Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics...

72
Flatland Optics with Ultrathin Metasurfaces J. Sebastian Gomez-Diaz Department of Electrical and Computer Engineering University of California, Davis [email protected]

Transcript of Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics...

Page 1: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

Flatland Optics with Ultrathin Metasurfaces

J. Sebastian Gomez-Diaz

Department of Electrical and Computer EngineeringUniversity of California, Davis

[email protected]

Page 2: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces

Introduction

Graphene plasmonics: THz devices & antennas

Non-reciprocal metasurfaces

Hyperbolic metasurfaces

Non-linear metasurfaces

Multidisciplinary

Conclusions

2

Outline

Page 3: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces

Introduction

Graphene plasmonics: THz devices & antennas

Non-reciprocal metasurfaces

Hyperbolic metasurfaces

Non-linear metasurfaces

Multidisciplinary

Conclusions

3

Outline

Page 4: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 4

Terahertz Science and Technology

DOTSEVEN, FP7 project

Page 5: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 5

Terahertz Science and Technology

N. Llombart, et al, IEEE TAP, 2012

Security and screening

Imaging

C. Zhang, et al, IRMW THz

Biomedicine

K. Kawase, Rikken

Earth observation

P. Siegel, JPL, Caltech

Communications

Spectroscopy

Teraview

Page 6: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 6

THz GAP

Sources Detectors

Wikipedia

Bolometers

Hamamatsu, Technical resport

HEB Antenna + Mixer

J. Bird, USAS meeting, 2011

Photomixer + Antennas

X. Yin, Springer, 2012

J. V. Moloney, et al, SPIE2011.

Manipulation of THz waves

Oxford, Johnston’s group

Quasi-optical components Lossy Bulky Heavy Expensive

TWT

Page 7: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 7

Electromagnetic Metamaterials

Natural material

Güney, Opt. Express 18, 12348 Smith’s group Alu’s group

Metamaterials

Engineered “materials” with properties not found in natural materials

Cloaking

Pendry, Science

Negative refraction

Chen, Nature

Active devicesLenses

Pendry, PRL

Difficult fabrication High loss BW limitations 3D granularity

Veselago

Page 8: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 8

Ultrathin Metasurfaces

Metasurface: 2D version of metamaterials

Nanostructured surfaces Simple fabrication Reduced losses

F. Capasso, V. Shalaev’s groups

Alu’s group

Gradient metasurfaces Meta-transmitarray

Grbic’s group

Huygens’ metasurfaces

Surface Plasmons

U. Levy’s group

Garcia Vidal’s group

d ≪ 𝜆

Page 9: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces

Recent Advances on Material Science

Black PhosphorusGraphene

Ultrathin 2D materialsPlasmonic response at THz

Phase change materialsMulti quantum wells Varactors

Non-linear and active responses

Piezoelectric materials MEMs / NEMs

Micro/nanomechanical actuators

Page 10: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 10

Motivation & Objectives

Towards a Flatland & Advanced Manipulation of EM waves

• Guided devices• Antennas• Sensors• On chip systems

• Reconfigurability• Non-linearity• Non-reciprocity• Hyperbolic

• Ultrathin artificial structures

• Strong light-matter interactions

• Suited at THz

Page 11: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces

Introduction

Graphene plasmonics: THz devices & antennas

Non-reciprocal metasurfaces

Hyperbolic metasurfaces

Non-linear metasurfaces

Multidisciplinary

Conclusions

11

Outline

Page 12: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 12

Graphene Plasmonics

ധ𝜎(𝜔, 𝑇, 𝜏, 𝜇𝑐 𝐸𝑏𝑖𝑎𝑠, 𝐻𝑏𝑖𝑎𝑠 , 𝑘𝜌, )

𝐽𝑠 = ധ𝜎𝐸 d h

h d

Samsung

Vg

𝑬𝒃𝒊𝒂𝒔

Plasmons on noble metals @ optics

EM wave at the interface between a dielectric (Re[ɛm]> 0) and a metal (Re[ɛm]< 0)

Very confined waves Relatively large loss

Plasmons on graphene @ THz

Re[ɛm]< 0 Im[𝜎]< 0 (or Im[ZS]> 0)

Tunable Integration

Miniaturization Gyroscopy

Engheta’s group

Page 13: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 13

Graphene Plasmonics

ധ𝜎(𝜔, 𝑇, 𝜏, 𝜇𝑐 𝐸𝑏𝑖𝑎𝑠, 𝐻𝑏𝑖𝑎𝑠 , 𝑘𝜌, )

𝐽𝑠 = ധ𝜎𝐸 d h

h d

Samsung

Vg

𝑬𝒃𝒊𝒂𝒔

Plasmons on noble metals @ optics

EM wave at the interface between a dielectric (Re[ɛm]> 0) and a metal (Re[ɛm]< 0)

Very confined waves Relatively large loss

Plasmons on graphene @ THz

Re[ɛm]< 0 Im[𝜎]< 0 (or Im[ZS]> 0)

Tunable Integration

Miniaturization Gyroscopy

Engheta’s group

X

Y

Z

Y

Graphene sheet

(Top view)

(Transversal view)

Example of plasmon propagation on a graphene sheet

Page 14: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 14

Graphene-based THz Switches & Filters

Plasmonic switch

Switching: graphene field’s effect

TL model

Isolation > 40 dB

ON STATE

𝜇𝑐𝑜𝑢𝑡 = 0.5 𝑒𝑉𝜇𝑐𝑖𝑛 = 0.5 𝑒𝑉

OFF STATE𝜇𝑐𝑜𝑢𝑡 = 0.5 𝑒𝑉𝜇𝑐𝑖𝑛 = 0.1 𝑒𝑉

J.S. Gomez-Diaz and J. Perruisseau, “Graphene-based plasmonic switches at near infrared frequencies”, Optic Express, 2013.

D. Correas-Serrano, J. S. Gomez-Diaz, et al , ”Graphene based plasmonic tunable low pass filters in the THz band,” IEEE Trans. on Nanotechnology, 2014.

ℓ𝑜𝑢𝑡 = ℓ𝑖𝑛 = 1𝜇𝑚𝜏 = 0.15 𝑝𝑠𝑇 = 300° 𝐾

Plasmonic THz filters

Accurate & scalable model

Steepped impedance filter

Low-loss & tunable

Page 15: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15

Graphene-based THz Antennas

Planar configuration

0E

Vertical dipole

M. Tamagnone, J. S. Gomez-Diaz, et al, “Reconfigurable terahertz plasmonic antenna concept using a graphene stack,” APL , 2012.

M. Tamagnone, J. S. Gomez-Diaz, et al, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” JAP , 2012.

D. Correas-Serrano, J. S. Gomez-Diaz, A. Alvarez-Melcon and A. Alù, “Electrically and Magnetically Biased Graphene-Based Cylindrical Waveguides:

Analysis and Applications as Reconfigurable Antennas”, IEEE Transactions on THz Science and Technology, 2015.

Page 16: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 16

Graphene-based THz Antennas

Planar configuration

0E

Vertical dipole

M. Tamagnone, J. S. Gomez-Diaz, et al, “Reconfigurable terahertz plasmonic antenna concept using a graphene stack,” APL , 2012.

M. Tamagnone, J. S. Gomez-Diaz, et al, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” JAP , 2012.

D. Correas-Serrano, J. S. Gomez-Diaz, A. Alvarez-Melcon and A. Alù, “Electrically and Magnetically Biased Graphene-Based Cylindrical Waveguides:

Analysis and Applications as Reconfigurable Antennas”, IEEE Transactions on THz Science and Technology, 2015.

E-planeGain (no lens) = -4 dBiGain (lens) = 14 dBi

Page 17: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 17

Graphene-based Leaky-wave Antennas

A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Transactions on Antennas and Propagation , 1959

M. Esquius-Morote, J.S. Gomez-Diaz, and J. Perruisseau-Carrier, IEEE Trans. on Terahertz Science and Technology, vol. 4, pp. 116-122, 2014

J.S. Gomez-Diaz, M. Esquius-Morote and J. Perruisseau-Carrier, Optic Express, vol. 21, pp. 24856-24872, 2013

Sinusoidally modulated surfaces at THz

Several implementations based on graphene’s field effect

Beam scanning at fixed freq

V3 V4V5 V4 V3 V2 V1 V2 V3 V4 V5

TM Surface Wave

XSmin

Im{ZS}

XSmax

N = 8

y

Page 18: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 18

Graphene-based Leaky-wave Antennas

A. Oliner and A. Hessel, “Guided waves on sinusoidally-modulated reactance surfaces,” IRE Transactions on Antennas and Propagation , 1959

M. Esquius-Morote, J.S. Gomez-Diaz, and J. Perruisseau-Carrier, IEEE Trans. on Terahertz Science and Technology, vol. 4, pp. 116-122, 2014

J.S. Gomez-Diaz, M. Esquius-Morote and J. Perruisseau-Carrier, Optic Express, vol. 21, pp. 24856-24872, 2013

Sinusoidally modulated surfaces at THz

Several implementations based on graphene’s field effect

Beam scanning at fixed freq

y

τ = 1 ps, T = 300°K, f0 = 2 THz, VDC = 6.5 − 45 V, εr = 3.8, s = 4.8μm and g = 0.2μm.

LWA theoryHFSS

Page 19: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 19

Experimental Results (I)

Fabrication of graphene stacks

CVD of graphene

Metallic contacts DC biasing + dynamic reconfiguration

Single layer graphene

Graphene «quality»

Double-layer graphene stack

J. S. Gómez-Díaz, C. Moldovan, S. Capdevilla, L. S. Bernard, J. Romeu, A. M. Ionescu, A. Magrez, and J. Perruisseau-Carrier, “Self-biased reconfigurable

graphene stacks for terahertz plasmonics”, Nature Communications, 2015.

Page 20: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 20

Experimental Results (and II)

Graphene stacks

Enhanced reconfiguration capabilities + simple fabrication avoiding metals

Measured using THz time-domain spectroscopy Good agreement theory

Operation frequency: 1 THz

J. S. Gómez-Díaz, C. Moldovan, S. Capdevilla, L. S. Bernard, J. Romeu, A. M. Ionescu, A. Magrez, and J. Perruisseau-Carrier, “Self-biased reconfigurable

graphene stacks for terahertz plasmonics”, Nature Communications, 2015.

Page 21: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces

Introduction

Graphene plasmonics: THz devices & antennas

Non-reciprocal metasurfaces

Hyperbolic metasurfaces

Non-linear metasurfaces

Multidisciplinary

Conclusions

21

Outline

Page 22: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 22

Reciprocity and Why it Needs to be Broken

Reciprocitysymmetry in transmission for opposite propagation directions

Duplexers

Rx

Tx

Isolators

IBM

A

B

A

B

𝑇BA = 𝑇AB

Slide courtesy of Dr. Dimitrious Sounas.

Page 23: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 23

General Conditions for Non-Reciprocity

Magnetic Field

Direct current

B 21 12T TLinear network

B Bt t

Onsager-Casimir Principle

Static Magnets Massive Devices

Tanaka, Proc. IEEE 53, 260 (1965) D. L. Sounas et al, IEEE TAP (2013)

Transistors

Page 24: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 24

General Conditions for Non-Reciprocity

Magnetic Field

Direct current

B 21 12T TLinear network

B Bt t

Onsager-Casimir Principle

Static Magnets Massive Devices

Tanaka, Proc. IEEE 53, 260 (1965) D. L. Sounas et al, IEEE TAP (2013)

Transistors

Linear Momentum

p

Angular Momentum

L

Alternative approach? Momentum Bias

Page 25: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 25

Non-Reciprocity with Momentum Bias

Linear Momentum

p

Angular Momentum

L

Lira et al, PRL 109, 033901 (2012)

Demonstrated @ microwaves and optics

R. Fleury et al, Science (2014)N. A. Estep et al,

Nature Phys. (2014)

Demonstrated @ acoustics, microwaves and optics

D. Sounas, et alACS Photonics (2014)

S. Qin et al, IEEE MTT (2014)

Isolators

Page 26: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 26

Non-Reciprocity with Momentum Bias

Linear Momentum

p

Angular Momentum

L

Lira et al, PRL 109, 033901 (2012)

Demonstrated @ microwaves and optics

R. Fleury et al, Science (2014)N. A. Estep et al,

Nature Phys. (2014)

Demonstrated @ acoustics, microwaves and optics

D. Sounas, et alACS Photonics (2014)

S. Qin et al, IEEE MTT (2014)

Isolators

Potential application in growing areas?

• THz science and technology• Plasmonics

Page 27: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 27

Non-Reciprocal Graphene Components

All non-reciprocal graphene THz devices rely on magnetic bias…

Bulky static magnets

D. L. Sounas et al, APL (2013)

Giant Faraday Rotation

2D material & highly-confined plasmons but massive devices

Non-reciprocal plasmonics

Sounas et al, APL (2011)

J.Yao Chin, et al. Nature Com. (2013) M. Tamagnone et al,Nature Phot. (2014)

Page 28: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 28

Non-Reciprocal Graphene Components

All non-reciprocal graphene THz devices rely on magnetic bias…

Bulky static magnets

D. L. Sounas et al, APL (2013)

Giant Faraday Rotation

2D material & highly-confined plasmons but massive devices

Non-reciprocal plasmonics

Sounas et al, APL (2011)

J.Yao Chin, et al. Nature Com. (2013) M. Tamagnone et al,Nature Phot. (2014)

Motivation and objectives

Magnet-free non-reciprocal graphene plasmonics

Linear momentum through graphene’s field effect

Integrated, low-cost technology

Relatively easy fabrication

Potential applications

Page 29: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 29

Graphene’s Field Effect

Reconfigurability through applied bias Implement static conductivity profiles

𝑛𝑠 = 𝐶𝑜𝑥(𝑉𝐷𝐶 − 𝑉𝐷𝑖𝑟𝑎𝑐)/𝑞𝑒

2 2 0(

2( ) )s d c d c

F

f dfnv

𝜇𝑐 ≈ ℏ𝑣𝐹𝜋𝐶𝑜𝑥𝑉𝐷𝐶

𝑞𝑒 Usual static operation

Moderately doped ( 𝜇𝑐 ≫ 𝑘𝐵𝑇)

Below interband threshold (2 𝜇𝑐 > ℏ𝜔) 𝜎 ∝ 𝑉𝐷𝐶

Up to ~100 GHz C. T. Phare et al, Nat. Phot. (2015)

V. Ginis et al, PRB Rapid Comm. (2015)

𝑬𝒃𝒊𝒂𝒔

𝜎 𝑡 ∝ 𝑉 𝑡

V 𝑡

Page 30: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 30

Spatio-Temporal Modulation in Graphene

Linear Momentum

p

S. Qin et al, IEEE MTT (2014)

Isolators Implemented at microwaves

Time modulated varactors

Can we apply this at THz?

𝜎 𝑧, 𝑡 ≈ 𝜎0 1 + 𝑀 cos 𝜔𝑚𝑡 − 𝛽𝑚𝑧𝑉𝑛 𝑡 = 𝑉cos 𝜔𝑚𝑡 + 𝑛𝜙𝑚

Graphene: Ideal material to implement spatiotemporal modulation @ THz

D. Correas-Serrano, J. S. Gómez-Díaz, D. Sounas, A. Alvarez-Melcon and A. Alù, “Non-reciprocal graphene devices and antennas at THz based on spatio-

temporal modulation”, IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1529-1533, 2016.

Page 31: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces

Single layer implementation

Single Layer Graphene Isolator

𝑘𝑧

𝜔𝜎 𝑧 = 𝜎0[1 + 𝑀cos(𝛽𝑚𝑧)]𝜎 𝑧, 𝑡 = 𝜎0[1 + 𝑀cos(𝜔𝑚𝑡 − 𝛽𝑚𝑧)]

𝜔𝑚

𝑓0 𝑓0

𝑓0𝑓0 − 𝑓𝑚

𝑣 = 𝜔𝑚/𝛽𝑚

Forward propag.Backwards propag.

𝑆𝑓0−𝑓𝑚,𝑓0+𝑓𝑚 → 0

31

Page 32: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 32

PPW Graphene-based Isolator

Isolator requirements

Modes are phase-matched @ one direction

Modulated length = Coherence length 𝐿𝑐

𝜎1 𝑧, 𝑡 = 𝜎0 1 + 𝑀 cos 𝜔𝑚𝑡 − 𝛽𝑚𝑧

𝑑𝑎1𝑑𝑧

= −𝑗𝑘𝑧1𝑎1 + 𝐶𝑎2e𝑗(𝑘𝑧1−𝑘𝑧2−𝛽𝑚)𝑧

𝑑𝑎2𝑑𝑧

= −𝑗𝑘𝑧2𝑎2 + 𝐶𝑎1e−𝑗(𝑘𝑧1−𝑘𝑧2−𝛽𝑚)𝑧

𝐿𝑐 = 𝜋/2|𝐶|

Coupled-mode analysis

where 𝐶 =M𝜎08

𝐸𝑧1 𝑥𝜎1 𝐸𝑧2∗ (𝑥𝜎1)

Graphene PPW: Two orthogonal modes Graphene PPW: Two orthogonal modes

PPW + ST modulation of one layer:

D. Correas-Serrano, J. S. Gómez-Díaz, D. Sounas, A. Alvarez-Melcon and A. Alù, “Non-reciprocal graphene devices and antennas at THz based on spatio-

temporal modulation”, IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1529-1533, 2016.

Page 33: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces

Numerical Simulations

PPW Graphene-based Isolator (and II)

𝒇𝟎

𝒇𝟎

𝒇𝟎

𝒇𝟎

𝒇𝟎

𝒇𝟎

𝒇𝟎 + 𝒇𝒎

𝒇𝟎 − 𝒇𝒎

𝒇𝟎

𝒇𝟎 + 𝒇𝒎

𝒇𝟎 − 𝒇𝒎

𝒇𝟎

𝐸𝑧 Transmission Isolation

33

Page 34: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces

Sinusoidally modulated LWA

Spatiotemporally modulated LWA

34

Non-Reciprocal Graphene Leaky-wave Antenna

𝜎 𝑧 = 𝜎0[1 + 𝑀cos(𝛽𝑚𝑧)]

1 t 2 t 3 t

1DCV t

2DCV t 3DCV t

𝑓0

𝑓0 − 𝑓𝑚 𝑓0 − 𝑓𝑚

𝜃𝑇𝑋 ≠ 𝜃𝑅𝑋

Page 35: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 35

Non-Reciprocal LWA Radiation/Reception

𝑬𝒛, 𝒇𝟎

𝑬𝒛, 𝒇𝟎 − 𝒇𝒎

Tx Rx

Rx Angle

𝜃(deg)

𝑬𝒛𝒊,𝟑𝟎∘ , 𝒇𝟎 − 𝒇𝒎

𝑬𝒛, 𝒇𝟎 − 𝟐𝒇𝒎∀𝑓

𝑬𝒛𝒊,𝟏𝟓∘ , 𝒇𝟎 − 𝒇𝒎

𝑬𝒛, 𝒇𝟎 − 𝟐𝒇𝒎

Non-reciprocity is two fold

Radiation diagram in Tx - Rx

Frequency conversion

D. Correas-Serrano, J. S. Gómez-Díaz, D. Sounas, A. Alvarez-Melcon and A. Alù,

“Non-reciprocal graphene devices and antennas at THz based on spatio-temporal

modulation”, IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1529-

1533, 2016.

Page 36: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces

Introduction

Graphene plasmonics: THz devices & antennas

Non-reciprocal metasurfaces

Hyperbolic metasurfaces

Non-linear metasurfaces

Multidisciplinary

Conclusions

36

Outline

Page 37: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 37

Hyperbolic and Isotropic Materials

Images from Lavrinenko’s group (DTU, Denmark). SPIE Newsroom. DOI: 10.1117/2.1201410.005626

, , 0x y z

Light line

, 0

0

x y

z

‘ zoo’ of propagating waves

Wav

evec

tor 𝑘W

avev

ecto

r 𝑘

2

k

are “bounded” !,k

0

k

0 0

0 0

0 0

x

y

z

Page 38: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 38

Hyperbolic Wave Propagation & Applications

K. G. Balmain et al.IEEE TAP - AWPL

2003 – 2004

222 2

||

/kk

c

0 & 0 0 & 0

Natural and Artificial Hyperbolic media

A. Poddubny, I. Iorsh, P. Belov and Y. KivsharNature Photonics, 7,

113110 (2013)

E. E. Narimanov and A. V. Kildishev

Nature Photonics, 9, 214 (2015)

Negative refraction

A. Fang, T. Koschny, and C. M. Soukoulis,

Phys. Review B, 79,245127, (2009)

Canalization & thin structures

A. V. Kildishev, A. Boltasseva, V. M. Shalaev

Science 339, 1232009 (2013)

Topological transitions

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V.

M. Menon, Science , 336, (2012)

SER enhancement

J. Kim, V. Drachev, Z. Jacob, G. V. Naik, A. Boltasseva, E. E.

Narimanov, and V. M. Shalaev, Optic Express, 20, 8100, (2012)

Page 39: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 39

Hyperbolic Wave Propagation & Applications

K. G. Balmain et al.IEEE TAP - AWPL

2003 – 2004

222 2

||

/kk

c

0 & 0 0 & 0

Natural and Artificial Hyperbolic media

A. Poddubny, I. Iorsh, P. Belov and Y. KivsharNature Photonics, 7,

113110 (2013)

E. E. Narimanov and A. V. Kildishev

Nature Photonics, 9, 214 (2015)

Negative refraction

A. Fang, T. Koschny, and C. M. Soukoulis,

Phys. Review B, 79,245127, (2009)

Canalization & thin structures

A. V. Kildishev, A. Boltasseva, V. M. Shalaev

Science 339, 1232009 (2013)

Topological transitions

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V.

M. Menon, Science , 336, (2012)

SER enhancement

J. Kim, V. Drachev, Z. Jacob, G. V. Naik, A. Boltasseva, E. E.

Narimanov, and V. M. Shalaev, Optic Express, 20, 8100, (2012)

Hyperbolic Metamaterials Challenges:

Fabrication Access to the propagating waves Volumetric loss Integration with other components

Page 40: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 40

Topologies of Uniaxial Metasurfaces

Im 0

Im 0

xx

yy

Elliptic topology

Hyperbolic topology Im 0

Im 0

xx

yy

Hyperbolic topology

Im 0

Im 0

xx

yy

𝜎-near zero topology Im 0

Im 0

xx

yy

Ƹ𝑒𝑧Ƹ𝑒𝑦Ƹ𝑒𝑥

J. S. Gomez-Diaz, M. Tymchenko and A. Alù, Physical Review Letters , vol. 114, pp. 233901, 2015

തത𝜎 =𝜎𝑥𝑥 00 𝜎𝑦𝑦

Page 41: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 41

Plasmon Propagation

0

2 22 2 2 2 2 2 2 2 20 04 0x xx y yy x y x yk k k k k k k k

0

0xx

yy

Ƹ𝑒𝑧𝜀0

𝜀0

Ƹ𝑒𝑥Ƹ𝑒𝑦

𝜑

TM mode:

TE mode:

0

2 22 2 2 2 2 2 2 2 20 04 0x y x y y xx x yyk k k k k k k k

TM mode - Example

y xk mk b xx

yy

m

2

00

21

yy

b k

Im 0.1

Im 5.0

xx

yy

i mS

i mS

Im 0.1

Im 5.0

xx

yy

i mS

i mS

Im 3.0

Im 3.0

xx

yy

i mS

i mS

H. J. Bilow, IEEE TAP 51, 2788, 2003. [2] A. M. Patel and A. Grbic, IEEE TAP. 61, 211, 2013

R. Quarfoth, and D. Sievenpiper, IEEE TAP, vol. 61, 3597, 2013

J. S. Gomez-Diaz, M. Tymchenko and A. Alù, Physical Review Letters , vol. 114, pp. 233901, 2015

Page 42: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 42

Practical Implementation of Hyperbolic MTSs

J. S. Gomez-Diaz, M. Tymchenko and A. Alù, Physical Review Letters , vol. 114, pp. 233901, 2015

0

0

effxxeff

effyy

Ƹ𝑒𝑧Ƹ𝑒𝑦

Ƹ𝑒𝑥 𝑊 𝐿

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, Nature, vol. 522, pp. 192-196, 2015

Experimental verification @ optics

𝜎𝐶 = −𝑖𝜔𝜀0𝐿

𝜋ln csc

𝜋𝐺

2𝐿

𝜎𝑥𝑥𝑒𝑓𝑓

=𝐿𝜎𝜎𝐶

𝑊𝜎𝐶 + 𝐺𝜎

𝜎𝑦𝑦𝑒𝑓𝑓

= 𝜎𝑊

𝐿

Page 43: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 43

Practical Implementation of Hyperbolic MTSs

J. S. Gomez-Diaz, M. Tymchenko and A. Alù, Physical Review Letters , vol. 114, pp. 233901, 2015

0

0

effxxeff

effyy

Ƹ𝑒𝑧Ƹ𝑒𝑦

Ƹ𝑒𝑥 𝑊 𝐿

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, Nature, vol. 522, pp. 192-196, 2015

Experimental verification @ optics

𝜎𝐶 = −𝑖𝜔𝜀0𝐿

𝜋ln csc

𝜋𝐺

2𝐿

𝜎𝑥𝑥𝑒𝑓𝑓

=𝐿𝜎𝜎𝐶

𝑊𝜎𝐶 + 𝐺𝜎

𝜎𝑦𝑦𝑒𝑓𝑓

= 𝜎𝑊

𝐿

Graphene-based Hyperbolic Metasurfaces Benefits:

Easy fabrication (lithography) Easy access/extraction of energy Reduced loss Compatible with integrated circuits / optoelectronic components Tunable

Page 44: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 44

SPPs & Electrical Reconfigurability

Surface Plasmons @ THz

2 μm2 μm0.5 μm

1

0

Ƹ𝑒𝑥

Ƹ𝑒𝑦

Ƹ𝑒𝑥

Ƹ𝑒𝑦

Ƹ𝑒𝑥

Ƹ𝑒𝑦

0.5

0

0.3

0

L

x

yz

W

L=50nm, W=10 nm, 𝜇𝑐 = 0.5𝑒𝑉

L=50nm, W=25 nm,𝜇𝑐 = 0.1𝑒𝑉

L=50nm, W=25 nm,𝜇𝑐 = 0.3𝑒𝑉

J. S. Gomez-Diaz, M. Tymchenko and A. Alù, Physical Review Letters , vol. 114, pp. 233901, 2015

f= 5 THz

Electrical reconfigurabilityf=10 THzW=44 nm

Hyperbolic

𝜎-near zeroAnisotropic elliptic

Page 45: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 45

Negative Refraction of SPPs

𝜃𝑜𝑢𝑡

Ƹ𝑒𝑧

Ƹ𝑒𝑦Ƹ𝑒𝑥

𝜃𝑖𝑛

𝜎𝑖𝑛𝜎𝑜𝑢𝑡

Transmission & reflection coefficient (approx.)

Page 46: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 46

Light-Matter Interactions

Spontaneous Emission Rate (SER) of emitters• Large enhancement expected from analogy with bulk HMTM

• Dedicated Green’s function approach

SER in graphene

0 00 0

61 Im , ,p S p

p

PSER G r r

P k

F. H. L. Koppens, D. E. Chang, and F. García de Abajo, Nanoletters, vol. 11, pp. 3370-3377, 2011

Ƹ𝑒𝑧

d

Ƹ𝑒𝑦Ƹ𝑒𝑥

eff

020 0 2, ,

8zi k z

S ss ss sp sp ps ps pp pp x y

iG r r M M M M e dk dk

Page 47: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 47

Light-Matter Interactions in Metasurfaces

-0.2 0 0.2-0.2

0

0.2

Im[yy

] (mS)

Im[

xx]

(mS

)

2

4

6

Elliptic TopologyHyperbolic Topology

Hyperbolic TopologyElliptic TopologyTE - modes

Im yy

Im yy

SER of a z-oriented dipole over a uniaxial metasurface Topological transitions

Dramatic SER enhancement

Ƹ𝑒𝑧

d=10nm

Ƹ𝑒𝑦Ƹ𝑒𝑥

eff

J. S. Gomez-Diaz, M. Tymchenko and A. Alù, Physical Review Letters , vol. 114, pp. 233901, 2015

Page 48: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 48

Canalization & Hyperlensing

Canalization over a surface

LDOS/SER enhancement

𝜎 near-zero topology

Application: Hyperlensing

Im 0

Im 0

xx

yy

-500 -250 0 250 5000

0.2

0.4

0.6

0.8

1

y axis (nm)

abs(

Ez/E

ma

x)

x=150 nmx=-150 nm

d ≈ 0.7𝜆1 ≈ 0.007𝜆0

-500 -250 0 250 5000

0.2

0.4

0.6

0.8

1

y axis (nm)

abs(

Ez/E

ma

x)

x=150 nmx=-150 nm

d ≈ 0.21𝜆1 ≈ 0.0021𝜆0

-500 -250 0 250 5000

0.2

0.4

0.6

0.8

1

y axis (nm)

abs(

Ez/E

ma

x)

x=150 nmx=-150 nm

d ≈ 0.1𝜆1 ≈ 0.001𝜆0

J. S. Gomez-Diaz and A. Alù, ACS Photonics, 2016

Page 49: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 49

Practical Limitations

Losses

J. S. Gomez-Diaz, M. Tymchenko and A. Alù, Optic Express, vol. 5, 2313-2329, 2015

D. Correas-Serrano, J. S. Gomez-Diaz, M. Tymchenko and A. Alù, Optic Material Express, vol. 23, 29434-29448, 2015

(2) (2)3 3xx yyi mS i mS (2)

(2)

0.055 3

0.055 3

xx

yy

i mS

i mS

(2)

(2)

0.3 3

0.3 3

xx

yy

i mS

i mS

(2)

(2)

3 3

3 3

xx

yy

i mS

i mS

Ƹ𝑒𝑧

d

Ƹ𝑒𝑦Ƹ𝑒𝑥

eff Nonlocality

W=0.5L Limited Fermi velocity

Wavenumber cutoff

Periodicity L=15 nm

L

x

yz

W

L

x

yz

W

L=50 nm

L

x

yz W

L=100 nm

Design of Practical Hyperbolic Metasurfaces

0f

Lc v k

0f

Lc v k

Nonlocality dominates and imposes a wavenumber cutoff.Periodicity can be increased Easier fabrication !

Periodicity dominates and imposes a wavenumber cutoff.

Page 50: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 50

Practical Limitations

Losses

J. S. Gomez-Diaz, M. Tymchenko and A. Alù, Optic Express, vol. 5, 2313-2329, 2015

D. Correas-Serrano, J. S. Gomez-Diaz, M. Tymchenko and A. Alù, Optic Material Express, vol. 23, 29434-29448, 2015

(2) (2)3 3xx yyi mS i mS (2)

(2)

0.055 3

0.055 3

xx

yy

i mS

i mS

(2)

(2)

0.3 3

0.3 3

xx

yy

i mS

i mS

(2)

(2)

3 3

3 3

xx

yy

i mS

i mS

Ƹ𝑒𝑧

d

Ƹ𝑒𝑦Ƹ𝑒𝑥

eff Nonlocality

W=0.5L Limited Fermi velocity

Wavenumber cutoff

Periodicity L=15 nm

L

x

yz

W

L

x

yz

W

L=50 nm

L

x

yz W

L=100 nm

Page 51: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces

Black Phosphorus

Thickness down to few nm

Variable bandgap

Anisotropic & plasmonic material

Hyperbolic response ?

Local response (q0)

51

2D Natural Hyperbolic Materials

D. Correas-Serrano, J. S. Gomez-Diaz, A. Alvarez Melcon, and A. Alù, “Black Phosphorus Plasmonics: From Anisotropic Elliptical Regimes to Nonlocality-

Induced Canalization”, Journal of Optics, 2016.

Page 52: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces

Black Phosphorus

Thickness down to few nm

Variable bandgap

Anisotropic & plasmonic material

Hyperbolic response ?

Local response (q0)

52

2D Natural Hyperbolic Materials

D. Correas-Serrano, J. S. Gomez-Diaz, A. Alvarez Melcon, and A. Alù, “Black Phosphorus Plasmonics: From Anisotropic Elliptical Regimes to Nonlocality-

Induced Canalization”, Journal of Optics, 2016.

Page 53: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces

Black Phosphorus

Thickness down to few nm

Variable bandgap

Anisotropic & plasmonic material

Hyperbolic response ?

Local response (q0)

Nonlocality induces a wideband canalization regime

53

2D Natural Hyperbolic Materials

D. Correas-Serrano, J. S. Gomez-Diaz, A. Alvarez Melcon, and A. Alù, “Black Phosphorus Plasmonics: From Anisotropic Elliptical Regimes to Nonlocality-

Induced Canalization”, Journal of Optics, 2016.

Page 54: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces

Introduction

Graphene plasmonics: THz devices & antennas

Non-reciprocal metasurfaces

Hyperbolic metasurfaces

Non-linear metasurfaces

Multidisciplinary

Conclusions

54

Outline

Page 55: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 55

Non-linear Responses

-+

+

E E

Dipole moment – Hooke’s law

𝑷

𝜖0= 𝜒 1 𝑬 + Ӗ𝜒 2 𝑬𝑬+ Ӗ𝜒 3 𝑬𝑬𝑬+⋯

Linear Nonlinear

Nonlinear material

Ӗ𝜒(1), Ӗ𝜒(2), Ӗ𝜒(3)

𝜔

Ӗ𝜒(2)𝜔

2𝜔

Second Harmonic Generation(SHG)

P. Franken, A. Hill, C. Peters, and G.Weinreich, Phys. Rev. Lett. 7, 118 (1961)

ħ(2ω)ħω

ħω

R. W. Boyd, ‘Nonlinear Optics’, Academic, 2008

Ӗ𝜒(2)

Differential Frequency Generation(DFG)

𝜔1

𝜔2

𝜔3 = 𝜔1-𝜔2

ħω1ħω2

ħ(ω1- ω2)

Pros:• Ultrafast response

• Coherent process

Challenges:• Relatively large

incident intensities

• Weak intrinsic response: Crystals, Metals, Diodes, Ferroelectrics, MQWs

Page 56: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 56

Enhancing Non-linear Responses (I)

Phase matching: Bulk materials

𝐸 𝜔

𝐸(2𝜔)

𝜒(2)

n(2ω)>n(ω) !!𝑘𝑜𝑢𝑡

𝑘𝑖𝑛1 Δkkin2

1 2in in outk k k

𝑑

2222

2eff

I dE

I

𝜒𝑒𝑓𝑓(2)

≈ 1 − 100𝑝𝑚/𝑉

𝜂 ↑↑

𝐸𝜔 ↑↑

𝑑 ↑↑ Bulky/heavy structures

Material damage threshold

𝑛 𝜔 = −𝑛(2𝜔)

A. Rose, et al, PRL, 2011.

ENZ responseSuckowski et al,

Science, 2013

ENZ responseC. Argyropoulos,et al,

PRB, 2012

Periodically pooled material

Birefringence

Page 57: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 57

Enhancing Non-linear Responses (and II)

Phase matching: Ultrathin Metasurfaces (SHG)

2

1 2in in outk k k

Relaxed conditions: in-plane

2222

2eff

I dE

I

Conversion efficiency Typical non-linear materials

2 1eff E 𝜒𝑒𝑓𝑓(2)

≈ 10 𝑝𝑚/𝑉 𝐼𝜔 ≈ 1 𝑃𝑊/𝑐𝑚2

@ 57 MW/cm2

Standard nonlinear metasurfaces: 2 1eff E

Linden et al, PRL, 2012

𝑑 ≪ 𝜆

Page 58: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 58

Combining Two Worlds

Huge intrinsic NL response from MQWs

n-doped MQWs

Ӗ𝜒(2) = 𝜒𝑧𝑧𝑧(2)

Ƹ𝑒𝑧 Ƹ𝑒𝑧In0.53Ga0.47As/Al0.48In0.52As

Ultrathin plasmonic resonators

𝝎 𝟐𝝎

z pumpE E

3

1.5

0

-1.5

-3

𝟐𝝎

2

1

0

-1

-2

Page 59: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 59

Nonlinear Plasmonic Metasurfaces

J. Lee, M. Tymchenko, C. Argyropoulos, et al, Nature , vol. 511, pp. 65-69, 2014

Nonlinear plasmonic metasurfaces

Vision: Flat nonlinear paradigm

Enhanced conversion efficiency

Manipulation of the generated beam

𝟐 ∙ 𝟏𝟎−𝟒% at 15 kW/cm2 !!

Page 60: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 60

Analysis of Nonlinear MTSs

Rigorous analysis of nonlinear Metasurfaces

J. S. Gomez-Diaz, M Tymchenko, J Lee, M. A. Belkin, A Alù, Physical Review B, vol. 92, pp. 125429, 2015

2

[ ] [ ] [ ](2) (2) (2)[ ] 2

[ ] [ ] [ ]

1

UC

z a z b z meff mab zzz zzz overlap

inc a inc b inc mV

E E EI d MI I

V E E E

r r

(2)effective It

ab

t

ab

Effective non-linear susceptibility

MQWs saturation

d ≪ 𝜆

𝜔

Page 61: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 61

Enhancing Efficiency: Approaches

(2)effective I

Plasmonic resonator design overlapMI

MQWs design (2) ,zzz SATI

2eff

J. S. Gomez-Diaz, M Tymchenko, J Lee, M. A. Belkin, A Alù, Physical Review B, vol. 92, pp. 125429, 2015.

2222

2eff

I dE

I

Page 62: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 62

Highly-Efficient Non-Linear Metasurfaces

(2) 55 /zzz nm V

1 2 20.5 /SatI MW cm

0.55overlapMI

(2) 275 /zzz nm V

1 2 22 /SatI MW cm

4.25overlapMI

(2) 137 /zzz nm V

1 2 21.25 /SatI MW cm

2.1overlapMI

J. Lee, N. Nookola, J. S. Gomez-Diaz, M. Tymchenko, F. Demmerle, G. Boehm, M. Amann, A. Alu, M. Belkin, Advanced Optical Materials,

doi: 10.1002/adom.201500723, 2016.

Page 63: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 63

Manipulating the Generated NL Beams

M. Tymchenko, J. S. Gomez-Diaz, J. Lee, N. Nookala, M. A. Belkin, and A. Alù, Physical Review Letters, vol. 115, pp. 207403, 2015

ω

y

xz

E

2LE

2RE

Pancharatnam-Berry approach

o Local control of the phase by rotation subwavelength resolution!

o High conversion efficiency

o Enhanced functionalities for the SH beam Beam steering

Focusing

Generation of vortex beam

Page 64: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 64

Advanced Functionalities (I)

Steering the generated SH beam

ω

2ωy

xz

RCP pumpω

2ωy

xz

LCP pump

Focusing the generated SH beam

RCP pump

LCP pump

M. Tymchenko, J. S. Gomez-Diaz, J. Lee, N. Nookala, M. A. Belkin, and A. Alù, Physical Review Letters, vol. 115, pp. 207403, 2015

Page 65: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 65

Advanced Functionalities (and II)

M. Tymchenko, J. S. Gomez-Diaz, J. Lee, N. Nookala, M. A. Belkin, and A. Alù , “Advanced Control of Nonlinear Beams with Pancharatnam-Berry

Metasurfaces”, Physical Review B, 2016.

Nonlinear generation of Vortex beams

Polarization-dependent angular momentum Wikipedia

Page 66: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 66

Experimental Results

J. Lee, N. Nookola, M. Tymchenko, J. S. Gomez-Diaz, F. Demmerle, G. Boehm, M. Amann, A. Alu, M. Belkin, Optica, Vol. 3, Issue 3, pp. 283-288, 2016.

L2ωR2ω

0.01%

RωRCP pump

Page 67: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces

Introduction

Graphene plasmonics: THz devices & antennas

Non-reciprocal metasurfaces

Hyperbolic metasurfaces

Non-linear metasurfaces

Multidisciplinary

Conclusions

67

Outline

Page 68: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 68

Nems Metasurfaces

Y. Hui, J. S. Gomez-Diaz, A. Alù, and M. Rinaldi, Nature Communications, 2016.

Infrared detector Ultrathin metasurface Body of a nanomechanical resonator

Combination of mechanical and electromagnetic resonances

Room temperature

Page 69: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 69

Nems Metasurfaces: Features

Infrared detector Low noise, fast response

High electromechanical coupling coefficient

Y. Hui, J. S. Gomez-Diaz, A. Alù, and M. Rinaldi, Nature Communications, 2016.

Page 70: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces

Introduction

Graphene plasmonics: THz devices & antennas

Non-reciprocal metasurfaces

Hyperbolic metasurfaces

Non-linear metasurfaces

Multidisciplinary

Conclusions

70

Outline

Page 71: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 71

Conclusions

Hyperbolic metasurfaces

NEMS

Reconfigurable THz graphene devices

Flat nonlinear paradigm

Towards a Flatland & Advanced Manipulation of EM waves

Non-reciprocal plasmonics

Page 72: Flatland Optics with Ultrathin Metasurfaces · 2018. 9. 9. · J. S. Gomez-Diaz - Flatland Optics with Ultrathin Metasurfaces 15 Graphene-based THz Antennas Planar configuration E0

Thank you!J. Sebastian Gomez-Diaz

Department of Electrical and Computer EngineeringUniversity of California, Davis

[email protected]

Collaborators:

• Mr. Diego Correas-Serrano – University of Califonia, Davis, USA

• Prof. Andrea Alù – The University of Texas at Austin, USA

• Prof. Mikhail Belkin – The University of Texas at Austin, USA

• Dr. Dimitrious Sounas – The University of Texas at Austin, USA

• Prof. Mateo Rinaldi – Northeastern University, USA

• Prof. Juan Mosig – École Polytechnique Fédérale de Lausanne, Switzerland

• Dr. Michele Tamagnone – École Polytechnique Fédérale de Lausanne, Switzerland

• Prof. A. Alvarez-Melcon – Technical University of Cartagena, Spain.