Liquid Crystal Optics in the Far Infrared (THz)colloquium/file/THz talk_NTHU06_Pan... · 2006. 4....

68
Liquid Crystal Optics in the Far Infrared (THz) Ci-Ling Pan Department of Photonics and Institute of Electro-Optical Engineering (IEO) National Chiao Tung University (NCTU) Hsinchu City 30010 Taiwan ROC

Transcript of Liquid Crystal Optics in the Far Infrared (THz)colloquium/file/THz talk_NTHU06_Pan... · 2006. 4....

  • Liquid Crystal Optics in the Far Infrared (THz)

    Ci-Ling PanDepartment of Photonics and

    Institute of Electro-Optical Engineering (IEO)National Chiao Tung University (NCTU)

    Hsinchu City 30010Taiwan ROC

  • Acknowledgements

    • Ru-Pin Chao Pan, Chao-Yuan Chen, Cho-Fan Hsieh, H. L. Chen , T. A. Liu, T. R. Tsai (NCTU)• M. Hangyo, M. Tani (Osaka U.)• X. –C. Zhang (RPI)

  • Outline

    • Motivation and Objectives• Liquid Crystals (LC) and THz

    Techniques: Basics• THz Optical Constants of LC• Examples of LC THz devices:

    phase shifter, quarter-wave compensator, filters

  • • Motivations:

    • Increasing demands for THz quasi-optic components.

    • LC has played an important role in the visible optics as

    well as electro-optics and could be as eminent in THz

    optics.

    Motivation and Objectives

    • Objectives:

    • Characterization of LCs in the THz regime

    • To develop THz photonic devices with LC-enabled

    functionality

  • Liquid Crystal: A Unique State of Matter

    Orientationalorderedsolid

    Orientationaldisorderedsolid

    Liquid

    Liquid crystal(nematic phase)

    Liquid

    (Isotropic phase)

  • The first Liquid Crystal

    Otto Lehmann's polarizing microscope

    (From his book, 1900)

    cholesteryl benzoate: related to cholesterol

    F. Reinitzer, Z. Phys. Chem. 9, 241 (1988)

    O. Lehmann, ibid., 4, 262 (1989)

    Friedrich Reinitzer, 1857-1927

    (image from www-ub.kfunigraz.ac.at)

  • Properties of LC Materials

    Yeh & Gu

    • LC is state of matter intermediate between solid and amorphous liquid– Liquid with

    ordered arrangement of molecules– Molecules with

    orientation order (like crystals) but lack positional order (like liquids)

    • Organic substances with anisotropic molecules that are highly enlongated or flat

    • Ordering leads to anisotropy of– Mechanical properties– Electrical properties– Magnetic properties– Optical properties

  • Building Blocks of Liquid Crystals

  • CNChemist’s

    View

    Physicist’sEngineer’s

    View

    • Shape Anisotropy• Length > Width

    The molecule above (5CB) is ~2 nm × 0.5 nm

    Different Points of View

    CH3 - (CH2)4 C N

  • LongMolecular

    Axis

    θ

    H H

    H H

    H H

    H H

    C NCC C

    H HHH

    C CH H

    HH

    H

    n

    The local average axis

    of the long molecular axis

    director

    The Nematic Director n

    HH

  • Orientational Order of LCs

    • Director n at any point is the preferred orientation in the immediate neighborhood

    • In homogeneous LC, it is constant throughout medium

    • In inhomogeneous medium,n=n(x,y,z)

    • Order parameter of an LC isgiven by

    θ is the angle between the long axis and director n

    )1cos3(21)(cos 22 −== θθPS

    θn

    n

  • More on the Order Parameter

    θn

    n

    no order

    perfect order

    perfect crystal

    isotropic fluid

    )1cos3(21)(cos 22 −== θθPS

    31

    coscos

    2

    2 =Ω

    Ω=

    d

    dθθ

    1)0(cos2 == oθ

    1)(cos2 == θPS

    0)(cos2 == θPS

  • Effects of Order ParameterCompoundThe order parameter, S, is proportional to a number of important

    parameters which dictate LC device performance.

    Sn ∝∆S∝∆ε

    S∝∆χS∝∆ηViscosity Anisotrophy

    Magnetic AnisotrophyBirefringenceDielectric AnisotrophyElastic Constants: 2Skii ∝

    SSSKVth =∝∆

    ∝2

    ε

  • Dielectric Constants• Nematic and smectic LCs are uniaxially symmetric

    with axis of symmetry parallel to the director n– Dielectric constants differ in value along the preferred

    axis (ε//) and perpendicular to the preferred axis (ε⊥ )– Dielectric anisotropy is ∆ε = ε// - ε⊥, -2εo≤ ∆ε ≤ 15 εo

    • The macroscopic energy is: • If θ is the angle between the director and z-axis

    EDWemrr

    .21

    =

    θεθε

    θεθε

    22

    2

    22

    sincos21

    )sincos(

    ⊥//

    ⊥//

    +=

    +=

    zem

    z

    DW

    ED

  • Anisotropy: Dielectric Constant+++++

    - -- --

    E

    ε

    ε

    ∆ε = ε − ε > 0

    E

    ∆ε = ε − ε < 0

    ++++

    ----

    positive

    negativeall angles inthe plane ⊥to E arepossible for the-∆ε materials

    E

  • Dielectric Constants: Temperature Dependence

    4’-pentyl-4-cyanobiphenyl

    3 2)4 C N

    Temperature Dependence

    Average Dielectric Anistropy

    T-TNI (°C)

    43 2)4 C NCH3-(CH2) C N

    Δε ∝ S(T)

    〈Δε〉= 31

    (2ε⊥+ε//)

    16

    14

    12

    10

    8

    625 30 35

    Die

    lect

    ricC

    onst

    ant

    εis

    ε//

    Extrapolated from isotropic phase

    Δε ∝ S(T)

    〈Δε〉= 31

    (2ε⊥+ε//)

    ε⊥

  • ne and no: Temperature Dependence

    NI

    Average Index

    TemperatureDependence

    ∆n ∝ S(T)

    1.8

    1.7

    1.6

    1.5

    1.450 40 30 0

    T-T (°C)

    Inde

    x of

    Ref

    ract

    ion

    20 10

    ne

    no

    nisoExtrapolated from isotropic phase

    ( )222 231

    oe nnn += ( )222 231

    oe nnn +=

  • •5CB (K15): 4’-n-pentyl-4-cyanobiphenyl

    CNC5H11

    Nematic phaseT = 22.4 0C ---- 34.5 0C

    In the visible, ∆n (λ,T)=ne-no=0.14~0.19

    n

    5CB: a typical NLC

    0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.801.40

    1.45

    1.50

    1.55

    1.60

    1.65

    1.70

    1.75

    1.80

    1.85

    1.90

    0.10

    0.12

    0.14

    0.16

    0.18

    0.20

    0.22

    0.24

    0.26

    0.28

    Ref

    ract

    ive

    inde

    x

    Wavelength(um)

    ne (25.1oC)

    no (25.1oC)

    Bire

    frin

    genc

    e (∆

    n)

  • T-Ray: Next frontier in Science and Technology

    103 106 109 1012 1015 1018 1021 1024100

    MF, HF, VHF, UHF, SHF, EHF

    microwaves visible

    kilo mega giga tera peta exa zetta yotta

    x-ray γ -ray

    THz Gapelectronics photonics

    Hz

    Frequency (Hz)

    1 THz ~ 1 ps ~ 300 µm ~ 33 cm-1 ~ 4.1 meV ~ 47.6 oK

    dc

    Terahertz wave (or T-ray), which is electromagnetic radiation in a frequency interval from 0.1 to 10 THz, lies a frequency range with rich science but limited technology.

    Courtesy of X.-C. Zhang

  • Frequency (THz)

    .01 .1 1 10 100 1000

    T=30K

    3000K

    300K

    10-8

    10-10

    10-12

    10-14

    10-16

    10-18

    Em

    issi

    vity

    (J/m

    2 )

    Blackbody Radiation:Natural Source of THz Radiation

    Natural sources of THz are very weak.

  • Peter Siegel, JPL

    “Traditional” electronic approaches to“THz light”

    1.0E-02

    1.0E-01

    1.0E+00

    1.0E+01

    1.0E+02

    1.0E+03

    1.0E+04

    1.0E+05

    0.1 1 10

    Frequency (THz)

    CW

    Pow

    er (µ

    W)

    Impact AvalancheTransit Time (IMPATT) diodes

    FrequencyMultipliers

    Resonanttunnelingdiodes

    Quantumcascade

    laser(May 2002)

    Courtesy: R. Trebino

  • THz and Optical Parametric Generators

    Gavin D. Reid, University of Leeds, and Klaas Wynne, University of Strathclyde

    THz picks up where OPG’s leave off.

  • Generation of THz Wave:current surge effect

    • Hertzian dipole antenna in free space.

    ttJ

    rtrE

    ∂∂

    ∝)(1),(

    bEetntJ µ)()( =

    Pulsed laser

    Biased Dipole

    THz radiation

    0 1 2

    -2

    0

    2

    ~10-12 sec

    J'(t)

    J(t)

    Am

    plitu

    de (

    a.u.

    )

    Time dealy(ps)

  • Detection of THz Wave: Photoconductive Antenna

    ∫ −=2

    1

    )()()(t

    tcdttntEmeI τµττ

    I(τ): detected signal current, e: electron charge, µ: carrier mobility, τc: carrier life time, m: repetition rate, τ: relative time delay between THz pulse and gating laser pulse, n(t): photo-induced transient carrier density, E(t): THz field.Substrate with • Shorter carrier life time: n(t)~delta function =>E(t)∝I(t)• Long carrier life time: n(t)~step function=>E(t)∝dI(t)/dt

    A

    Optical pulse

    THz pulse

    Substrate

  • Generation of THz Wave:Optical rectification

    • Transient polarization generated after pulse laser (wide band width) excited optical nonlinear materials

    • Transient polarization:

    • Radiated THz field: 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0-0.7

    0.0

    0.7

    ~10-12 sec

    P''(t)

    P(t)

    Am

    plitu

    de (

    a.u.

    )

    Time delay (ps)

    )()(),,()( *)2( ωωωωχ EEP Ω+−Ω+Ω=Ω

    )()( 22

    tPt

    tJt

    Errrr

    ∂∂

    ∝∂∂

    )0()()()0,,,()( *)3( dcEEEP ωωωωχ Ω+−Ω+Ω=Ω

  • Detection of THz Wave: Electro-Optic Sampling

    ∆I(t)=I0sin(∆Γ)

    )(3

    041 tEdr

    THzn

    λπ

    =∆Γ

    ZnTe

    Wollastonpolarizer

    [1,-1,0]

    [1,1,0

    ]

    λ/4 plate

    pellicle

    probe beam

    THz b

    eam

    sp

    polarizer r E

    r E

    detector

    ∆I

  • 0 20 40 60 80 100 120 140

    -0.00010

    -0.00005

    0.00000

    0.00005

    0.00010

    0.00015

    0.00020

    elec

    tric

    field

    (a.u

    .)

    time delay (psec)

    Reference

    0.0 0.5 1.0 1.5 2.0 2.5 3.01E-23

    1E-22

    1E-21

    1E-20

    1E-19

    1E-18

    1E-17

    1E-16

    1E-15

    1E-14

    pow

    er (a

    .u.)

    frequency (THz)

    Reference

    Free space THz time domain waveform

    THz frequency domain spectrum

    Terahertz Time-Domain Spectroscopy (THz-TDS)

    Emitter

    Detector

    THz Emitter

    Detector

    THz

    •The emitter and detector using small gap LT-GaAs photoconductive antenna•The signal to noise ratio is up to million•The bandwidth is between 0.1 to 1.5 THz

    (1)

    (2) (3) (4) (5)

    (6)(7)

    (8)

    (10)

    (1)Ti:Sapphire (2)Neutral Density Filter(3)Quarter Wave plate(4)Beam Splitter(5)Mirror coated with Ag(6)Object Lens(7)Emitter:LT-GaAs Photoconductive

    Antenna with Silicon Lens(8)Parabolic Mirror coated with Au(9)Detector:LT-GaAs Photoconductor

    Antenna with Silicon Lens(10)Optical Delay Stage

    (9)

    (1)

    (2) (3) (4) (5)

    (6)(7)

    (8)

    (10)

    (1)Ti:Sapphire fs Laser(2)Neutral Density Filter(3)Quarter Wave plate(4)Beam Splitter(5)Mirror coated with Ag(6)Object Lens(7)Emitter:LT-GaAs Photoconductive

    Antenna with Silicon Lens(8)Parabolic Mirror coated with Au(9)Detector:LT-GaAs Photoconductor

    Antenna with Silicon Lens(10)Optical Delay Stage

    (9)

  • incoming THz wave

    ammeter

    photoconductive antennafemtosecond optical beam

    A

    Measuring THz pulses using

    photoconductive sampling

    train of THz pulses

    train of fsecoptical pulsestime

    femtosecondlaser pulse

    antenna impedance

    Antenna impedance vs. time

    Scanning the delay is performed as in cross-correlation.

    Because the fs optical pulse is shorter than the THz pulse, this works.

  • 1. 兆赫輻射可以清楚

    的看到鈔票上的浮水印

    2. 兆赫輻射可以檢測出信封裡面的粉末分布未來有可能應用於生物戰劑如碳疽桿菌之檢測)

    THz Imaging: Examples

    優點及應用:

    • 對人體安全

    • 非接觸性

    • 極佳的訊噪比

    • 可應用於反恐、醫學組織診斷、 食物檢測、化學成分分析、材料特性分析

  • THz Movie of a Match Box

    Sample

    ZnTe

    compensator

    PC Antenna

    Wollastonprism

    Balanceddetector

    BS

    Femtosecond laserX-Z Stage

    time domain (amplitude) frequency domain (amplitude) phase

  • THz Biomedical Sensing:Refractive index and absorption coefficient of deoxyhemoglobin

    0.2 0.4 0.6 0.8 1.0 1.2 1.41.2

    1.3

    1.4

    1.5

    1.6

    1.7

    1.8

    1.9

    2.0

    2.1

    Hemoglobin (powder-320µm) Hemoglobin (Thin film-350µm) Hemoglobin (powder-960µm)

    Ref

    ract

    ive

    inde

    x (n

    )

    Frequency (THz) 0.2 0.4 0.6 0.8 1.0 1.2 1.4020

    40

    60

    80

    100

    120

    140

    160 Hemoglobin (powder-320µm) Hemoglobin (Thin film-350µm) Hemoglobin (powder-960µm)

    Abso

    rptio

    n co

    effe

    cien

    t (cm

    -1)

    Frequency (THz)

    14 528 46120 240150 250Absorption coefficient (cm-1)

    ~1.61 (0.03)~1.87 (0.02)~2.01 (0.03)

    ~2.04 (0.07)Refractive index-mean value (with standard deviation)

    Hemoglobin(Thin film)

    Hemoglobin(powder)

    BloodWater

  • Burn-depth detection of pork with T-ray technology (I)

    0.533mm

    1. Heated with 150°C for 10 min2.Dehydrated

    Burnt Pork

    1. Heated with 150°C for 10 min (burnt part)2.Dehydrated

    DehydratedPreparation process

    ~1mm0.27mmThickness

    Staked PorkNormal PorkType

    0.533mm

    1. Heated with 150°C for 10 min2.Dehydrated

    Burnt Pork

    1. Heated with 150°C for 10 min (burnt part)2.Dehydrated

    DehydratedPreparation process

    ~1mm0.27mmThickness

    Staked PorkNormal PorkType

    -4 -2 0 2 4 6 8 10 12 14 16 18-2

    -1

    0

    1

    2

    3

    Reference Burnt pork Normal pork

    Nor

    mal

    ized

    Am

    plitu

    de (a

    .u.)

    Time delay (ps)

    porcine skin

    measured waveform

    Incident THz wave

    Second reflected wave

    First reflected wave

    1.746.18Burn

    1.67Normal

    0.533Burnt

    3.010.27Normal

    n (refractive index)

    T (time of flight, ps)d (thickness, mm)

    1.746.18Burn

    1.67Normal

    0.533Burnt

    3.010.27Normal

    n (refractive index)

    T (time of flight, ps)d (thickness, mm)

    Refractive index of burnt and normal porcine is determined via THz time of flight

  • Burnt depth of 0.53mm is resolved via THz imaging

    Norm

    al porcine skin

    Burned porcine skin

    Incident THz wave

    First reflected wave

    Second reflected wave

    Third reflected wave

    Norm

    al porcine skin

    Burned porcine skin

    Incident THz wave

    First reflected wave

    Second reflected wave

    Third reflected wave

    Z (depth)

    X

    Y1 (0.0 mm)

    2 (0.53 mm)3 (0.90 mm)

    (1cm)

    1.5mm

    0.0mm

    (0 cm)

    -3 0 3 6 9 12 15 18 21-4

    -3

    -2

    -1

    0

    1

    2

    4.21 ps6.16 ps

    1

    32

    Incident THz wave Stacked (Burnt + normal) pork

    Nor

    mal

    ized

    am

    plitu

    de (a

    .u.)

    Time delay (ps)

    x y

    Burn-depth detection of pork with T-ray technology (II)

  • Homeland Security

  • Towards THz Communication LinkAnalog THz wave

    0 5 10 15 20 25 30 35 40 45 50 55-1.0

    -0.5

    0.0

    0.5

    1.0

    Nor

    mal

    ized

    am

    plitu

    de (a

    .u.)

    Time (sec)

    0 5 10 15 20-100

    -90-80-70-60-50-40-30-20-10

    0

    Mag

    nitu

    de (d

    B)

    Frequency (kHz)

    0 5 10 15 20 25 30 35 40 45 50 55-1.0

    -0.5

    0.0

    0.5

    1.0

    Nor

    mal

    ized

    am

    plitu

    de (a

    .u.)

    Time (sec)

    0 5 10 15 20-100

    -90-80-70-60-50-40-30-20-10

    0

    Mag

    nitu

    de (d

    B)

    Frequency (kHz)

    Original music time sequence and a portion of spectrum

    Received music time sequence and a portion of spectrum

    Opt. Exp.,Dec’05

    The 1st directly modulated THz Link

    ~ 100 Cm

  • THz-TDS: Extraction of Far IR Optical Constants of Materials

    ∆ttime delay

    sample

    I(ω)

    ω

    I(ω)

    ω

    Power Spectrum

    ϕ(ω)

    ω

    ω

    ϕ(ω)

    Phase

    Imaginary index κ

    Real index n+Spectral Absorption

  • time-domain waveforms

    frequency-domain data

    Transmission function

    Numerical method, (L. Duvillaret et al. IEEE J. Sel Top quantum Electron. 2, 739 (1996) )

    )()()(

    ωωω

    REF

    SAMPLE

    EET =

    n, k

    FFT

    How to derive n and k from THz-TDS (I)

  • How to derive n and k from THz-TDS (II)

    1: air2: fused silica3’:sample3: air4: fused silica5: air

    31 5

    E reference

    2 4

    E sample1 2 3’ 4 5

    L

    Terms considered:1. transmission and reflection coefficients at a-b interface;2. propagation coefficient in medium a;3. Fabry-Perot effect between layers 2 and 4;

    a, b: 1-4

  • How to derive n and k from THz-TDS (III)

    [ ] )( )(),()( )(),()(),()(),()()(

    0k )(

    322

    334

    45434323212

    3

    ωωωω

    ωωωωωωωω

    ω

    ERLPR

    TLPTLPTLPTE

    FP

    k

    reference

    •=

    ∑∞+

    =4444 34444 21

    [ ] )( )(),()( )(),()(),()(),()()(

    0k)(

    232

    343

    45443323212

    '3

    '''

    '''

    ωωωω

    ωωωωωωωω

    ω

    ERLPR

    TLPTLPTLPTE

    FP

    k

    sample

    •=

    ∑∞+

    = 4444 34444 21

    ( )

    )()~~(exp)~~()1~(~

    )()(

    '

    '

    ''''

    3232

    223

    3

    3

    3423

    4323 ωω

    ωω

    ω

    FPnncdi

    nnnn

    PP

    TTTT

    EE

    T

    air

    reference

    sample

    ×⎥⎦

    ⎤⎢⎣

    ⎡⎟⎠⎞

    ⎜⎝⎛ −−×

    +

    +==

    = Transmission coefficient

  • The Complex refractive indices of 5CB

    0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.51.61.71.81.9

    0.000.010.020.030.040.050.060.070.080.090.100.110.120.130.140.15

    kn

    Frequency (THz)

    ne and ke at 25oC

    no and ko at 25oC

    n at 36oC

    Sample cell:

    Filled with 5CB (Merck)Homogeneous alignmentCell Gap: 250±2μmSubstrates: fused silica

    (3.120 mm)

    Reference cell:

    d

    dup

    ddown

    d = dup + ddown

  • Temperature Dependence results

    -10 -8 -6 -4 -2 00.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.16

    0.18

    0.20

    Bire

    fring

    ence

    ∆n

    T-Tc

    0.500 THz

    Measured Tc: 34.5℃Δn of 5CB: 0.15 ~0.2

    -10 -8 -6 -4 -2 0 2 4 61.50

    1.52

    1.54

    1.56

    1.58

    1.60

    1.62

    1.64

    1.66

    1.68

    1.70

    1.72

    1.74

    1.76

    1.78

    n

    T-TC

    0.500THzne

    no

    nave niso

    32 eo

    avennn +=

  • Comparison of THz and visible Data

    24 26 28 30 32 34 36 38 40 421.40

    1.45

    1.50

    1.55

    1.60

    1.65

    1.70

    1.75

    1.80

    1.85

    1.90

    1.95

    Ref

    ract

    ive

    inde

    x

    Temperature (oC)

    ne 0.717 THz no 0.717 THz ne 632.8 nm no 632.8 nm

  • Optical Constant of E7 in the THz range

    ne

    no

    ke

    ko0.2 0.4 0.6 0.8 1.0 1.2

    -0.2

    -0.1

    0.0

    0.1

    -0.2

    -0.1

    0.0

    0.1

    0.0

    0.1

    0.2

    0.3

    0.0

    0.1

    0.2

    0.3

    Imag

    inar

    y In

    dex

    Frequency (THz)

    (a)

    (c)

    ∆ n

    1.2

    1.5

    1.8

    2.1

    1.2

    1.5

    1.8

    2.1

    (b)

    Rea

    l Ind

    ex

  • Rotation axis

    Polarization

    LC cell

    Propagation direction

    THz wave

    Magnet(~ 5000Gauss at cell position)

    Magnetically controlled LC-based THz phase shifter

    APL, Dec’03, Opt. Exp., June’04, selected by the Virtual Journal on Ultrafast Sciences, Taiwan patent’04, US patents filed

  • Sandwiched LC Cell Structure

    • The fuse silica substrates have been coated DMOAP toobtain the homeotropic alignment.

    • The thickness of substrates are about 1.57 mm.

    Teflon Spacer(1.32 mm)

    10 mm

    Teflon Spacer(0.93 mm)

    Teflon Spacer(3.00 mm)

    Cell Ⅰ Cell Ⅱ Cell Ⅲ

  • How does the Phase Shifter work?

    N

    N

    S

    S

    P

    N

    N

    S

    S

    P

    Δt

  • Theoretical Analysis

    ∫ ∆=L

    eff dzzncf

    0

    ),(2)( θπθδ

    Phase shift, δ(θ), can be written as

    where L is the thickness of LC layerΔneff is the change of effective birefringencef is the frequency of the THz waves

    c is the speed of light in vacuum

  • ⎪⎭

    ⎪⎬⎫

    ⎪⎩

    ⎪⎨⎧

    −⎥⎦

    ⎤⎢⎣

    ⎡+=

    oeo

    nnnc

    fL21

    2

    2

    2

    2 )(sin)(cos2)( θθπθδ

    We can assume that the LC molecules are reoriented parallel to the magnetic field direction, the phase shift can then be rewritten as:

    Threshold magnetic field ≈ 100 GaussMagnetic field of magnet ≈ 5000Gauss

    where L is the thickness of LC layerno is ordinary refractive index of LCne is the extra-ordinary refractive index of LCf is the frequency of the THz wavesc is the speed of light in vacuum

  • Transmitted Waveform through the E7 LC Phase Shifter

    2 4 6 8

    -0.6

    0.0

    0.6

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    1E-5

    1E-4

    1E-3

    0.01

    0.1

    1

    Am

    plitu

    de (a

    .u.)

    Frequency (THz)

    Tran

    smitt

    ed T

    Hz

    Fiel

    d (a

    .u.)

    Time Delay (ps)

    0o

    30o

    50o

  • Phase Shift vs Magnetic Field Orientation

    0 10 20 30 40 50 600

    50

    100

    150

    200

    250

    300

    350

    400

    Phas

    e Sh

    ift (d

    egre

    es)

    θ (degrees)

    1.025 THz 0.49 THz theoretical

    368o

  • 524um

    12mm

    DMOAP

    E7 (MERCK)

    Electrically tunable LC THz phase shifter

  • Electrically tunable LC THz phase shifter

    Fused silica substrate (0.858mm)Homeotropic alignment

    E7(524um)

    Copper spacer

    THz wave

    Polarization

    z

    y

    x

    IEEE MWCL, Feb.,2004

    OL, April 15, 2006

  • Transmitted Waveform through the E7 LC Electrically-tuned Phase Shifter

    10 20 30 40

    -15

    0

    15

    30

    45

    0v 15v 30v 35v 40v 125v

    THz

    Fiel

    d am

    plitu

    de (a

    .u.)

    Delay time (ps)

    14 15 16

    -15

    0

    15

    30

    45

    10 20 30 40

    -15

    0

    15

    30

    45

    0v 15v 30v 35v 40v 125v

    THz

    Fiel

    d am

    plitu

    de (a

    .u.)

    Delay time (ps)

    14 15 16

    -15

    0

    15

    30

    45

  • Theoretical Analysis

    oeo

    eff nnnn −⎥

    ⎤⎢⎣

    ⎡+=∆

    − 21

    2

    2

    2

    2 )(sin)(cos θθ

    θθθ

    θπ

    θdq

    VV

    dz

    m

    th ∫ ⎟⎟⎠

    ⎞⎜⎜⎝

    −+

    =0

    2/1

    22

    2

    sinsinsin1

    331 )( kkkq −=

    voltkdlV

    oath 9.26

    21

    3 =⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛=

    εεπde Gennes, Phys. Liq. Cryst., 1983

    Kane, APL 20(1972)199, 22, 386 (1973).

    θ

    n( )dzzVn

    cfV

    d

    eff∫ ∆= 0 ,2)( πδ

    , V> Vth

  • Phase Shift vs applied Voltage

    0 25 50 75 100 1250

    15

    30

    45

    60

    75

    90

    Ph

    ase

    shift

    (deg

    ree)

    Applied voltage (Vrms)

    0.31THz 0.60THz 0.81THz 1.00THz

  • Device Response : Switch-off time

    0 150 300 450 6000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Nor

    mal

    ized

    tran

    smitt

    ance

    (a.u

    .)

    Time (sec)

    fall time

    ms 165 0

    2off ==acE εε

    γτ

    191 secoff

    t

    eII τ−

    = 0

  • Phase Shift: E vs B tuned

    0.2 0.4 0.6 0.8 1.00

    20

    40

    60

    80

    100

    Phas

    e Sh

    ift (D

    egre

    e)

    Frequency (THz)

    15v 30v 35v 40v 45v 125v

    0.2 0.4 0.6 0.8 1.00

    50

    100

    150

    200

    250

    300

    Phas

    e Sh

    ift (D

    egre

    e)Frequency (THz)

    10o

    20o

    27.5o

    30o

    35o

    40o

    E-field tuned LC THz Phase Shifter B-field tuned LC THz Phase Shifter

  • Quarter wave plate/Compensator

    0 15 30 45 60 75 90 105 120 135 150 165 180

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    1.1

    Nor

    mal

    ized

    Pow

    erRotating angle (degree)

    Theoretical curve Experimental data

    rotated axis is the propagation of THz beam

  • Lyot-type LC Tunable THz Filter

  • Principle of the Lyot Filter

    )(

    )cos()2

    cos(

    222

    22

    0

    fcfdndn

    fIIT

    ⋅∆⋅=⋅⋅∆⋅

    =⋅∆⋅

    ∆⋅⋅=Γ

    =≡

    τππ

    λπ

    τπ

    Polarizer ∥ Analyzer

    R: Retarder with retardation of Γ

    P R A

    I0 I

    T is function of frequency (f) Filter

  • Sketch of LC THz wavelength selector

    FR1 TR1 FR2 TR2

    P

    Liquid crystal cell

    N S N S

    Magnet

    FR1 and FR2 are fixed retarder with 4.5-mm and 9-mm homogeneous LC cells

    N S

    Polarization

    N S

    LC cell

    Propagation axis

    Rotation axis

    THz wave

    MagnetLC cell

    TR1 and TR2 are tunable retarder with 2-mm and 4-mm homeotropic LC cell

  • FR1 TR1 FR2 TR2

    P

    Unit A : Unit B = 1 : 2 (retardation)

    0 .0 0 .2 0 .4 0 .6 0 .8 1 .0

    0 .0

    0 .2

    0 .4

    0 .6

    0 .8

    1 .0

    T

    F re q u e n c y (T H z )

    T o ta l U n it A U n it B

  • Lyot-type LC THz filter: Results

    2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8

    5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0.55

    0.60

    0.65

    0.70

    0.75

    0.80

    ∆t of TR2 (ps)

    Cen

    ter f

    requ

    ency

    (TH

    z)

    ∆t of TR1 (ps)

    measured points theoretical curve

    Tunable range : 0.388 ~ 0.564 THz (~ 40 % of fcenter) !

    0.0 0.2 0.4 0.60.0

    0.2

    0.4

    0.6

    0.8

    1.0

    20 30 40

    -0.9

    0.0

    0.9

    Fiel

    d (a

    .u.)

    Time Delay (ps)

    T/T M

    AX

    Frequency (THz)

    measured theoretical

  • Tunable THz Photonic Crystal Filter Using Nematic Liquid Crystal

    THz wave

    Polarization

    N

    Magnets

    N

    x

    yz

    Mylar

    2D-MHA

    NLC

    θ

    SS

    THz wave

    Polarization

    N

    Magnets

    N

    x

    yz

    x

    yz

    Mylar

    2D-MHA

    NLC Mylar

    2D-MHA

    NLC

    θ

    SSSS

    The 2D-MPC sample was made from 0.5 mm-thick Al plateThe triangular lattice constant: s = 0.99 mm, The diameter of each hole: d = 0.56 mm.

    d

    diff

    dm

    dminspp n

    cGkν

    εεεε

    πν ≈++=

    20

    rv

    cutoff 1.841cd

    νπ

    =

    The transmission spectrum of the 2D-MHA is characterized by three frequencies.

    The band-pass peak frequency is above the cutoff frequency.The transmittance is several times larger than the porosity of

    the holes.

    d

    diffsppR n

    ννν ≅=

    scdiff 3/2'=ν

  • Transmission of the 2D-MPC w/w.o. LC

    0.1 0.2 0.3 0.4 0.50.0

    0.2

    0.4

    0.6

    0.8

    1.0d=0.56 mms=0.99 mm

    t=0.5 mm t=0.35 mm t=0.35 mm with Mylar e ray with LC o ray with LC

    Tr

    ansm

    ittan

    ce

    Frequency (THz)

  • Frequency shifter and Peak Transmittance of the LC Tunable THz Photonic Crystal

    0.56 0.58 0.60 0.62 0.640.10

    0.11

    0.12

    0.13

    0.14

    0.15

    0.16

    theory experiment

    Shift

    of p

    eak

    freq

    uenc

    y (T

    Hz)

    1/neff

    1.56 1.60 1.64 1.68 1.72 1.760.56

    0.60

    0.64

    0.68

    0.72

    0.76

    Peak

    tran

    smitt

    ance

    neff

    Frequency Shift Peak Transmittance

  • • Optical constants of several LCs measured in the THz range. Birefringence of 5CB and E7 comparable to those in the visible. Attenuation negligible.

    • Several LC-based THz devices demonstrated.

    1. Room-temperature 2π magnetically tunable THz phase shifter

    2. LC-based THz quarter-wave plate w/fine electrical tuning.

    3. LC-type tunable Lyot-type THz filter.

    4. LC-type tunable photonic crystal THz filter.

    Summary

  • 1. Tsong-Ru Tsai, Chao-Yuan Chen, Ci-Ling Pan, Ru-Pin Pan, and X.-C. Zhang, “THz Time-Domain Spectroscopy Studies of the Optical Constants of the Nematic Liquid Crystal 5CB”, Appl. Optics, Vol. 42, No. 13, pp 2372-2376 (May 1, 2003) .

    2. Ru-Pin Pan, Tsong-Ru Tsai, Chao-Yuan Chen, and Ci-Ling Pan, “Optical Constants of Two Typical Liquid Crystals 5CB and PCH5 in the THz Frequency Range”, J. of Biological Physics, V. 29, No.2-3, pp.335-338, July, 2003.

    3. Ru-Pin Pan, Tsong-Ru Tsai, Chiunghan Wang, Chao-Yuan Chen, And Ci-Ling Pan, “The Refractive Indices of Nematic Liquid Crystal 4, 4’-n-pentylcyanobiphenyl in the THz Frequency Range,” Mol. Cryst. Liq. Crystl., Vol. 409, pp. 137-144, 2004.

    4. Tsong-Ru Tsai, Chao-Yuan Chen, Ci-Ling Pan, Ru-Pin Pan, and X.-C. Zhang, “Room Temperature Electrically Controlled Terahertz Phase Shifter,” IEEE Microwave and Wireless Components Lett., Vol. 14, No. 2, pp. 77-79, February 2004.

    5. Chau-Yuan Chen, Tsong-Ru Tsai, Ci-Ling Pan, and Ru-Pin Pan“Terahertz Phase Shifter with Nematic Liquid Crystal in a Magnetic Field”, Appl. Phy. Letts, Vol.83, no.22, pp4497-4499, December 1, 2003.

    6. Chao-Yuan Chen, Cho-Fan Hsieh, Yea-Feng Lin, Ru-Pin Pan, and Ci-Ling Pan, “Magnetically Tunable Room-Temperature 2π Liquid Crystal Terahertz Phase Shifter,” Opt. Express, Vol. 12, No. 12, pp. 2625-2630 June 14, 2004.

    7. Ci-Ling Pan, Cho-Fan Hsieh, and Ru-Pin Pan, Masaki Tanaka, Fumiaki Miyamaru, Masahiko Tani, and Masanori Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Optics Express, Vol. 13, No. 11, pp. 3921 -3930, May 30, 2005.

    References (LC THz Optics )