulatory Guide RG 1.124, Rev. 1, Service Limits and

Loading Combinations for Class 1 Linear-Type Component Supports,

1978.

[3.2.11-5] USNRC Regulatory Guide RG 1.130, Rev. 1, Service Limits and

Loading Combinations for Class 1 Plate and Shell-Type Component

Supports, 1978.

[3.3.2-1] Preapplication Safety Evaluation Report for the power Reactor

Innovative Small Module (PRISM Liquid-Metal Reactor), NUREG

1368, U.S. NRC, 1994.

[3.3.2-2] Dahl, L.R., KALIMER Plug-in/PLUG-out IVTM Design Study, Final

Report, GE Nuclear Energy, San Jose, California, 1997.

[3.3.2-3] ^%^f ^ , KALIMER Design Concept Report,

- 5 0 6 -

Page 523: Liquid Metal Reactor Design Technology Development ...

KAERI/TR-888/97, 1997.

[3.3.2-4] IDEAS 6.0,Master Modeler, 1999.

[3.3.2-5] olzflth 3 f ^ , ^Sf l -^rS . ^ ^ 1 ^ ^ 7 l # ^

7 ] # 7HC ^ ^ r ^ W ^ , KAERI/OT-391/98, 1999.

[3.3.2-6] o]7fl^ ^ , ^ S f l - g - ^ € 4 S . « | H

D r ^ T 2 ^ , KAERI/TR-1063/98, 1998.

[3.4.1-1] IDEAS Computer Program, Version 6, 1999.

[3.4.1-2] 5 ] ^ ^ , KALIMER ^ ^ j - S ^ l # ^

1999.

[3.4.1-3] -H- S-, o ] ^ ^ 3 | o i ^ , KALIMER

^ ^l^l-§-^-«1|^, KAERI/TR-1062/98, * ^ ^ 4 ^ ^ ^ i , 1998

[3.4.1-4] o ] ^ * ^ -6-^-, ^ ^ S ] , KALIMER ^ x l - S ? i # ^

71 ^ 3 * } ^ ^^11 £ | ^ , KAERJ/TR-1539/2000,

±, 2000.

[3.4.2-1] -fi-#, oj^f-, ^ ^ s ) , ^^1-g-^^-g- Jl^i)

^ 4 i S . ^ Al^^ j j j - ^ ^ , KAERI/TR-539/95,

1995.

[3.4.2-2] -8-^-, o ] ^ , L ^ ^ 9 o f l ^ ^ - ^ ^ ^ . ^ i ^

^ ^ Al 1 4 ^ : ^ , KAERI/TR-809/97,

^ , 1997.

[3.4.2-3] -fj-3-, o ] 7 ] ]^

KAERI/TR-1362/99, * t ^ x } ^ < £ ^ i , 1999.

[3.4.2-4] -f}-§-, °1^*!: , 3?[917A, KALIMER QxlS-Qjk ^ l ^ i ) ^

^ ^ 1 ^ - 5 - ^ - ^ ^ , KAERI/TR-1062/98, « t ^ ^ ^ } ^ ^ ^ i , 1998.

[3.4.2-5] ANSYS Computer Program, Version 5.5 Swanson, 1999.

- 5 0 7 -

Page 524: Liquid Metal Reactor Design Technology Development ...

[3.4.2-6] B. Yoo, J-.H. Lee, G.-H. Koo and Y.-H. Kim, "Effects of High

Damping Rubber Bearing on Seismic Response of Superstructure in

Base Isolated System," The 13th SMiRT, Brazil, August, 1995.

[3.4.2-7] -fr &, °l*11th 7 3 3(1995), ^ M ^ ^ l 4 ^ #Sl ^

K KAERI/TR-670/96,

[3.4.2-8] Robinson, W.H., "Lead-Rubber Hysteretic Bearings Suitable for

Predicting Structures during Earthquakes," Int. J. Earthquake Engng.

Struct. Dyn., Vol.10, No.4., 1982.

[3.4.2-9] C.K. Park, et. al. KALIMER Design Concept Report,

KAERI/TR-888/97, Korea Atomic Energy Research Institute, 1997.

[3.4.3-1] ^ J l ^ l ^

^ ^ ^ i , 1991.

[3.4.3-2] -fj-^-, ol^fltb, 7 3 3 ,

s . ^ A] *j ^ 4 ^ ^ , KAERI/TR-809/97,

. ^ 5 1997_

[3.4.3-3] ANSYS Computer Program Version 5.2, 1997.

[3.4.3-4] ASME Code Section III, Division 1, Appendix I, 1983.

[3.5.1-1] KALIMER Design Concept Report, KAERI/TR-888/97.

[3.5.1-2] KALIMER ^ r 5 . - g - 7 l ^*%7\ ^\4<&^-(l), KAERI/TR-1064/98.

[3.5.1-3] ANSYS, Version 5.6, Swanson Analysis Systems Inc., USA, 1999.

[3.5.1-4] ASME B&PV Code, Section III, Subsection NH, ASME, New York,

1995.

[3.5.1-5] ASME B&PV Code, Section III, Subsection NB, ASME, New York,

1995.

[3.5.1-6] Modular Liquid Metal Reactor Design Technology, GE, USA, 1992.

- 5 0 8 -

Page 525: Liquid Metal Reactor Design Technology Development ...

[3.5.1-7] RV, CV ^ 1 ^ 3 ] - ° J^ ig7K KALIMER/MS411-AR-01, 1999.

[3.5.1-8] KALIMER ^ ^ S . « f l H l ^ i i ^ ^ £ - ^ J ± J l ^ , KALIMER/

FS200-ER-06/1999.

[3.5.1-9] %x}3. Pool - f r ^ ^ £^£LJL*1, KALIMER/FS200-AR-02/1999.

[3.5.1-10] RV, CV ^ T l l ^ S l - l - J13]*> t ^ o f l cfl^ ^ 2 : ^ ^ s ^ ,

KALIMER/MS121-AR-99-1, 2000.

[3.5.1-11] $•&% %•, "PSDRS^l # 1 ^ ^ £ * } " , 98

[3.5.1-12] ^ ^ } S - g - 7 ) ^ a ^ s l S . ^ 7 1 - 4 ^ ^ - 3 - A i , KALIMER/

MS121-WR-99-1.

[3.5.1-13] RCC-MR, Design and Construction Rules for Mechanical

Components of FBR Nuclear Islands, 1985, France.

[3.5.2-1] ASCE 4-86, Seismic Analysis of Safety-Related Nuclear Structures

and Commentary on Standard for Seismic Analysis of Safety

Structures, September 1986.

[3.5.2-2] ANSYS Users Manual for Revision 5.1, Swanson Analysis Systems,

Inc., 1994.

[3.5.2-3] °]^H?]; •%•, "Analysis of Sloshing and Seismic Response for

Cylindrical Vessel Containing Fluid," ^

^ , 1996.

[3.5.3-1] KALIMER Design Concept Report, KAERI/TR-888/97.

[3.5.3-2] KALIMER € * } 3 . ^ 2 : 1 - 7 1 ] "4^4 ^ ^2:^7}, KALIMER /

ME-400000-AR-01.

[3.5.3-3] Fast Reactor Database, IAEA-TECDOC-866, 1996.

[3.5.3-4] CRBRP Preliminary Safety Analysis Report, WH, USA, 1975.

[3.5.3-5] PRISM - Preliminary Safety Information Document, GE, USA, 1987.

- 5 0 9 -

Page 526: Liquid Metal Reactor Design Technology Development ...

[3.5.3-6] ANSYS, Version 5.6, Swanson Analysis Systems Inc., USA, 1999.

[3.5.3-7] ^*}5.-§-7l SpfSIIS. mt A}3fl-g- , KALIMER/MS411-WR-02,

1999.

[3.5.3-8] ASME B&PV Code, Section III, Subsection NB, ASME, New York,

1995.

[3.5.3-9] IOC-FS-004-1998, ^ f e ^ l Q*}£- Pool^ f £ f l , 1998.

[3.5.4-1] KALIMER Design Concept Report, KAERI/TR-888/97, 1997.

[3.5.4-2] IHTS «!|;M*1 *}£.£¥-,2J.} (IME1-2), IOC-MS-010-1999.

[3.5.4-3] °)^<£, 7j^tf, . 0 . ^ 6 ^ ^ ^ . ^ ^ KALIMER l f ^ l ^ T f l ^

« f l ^ ^ ^ Sfl^, 99 ^ r ^ W ^ l ^ t f l ^ , 1999.

[3.5.4-4] J.Lemaitre and J-L. Chaboche, Mechanics of solid materials,

Cambridge university press, 1990.

[3.5.4-5] Samson Youn, Soon-Bok Lee, Jong Bum Kim, Hyeong-Yeon Lee,

Bong Yoo, "Implementation of visco-plastic constitutive equations

into the finite element code ABAQUS," Proceedings of the Korean

Nuclear Society, 98 Autumn, 1998.

[3.5.4-6] ABAQUS Version 5.8, 1999, H.K.S.

[3.5.4-7] ANSYS Version 5.5, 1999, ANSYS Inc.

[3.5.4-8] £ f ^ , °1D<2, -f}-^, "KALIMER QT}S. ^ S # ^ J

4 ^ "rAi 711^^-g-^^", ^ ^ f ^ 5 ] , 98, ^Tfl

1998.

[3.5.4-9] ASME Section III Subsection NH, Class I components in elevated

temperature service, 1995.

[3.5.4-10] Structural Design Guides for class 1 components for high

temperature service, PNC, 1984.

[3.5.4-11] RCC-MR Subsection B, Design and Construction Rule for FBR,

AFCEN, 1985.

[3.5.4-12] ASME Code Case N-253-6, Construction of class 2,3 components

-510-

Page 527: Liquid Metal Reactor Design Technology Development ...

for elevated temp. 1991.

[3.5.4-13] RCC-MR RC-3600, Addendum No.2, part II, 1993.

[3.5.4-14] ^ f ^ , Q}^<£, -fi- g-, * R , ^ ^ , ^ £ 3 ofl^l^-^S

3.^-^S. £ ^ A ^ *]&&<%, t H - ^ j - ^ s ] , 98

, 1998.

[3.5.5-1] C. K. Park, et.al, "KALIMER Design Concept Report,"

KAERI/TR-888/97, Korea Atomic Energy Research Institute, 1997.

[3.5.5-2] G. H. Koo, el.al, "Study on Application of 3-D Seismic Isolation

Design to KALIMER Reactor Structure," KAERI/TR-1065/98, Korea

Atomic Energy Research Institute, 1998.

[3.5.5-3] G. H. Koo, J. H. Lee, and B. Yoo, "Seismic Response Analyses of

Seismically Isolated Structures Using the Laminated Rubber

Bearings," Journal of the Korean Nuclear Society, Vol.30, No.5,

pp.387-395, 1998.

[3.5.5-4] ASME Boiler and Pressure Vessel Code, Section III, Division 1

Subsection NG, Core Support Structures, 1992 Edition, ASME, 1992.

[3.5.5-5] ANSYS Users manual for Version 5.5, Volume I,II,III, Swanson

Analysis Systems, Inc.

[3.5.5-6] ^ 5 ] , °)^°A, T T ^ , " ? ! ^ KALIMER ^ ^ j - S ^ 2 # S ] i f l ^ T j ]

1999.

[3.5.6-1] ANSYS 5.5 ^ - g - ^ - s ^ H SS.^-^, 1999.

^ l ^ - S - ^ H ^ , t R ^ r ^ ^ , KAERI/TR-1062/98, 1998.

[3.5.6-3] S.S Chen, and Ho Chung, Design Guide for Calculating

Hydrodynamic Mass, ANL-CT-76-45, 1976.

- 5 1 1 -

Page 528: Liquid Metal Reactor Design Technology Development ...

[3.5.6-4] S.S. Chen, and Ho Chung, Added Mass and Damping of A

Vibration Rod in Confined Viscous Fluids, ANL-CT-75-08, 1976.

[3.5.7-1] Correlation between material properties and thermohydraulics

conditions in LMFRs, Specialists meeting, IAEA, IWGFR/90, France

1994.

[3.5.7-2] Y.W. Kim, J.H. Lee, B. Yoo, "An analysis of the SIF for thermal

transient problems based on Green's function, Engineering Fracture

Mechanics", Vol.49, No.3, pp.393-403, 1993.

[3.5.7-3] ABAQUS version 5.7, H.K.S Inc., 1998.

[3.5.7-4] Thermal striping benchmark exercise Thermohydraulic analysis of the

Tee-Junction, UK AEA Technology, IAEA firstl RCM, Lyon, 1996.

[3.5.7-5] ASME Section III Subsection NH , Class I Components in Elevated

Temperature Service, Dec. 1995.

[3.5.7-6] RCC-M, Design and construction rule for mechanical components of

PWR nuclear islands, Appendix ZG, AFCEN 1988.

[3.5.7-7] W.J. Mills, "Heat-to-heat variations in the fracture toughness of

austenetic stainless steels", Engineering Fracture Mechanics, Vol.30,

No.4, pp.469-492, 1988.

[3.5.7-8] KALIMER Design Concept Report, KAERI/TR-888/97, KAERI, 1997.

[3.5.7-9] ASME B&PV Code, Section III, Subsection NH, ASME, New York,

1995.

[3.5.7-10] Superphenix, Novatome news, Novatome, France, March 1986.

[3.5.7-11] Recommended Practice in Elevated Temperature Design, Vol. I -

Current Status and Future Directions, Ed. by A.K. Dhalla, WRC

Bulletin 362, April 1991.

[3.5.7-12] RCC-MR, Design & Const. Rules for Mechanical Components of

FBR Nuclear Islands, France, 1985.

[3.5.7-13] JL^%^S. 4\^ A 7)$\ i-&nP-2 ^ ^ ( B D S ) , PNC, Japan,

- 5 1 2 -

Page 529: Liquid Metal Reactor Design Technology Development ...

1984.

[3.5.7-14] L.K. Severud, "Creep-Fatigue Assessment Methods Using Elastic

Analysis Results and Adjustment," WHC, ASME PVP-Vol. 163,

Honolulu, USA, 1989.

[3.5.7-15] High Temperature Structural Design, Ed. by L.H. Larsson, MEPL,

1992.

[3.5.7-16] ANSYS User's Manual, Version 5.3, Swanson Analysis Systems

Inc., USA, 1997.

[3.5.7-17] J.L. Chaboche and G. Gailletau, "Integration Methods for Complex

Plastic Constitutive Equations," Comput. Method. Appl. Mech. Engr.,

ppl25-155, 1996.

[3.5.7-18] ABAQUS, Version 5.4, HKS, USA, 1995.

[3.5.7-19] < ^ 1 ^ S J l ^ ^ S ^ 7 P H # ^ NONSTA 3 £ 7 ^ ,

KAERI/TR-125 6/99.

[3.5.8-1] ^ £ , -f i -^ , ° J N ^ r ^ -

°§-%, KAERI/AR-508/98, pp 104, 1998.

[3.5.8-2] Newman, S., Z., "FEM model of 3D transient temperature and

stress fields in welded plates," Ph. D. Dissertation, Pittsburge, Pa.,

Carnegie-Mellon University, 1986.

[3.5.8-3] ANSYS users manual for revision 5.5.

[3.5.8-4] tfltt - 8 - ^ 3 , ^ 3 € # -§- 71 # ^ n -§-§-i ^ ^ ^

survey , pp 367-379, 1998.

[3.5.8-5] Tso-Liang Teng and Chih-Cheng Lin, "Effect of welding condition

on residual stresses due to butt welds," Journal of Pressure Vessels

and Piping, pp 857-864, 1998.

[3.5.8-6] ^-§-211, <>l^e, "-S-^ # f f - § - ^ n ^ ^ ^ * Heat Input model

7 ^ , " Journal of KWS, Vol. 11, No. 3, Sep., 1993.

[3.5.8-7] C.K. Leung, R.J. Pick and D.H.B. Mok, Finite element modelling of

-513-

Page 530: Liquid Metal Reactor Design Technology Development ...

a single pass weld, WRC bulletine, pp 1-10, 1990.

[3.5.9-1] -fr^, ° l ^ « h 2]<y^

* ] ^ l - g - ^ l H , ^ ^ f ^ W i , KAERI/TR-1062/98, 1998.

[3.5.9-2] o ) ^ *-%-, £ ^ , ^n^^S. ^ f ^ ^ 2 : # ^ 2 : ^ ^

W i , KAERI/TR-1538/2000, 2000.

[4.2.2-1] ASME Boiler and Pressure Vessel Code Section III, Subsection NH,

ASME, 1995.

[4.2.2-2] Cases of ASME Boiler and Pressure Vessel Code, N-201-4, ASME,

1994.

[4.3.1-1] Intercomparison of Liquid Metal Reactor Seismic Analysis Codes,

Volume 1: Validation of Seismic Analysis Codes Using Reactor Core

Experiments, IAEA-TECDOC-798, 1993.

[4.3.1-2] Intercomparison of Liquid Metal Reactor Seismic Analysis Codes,

Volume 2: Verification and Improvement of Reactor Code Seismic

Analysis Codes Using Core Mock-up Experiments,

IAEA-TECDOC-829, 1994.

[4.3.1-3] Intercomparison of Liquid Metal Reactor Seismic Analysis Codes,

Volume 3: Comparison of Observed Effects with Computer Simulated

Effects on Reactor Codes from Seismic Disturbances,

IAEA-TECDOC-882, 1995.

[4.3.1-4] G.H. Koo, J.H. Lee, and B. Yoo, Core Seismic Analysis for a

Seismically Isolated LMR, ASME PVP, Vol. 379, Seismic Shock,

and Vibration Isolation, pp.221-227, 1998.

- 5 1 4 -

Page 531: Liquid Metal Reactor Design Technology Development ...

[4.3.2-1] #<g#, -fi-3-, o ^ t h °^KAERI/TR-1039/98, 1998.

[4.3.2-2] o} -g-, 1996.

[4.3.4-1] -fi-#, ^ s ] , o ^ ^ , ^ j ^ ^ l KALIMER#

^1 ^ (Revision A), KAERI/TR-1544/2000, 2000.

[4.4.1-1] Miller, A. K., Unified Constitutive Equations for Creep and

Plasticity, 1987, Elsevier Applied Science, London.

[4.4.1-2] ASME Code Case N-47, Class 1 Components at Elevated

Temperature, ASME, New York, 1990.

[4.4.1-3] ABAQUS, Users manual, Version 5.4, 1995, HKS, USA

[4.4.1-4] ^ } i ^ 2 : t - J l - ^ ^ 2 $\^\^r ^*V %±s§ £ £ 2 |

(NONSTA-VP) 4-g-^j- x]%*\, KALIMER/MS486-CM-01,1999.

[4.4.1-5] Nuclear Standard NE F9-5T, "Guidelines and Procedures for Design

of Class 1 Elevated Temperature Nuclear System Components,"

USDOE Technical Information Center, Oak Ridge, Tennessee, March

1981.

[4.4.1-6] P. Perzyna, "The Constitutive Equations for Rate Sensitive Plastic

Materials," Quarterly Appl. Math., Vol. 20, p. 321, 1963.

[4.4.1-7] P. Perzyna, "Fundamental Problems in Viscoplasticity," in Advances

in Applied Mechanics, Vol. 9, p. 243, 1966.

[4.4.1-8] A. Phillips and H.C. Wu, "A Theory of Viscoplasticity," Int. J.

Solids and Struc, Vol. 9, p. 15, 1973.

[4.4.1-9] D. N. Robinson, "A Unified Creep-Plasticity Model for Structural

Metals at High Tempertures," ORNL/TM 5969, 1978.

- 5 1 5 -

Page 532: Liquid Metal Reactor Design Technology Development ...

[4.4.1-10] M. A. Eisenberg and C. R. Yen, "A Theory of Multiaxial

Anisotropic Viscoplasticity," Trans. ASME, Vol. 48, p. 276, 1981.

[4.4.1-11] J. L. Chaboche and G. Rousselier, "On the plastic and viscoplastic

constitutive equations - Part 1 : Rules developed with internal

variable concept," J. of Press. Vess. Tech., Vol. 15, p. 153, 1983.

[4.4.1-12] J. L. Chaboche, Mechanics of solid materials, Cambridge University

Press, 1990.

[4.4.1-13] J. L. Chaboche, "Cyclic Viscoplastic Constitutive Equations, Part I :

A Thermodynamically Consistent Formulation," J. Appl. Mech., Vol.

60, p. 813, 1993.

[4.4.1-14] S. R. Bodner and Y. Partom, "Constitutive Equations for

Elasto-Viscoplastic Strain Hardening Materials." J. Appl. Mech., Vol.

42, p. 235, 1975.

[4.4.1-15] E. C. Hart, "Constitutive Relations for the Nonelastic Deformation

of Metals," J. Engng. Mat. and Tech., Vol. 98, p. 193, 1976.

[4.4.1-16] A. K. Miller, "An Inelastic Constitutive Model for Monotonic,

Cyclic and Creep Deformation: Part 1, Equations, Development and

Analytical Procedures and Part 2, Application to type 304 stainless

steel," J. Engng. Mat. and Tech., Vol. 98, p. 97, 1976.

[4.4.1-17] M. C. Liu and E. Krempl, "A Uniaxial Viscoplastic Model Based

on Total Strain and Overstress," J. Mech. Phys. Solids, Vol. 27, p.

377, 1979.

[4.4.1-18] D. C. Stouffer and S. R. Bodner, "A Constitutive Model for the

Deformation Induced Anisotropic Plastic Flow of Metals," Int. J.

Engng. ScL, Vol. 17, p. 727, 1979.

[4.4.1-19] N. Ohno, "A Constitutive Model of Cyclic Plasticity with a

Nonhardening Strain Region," J. Appl. Mech., Vol. 49, p. 721, 1982.

[4.4.1-20] J. D. Wang and N. Ohno, "Two Equivalent Forms of Nonlinear

Kinematic Hardening : Application to Nonisothermal Plasticity," Int.

J. of Plasticity, Vol. 7, p. 637, 1991.

-516-

Page 533: Liquid Metal Reactor Design Technology Development ...

[4.4.1-21] C. Tsakmakis, "Formulation of Viscoplasticity Laws using

Over stress," to be appeared in Acta Mechanica.

[4.4.1-22] C. Tsakmakis, "An Analysis of rate- and material

parameter-dependent limiting cases in viscoplasticity laws," to be

appeared in Int. J. Solids and Structures.

[4.4.1-23] E. P. Chernocky, "An Examination of Four Viscoplastic Constitutive

Theories in Uniaxial Monotonic Loading," Int. J. Solids and Struc,

Vol. 18, p. 989, 1982.

[4.4.1-24] E. P. Chernocky, "Comparison of the Unloading and Reversed

Loading Behavior of Three Viscoplastic Constitutive Theories," Int. J.

Non-Linear Mech., Vol. 17, p. 225, 1982.

[4.4.1-25] J. Eftis, M. S. Abdel-Kader, and D. L. Jones, "Comparisons

between the modified Chaboche and Bodner-Partom viscoplastic

constitutive theories at high temperatures," Int. J. of Plasticity, Vol.

5, p. 1, 1989.

[4.4.1-26] M. S. Abdel-Kader, N. N. El-Hefnawy, and A. M. Eleiche, "A

Theoretical comparison of three unified viscoplasticity theories, and

application to the uniaxial behavior of Inconel 718 at 1100 oF,"

Nuclear Engng. and Design, Vol. 128, pp. 369-381, 1991.

[4.4.1-27] T. Inoue, F. Yoshida, N. Ohno, M. Kawai, and Y. Niitsu,

"Evaluation of inelastic constitutive models under plasticity-creep

interaction in multiaxial stress state," Nuclear Eng. and Design, Vol.

126, pp. 1-11, 1990.

[4.4.1-28] R. D. Krieg and D. B. Krieg, "Accuracies of numerical solutions

for the elastic-perfectly plastic model," J. Press. Vess. Technol, Vol.

99, p. 510, 1977.

[4.4.1-29] H. L. Schreyer, R. L. Kulak, and J. M. Kramer, "Accurate

numerical solutions for elastic-plastic models," J. Press. Vess. Tech.,

Vol. 101, p. 226, 1979.

[4.4.1-30] P. J. Yoder and R. G. Whirley, "On the numerical implementation

-517 -

Page 534: Liquid Metal Reactor Design Technology Development ...

of elastoplastic models," J. Appl. Mech., Vol. 51, p. 282, 1984.

[4.4.1-31] M. Oritz and E. P. Popov, "Accuracy and stability of integration

algorithms for elastoplastic constitutive relations," Int. J. Num. Meth.

Engng., Vol. 21, p. 1561, 1985

[4.4.1-32] .M. Oritz and J. C. Simo, "An analysis of a new class of

integration algorithms for elastoplastic constitutive equations," Int. J.

Num. Meth. Engng., Vol. 23, pp. 353-366, 1986.

[4.4.1-33] J. C. Nagtegaal, "On the implementation of inelastic constitutive

equations with special reference to large deformation problems,"

Comp. Methods Appl. Mech. Engng., Vol. 33, p. 469, 1982.

[4.4.1-34] T. G. Tanaka and A. K. Miller, "Development of a method for

integrating time-dependent constitutive equations with large, small or

negative strain rate sensitivity," Int. J. Num. Meth. Engng., Vol. 26,

pp. 2457-2485, 1988.

[4.4.1-35] A. K. Miller and T. G. Tanaka, "NONSS:A new method for

integrating unified constitutive equations under complex histories," J.

Engng. Mater. Technol., Vol. 110, pp. 205-211, 1988.

[4.4.1-36] K. Honberger and H.Stamrn, "An Implicit Integration Algorithm

with A Projection Method for Viscoplastic Constitutive Equations," J.

for Num. Meth. Engng., Vol. 28, p. 2397, 1989.

[4.4.1-37] Stouffer, D. C, V. G. Ramaswamy, J. H. Laflen, R. H. Van Stone,

and R. Williams, A constitutive mdel for the inelastic multiaxial

response of Rene 80 at 871C and 982C, Journal of Engineering

Materials and Technology, Vol.112, pp.241-246, 1990.

[4.4.1-38] Numerical recipes in Fortran, 1992, Cambridge Press.

[4.4.1-39] ^ a f l ^ ^ JL-&^S: ^ 7 f l * H - t ^ NONSTA iSJE 7flt,

KAERI/TR-1256/99.

[4.4.1-40] ^ r S ^ S ! - H U e H ^ f l ^ 3 t t f - t}-^ # ^ i ^ n ^

(NONSTA-EP) 4-g-*}- x}%*\, KALIMER/MS486-CM-02, 1999.

- 5 1 8 -

Page 535: Liquid Metal Reactor Design Technology Development ...

[4.4.2-1] H.Y.Lee, J.B.Kim, J.H.Lee, B.Yoo, Prediction of ratcheting behavior

of 3O4SS cylindrical shell using Chaboche model, IAEA Technical

Committee Meeting on Creep-Fatigue Damage Rules Used in Fast

Reactor Design, IAEA-TECDOC-933, pp.243-252, 1997.

[4.4.2-2] I. Ohshima et al, Structural Integrity of DFBR internal structure

under severe thermal loading (2) : Thermal ratchet deformation,

ASME PVP. Vol. 163, pp.47-55, 1989. N. Tanaka et al, Simulation

of Thermal Ratcheting of 304 SS Cylindrical Shell, SMIRT 11,

L04/4, pp.97-101.,1991.

[4.4.2-3] J.Lemaitre and J-L. Chaboche, Mechanics of solid materials,

Cambridge university press, 1990.

[4.4.2-4] I. Ohshima et al, Structural Integrity of DFBR internal structure

under severe thermal loading (2) : Thermal ratchet deformation,

ASME PVP. Vol. 163, pp.47-55, 1989.

[4.4.2-5] N. Tanaka et al, Simulation of Thermal Ratcheting of 304 SS

Cylindrical Shell, SMIRT 11, L04/4, pp.97- 101.,1991.

[4.4.2-6] ASME Boiler and Pressure Vessel Code, Code Case N-47-29, 1992

edition

[4.4.2-7] RCC-MR Code, Section I, Subsection RB-3000, AFCEN, 1985.

[4.4.2-8] H.Ozaki et al, Evaluation of inelastic strain in elevated temperature

components, ASME PVP Vol. 262, (High Temperature Service and

Time-Dependent Failure), pp. 19-25, 1993.

[4.4.2-9] ASME Boiler and Pressure Vessel Code, Section III NB, 1992.

[4.6.1-1] Intercomparison of Liquid Metal Reactor Seismic Analysis Codes,

Volume 1: Validation of Seismic Analysis Codes Using Reactor

Core Experiments, IAEA-TECDOC-798, 1993.

[4.6.1-2] Intercomparison of Liquid Metal Reactor Seismic Analysis Codes,

- 5 1 9 -

Page 536: Liquid Metal Reactor Design Technology Development ...

Volume 2: Verification and Improvement of Reactor Code Seismic

Analysis Codes Using Core Mock-up Experiments,

IAEA-TECDOC-829, 1994.

[4.6.1-3] Intercomparison of Liquid Metal Reactor Seismic Analysis Codes,

Volume 3: Comparison of Observed Effects with Computer

Simulated Effects on Reactor Codes from Seismic Disturbances,

IAEA-TECDOC-882, 1995.

[4.6.1-4] G.H. Koo, J.H. Lee, and B. Yoo, "Core Seismic Analysis for a

Seismically Isolated LMR," ASME PVP, Vol. 379, Seismic Shock,

and Vibration Isolation, pp.221-227, 1998.

[4.6.2-1] ^

(NONSTA-VP) ^ , KALIMER/MS234-PR-98-2.

[4.6.2-2] ^ f ^ S # ti]^ Sfl^l- ^ - f ^ &±

(NONSTA-EP) ^ , KALIMER/MS234-PR-98-1.

[4.6.2-3] Q x } ^ ^ Jl^^S: n^A

(NONSTA-VP) 4-§-^> *}^M, KALIMER/MS486-CM-01, 1999.

[4.6.2-4] %7.}S-^-2i^r tij^^^^-i: ^ *> f-f-^ T£±S$ 5 S J |

(NONSTA-EP) Aj-g-*]- ^ l % u i KALIMER/MS486-CM-02, 1999.

[4.6.2-5] ABAQUS, Users Manual, Version 5.4, 1995, HKS, USA

[4.6.2-6] J.L. Chaboche, Mechanics of Solid Materials, Cambridge University

Press, UK, 1990.

[4.6.2-7] J. Lemaitre, A Course on Damage Mechanics, Springer-Verlag, 1992.

- 5 2 0 -

Page 537: Liquid Metal Reactor Design Technology Development ...

IMS

KAERI/RR-2026/99

(KALIMER

2000\fl

520 p. s. s. 5U-8-C O ), 7] A4

O ), 313Hi( ),

7fl

Page 538: Liquid Metal Reactor Design Technology Development ...

BIBLIOGRAPHIC INFORMATION SHEET

Performing Org.

Report No.

Sponsoring Org.

Report No.Stamdard Report No. IMS Subject Code

KAERI/RR-2026/99

Title / Subtitle Liquid Metal Reactor Design Technology Development /

Development of Mechanical Structure Design Technology forLMR

Project Manager

and DepartmentYoo Bong (KALIMER Technology Development Team)

Researcher and

DepartmentJae-Han Lee, Young-Sang Joo, Hyeong-Yeon Lee, Jong-Bum Kim

Gyeong-Hoi Koo, Seok-Hoon Kim, Chang-Kue Park (KALIMER

Technology Development Team), Ki-Seog Seo (Spent Fuel

Technology Development Team), Young-Sun Choun,

In-Kil Choi (Safety Assessment Team)

Publication

PlaceTaejon Publisher KAERI

Publication

DateMay2000

Page 520 p. 111. & Tab. Yes(O), No ( ) Size A4

Note

Classified Open( O ), Restricted(

Class DocumentReport Type Research Report

Sponsoring Org. Contract No.

Abstract (15-20 Lines)

In this project, fundamentals for conceptual design of mechanical structuresystem for LMR are independently established. The research contents are as follow;at first, conceptual design for SSC, design integration of interfaces, designconsistency to keep functions and interfaces by developing arrangement of reactorsystem and 3 dimensional concept drawings, development and revision of preliminarydesign requirements and structural design basis, and evaluation of structural integrityfor SSC following structural design criteria to check the conceptual design to beproper, at second, development of high temperature structure design and analysistechnology and establishment of high temperature structural analysis codes andscheme, development of seismic isolation design concept to reduce seismic designloads to SCC and establishment of seismic analysis codes and scheme.

Subject Keywords

(About 10 words)

LMR, KALIMER, reactor system, mechanical design, structural

analysis, sesimic analysis, high temperature structure design and

analysis, seismic isolation design

Page 539: Liquid Metal Reactor Design Technology Development ...