LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16,...

41
LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001

Transcript of LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16,...

Page 1: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

LIGO-G010028-00-D

The LIGO-I Gravitational-wave Detectors

Stan Whitcomb

CaJAGWR SeminarFebruary 16, 2001

Page 2: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 2LIGO-G010028-00-D

Outline of Talk

Initial Performance Goals Detector Overview

» What do the parts look like?

» How does it work?

Status» Installation and Commissioning

Near-term Future

Page 3: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 3LIGO-G010028-00-D

LIGO Observatories

3030 km(±10 ms)

CALTECHPasadena

MITBoston

HANFORDWashington

LIVINGSTONLouisiana

4 km

4 km + 2 km

Page 4: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 4LIGO-G010028-00-D

Initial LIGO Detector Status

Construction project - Finished» Facilities, including beam tubes complete at both sites

Detector installation» Washington 2k interferometer complete

» Louisiana 4k interferometer complete

» Washington 4k interferometer in progress

Interferometer commissioning» Washington 2k full interferometer functioning

» Louisiana 4k individual arms being tested

First astrophysical data run - 2002

Page 5: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 5LIGO-G010028-00-D

Initial LIGO Interferometers

Laser

end test mass

beam splitter

MichelsonInterferometer

MichelsonInterferometer

signal

recyclingmirror

Power Recycled

4 km (2 km) Fabry-Perotarm cavity

input test mass

with Fabry-Perot Arm Cavities

Page 6: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 6LIGO-G010028-00-D

Initial LIGO Sensitivity Goal

Strain sensitivity <3x10-23 1/Hz1/2

at 200 Hz Sensing Noise

» Photon Shot Noise

» Residual Gas

Displacement Noise» Seismic motion

» Thermal Noise

» Radiation Pressure

Page 7: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 7LIGO-G010028-00-D

Vibration Isolation Systems

» Reduce in-band seismic motion by 4 - 6 orders of magnitude

» Large range actuation for initial alignment and drift compensation

» Quiet actuation to correct for Earth tides and microseism at 0.15 Hz during observation

Page 8: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 8LIGO-G010028-00-D

Seismic Isolation – Springs and Masses

damped springcross section

Page 9: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 9LIGO-G010028-00-D

Seismic System Performance

102

100

10-2

10-4

10-6

10-8

10-10

Horizontal

Vertical

10-6

HAM stackin air

BSC stackin vacuum

Page 10: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 10LIGO-G010028-00-D

Core Optics

Page 11: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 11LIGO-G010028-00-D

Core Optics Requirements

Substrates» 25 cm Diameter, 10 cm thick

» Homogeneity < 5 x 10-7

» Internal mode Q’s > 2 x 106

Polishing» Surface uniformity < 1 nm rms

» ROC matched < 3%

Coating» Scatter < 50 ppm

» Absorption < 2 ppm

» Uniformity <10-3

Successful production eventually involved 6 companies, NIST and the LIGO Lab

Page 12: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 12LIGO-G010028-00-D

Core Optic Metrology

Current state of the art: 0.2 nm repeatability

LIGO data (1.2 nm rms) CSIRO data (1.1 nm rms)

Page 13: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 13LIGO-G010028-00-D

Core Optics Suspension and Control

Page 14: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 14LIGO-G010028-00-D

Core Optics Installation and Alignment

Initial Alignment Requirement:100 microradians (50 goal)

Page 15: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 15LIGO-G010028-00-D

Confirmation of Initial Alignment

Opening gate valves revealed alignment “dead reckoned” from corner station was within 100 micro radians

First 8 optics!

beamspot

Page 16: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 16LIGO-G010028-00-D

Pre-stabilized Laser

Modecleaner

10-WattLaser

PSL Interferometer

15m4 km

Tidal Wideband

Deliver pre-stabilized laser light to the 15-m mode cleaner

• Frequency fluctuations• In-band power fluctuations• Power fluctuations at 25 MHz

Provide actuator inputs for further stabilization

• Wideband• Tidal

10-1 Hz/Hz1/2 10-4 Hz/ Hz1/2 10-7 Hz/ Hz1/2

Page 17: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 17LIGO-G010028-00-D

Washington 2k Pre-stabilized Laser

Custom-built10 W Nd:YAG

Laser

Stabilization cavities for frequency

and beam shape

Page 18: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 18LIGO-G010028-00-D

WA 2k Pre-stabilized Laser Performance

> 20,000 hours continuous operation

Frequency lock very robust

TEM00 power >8 W delivered to input optics

Non-TEM00 power< 10%

Improvement in noise performance

» electronics» acoustics» vibrations

Page 19: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 19LIGO-G010028-00-D

LIGO Interferometers

Laser

end test mass

Light bounces back and forth along arms about 100 times

input test massLight is “recycled” about 50 times

signal

Requires test masses to be held in position to 10-10-10-13 meter:“Locking the interferometer”

Page 20: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 20LIGO-G010028-00-D

Reflection Locking a Single Cavity

“Pound-Drever-Hall locking”

Incident laser

Photodetector

Phase Modulation ))(Re()( tiLFopt etEtE ))(Re()( )( tiLFopt

cetEtE

Slightly Off ResonanceOn Resonance

sbcEEdL

dV

Decomposition into

carrier and sidebands

Page 21: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 21LIGO-G010028-00-D

Carrier Resonance Conditions

Phase Modulated Input Light

Resonate carrier in recycling cavity - condition on l+ and RRM

Resonate carrier in arms - condition on arm L+, L-

Minimize carrier at antisymmetric port - condition on Michelson l-

Arm 1Arm 2

Arm 1Arm 2Input

Page 22: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 22LIGO-G010028-00-D

Arm 1Arm 2Input

Arm 1Arm 2Input

Sideband Resonance Conditions

Phase Modulated Input Light

Resonate sideband in recycling cavity - macro condition on length

Sidebands antiresonant in arms - macro condition on arm length

Maximize sideband at antisymmetric port - Schnupp asymmetry

Arm 1Arm 2Arm 1Arm 2

Page 23: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 23LIGO-G010028-00-D

In-lock Sensing Points

Q phase: L-

I phase: L+, l+

Q phase: l-

I phase: L+, l+

Q phase: l-

Reflection and Pick-off I phase signals both dominated by L+ (~100x), but with different amounts of l+

=> Matrix can be inverted!

Reflection and Pick-off Q phase signals are clean l- signals, but much smaller (~100x) than corresponding I phase signals

Phase must be set accurately

Page 24: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 24LIGO-G010028-00-D

Lock Acquisition Sequence

Encountering sideband resonance inarm cavity in State 2/3 kills lock

Matrix for separating L+, l+ goesthrough singularity

Change in optical gain:•L- gain increases 30x•l- gain decreases ~3x

Arm 1Arm 2Arm 1Arm 2

State 2

State 3

State 4

Page 25: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 25LIGO-G010028-00-D

Matt’s “Lock Acquisition Program”

Use DC photodiodes and 2from pick-off to determine state and optical gain

sb2

DC

DC and

DC

DC

Calibrate sensitivity of each detector to important mirror motions usingsingle arms and states 2/3

Invert the sensing matrix to getcontrol signals

•Let l+ “coast” when the matrix becomes singular

Page 26: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 26LIGO-G010028-00-D

Steps to Locking an Interferometer

signal

LaserX Arm

Y Arm

Composite Video

Page 27: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 27LIGO-G010028-00-D

Watching the Interferometer Lock

signal

X Arm

Y Arm

Laser

Page 28: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 28LIGO-G010028-00-D

Lock Acquisition Example

CarrierRecycling Gain ~10

SidebandRecycling Gain ~5

Page 29: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 29LIGO-G010028-00-D

Closeup of Lock Acquisition

Page 30: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 30LIGO-G010028-00-D

Common Mode Control Signals

Page 31: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 31LIGO-G010028-00-D

Differential Mode Control Signals

Page 32: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 32LIGO-G010028-00-D

Full Interferometer Locking

90 Minutes

Page 33: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 33LIGO-G010028-00-D

First Interferometer Noise Spectrum

Factor of 105 – 106 improvement required

Recombined Michelson with F-P Arms (no recycling) – November 2000

Page 34: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 34LIGO-G010028-00-D

Improved Noise Spectrum

9 February 2001

•Recycling•Reduction of electronics noise•Partial implementation of alignment control

Page 35: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 35LIGO-G010028-00-D

Known Contributors to Noise

New servo to improve frequencystabilization installed last week

Testing underway

Page 36: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 36LIGO-G010028-00-D

Example: Earthtide Investigation

One week continuous operation as recombined F-P Michelson (no recycling) -- November 2000

~200 microns P-to-P (main cause of loss of lock during run) Input to design of tidal actuator needed for continuous lock Common mode (both arms stretch together) and differential

mode (arms stretch by different amounts)

Page 37: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 37LIGO-G010028-00-D

Global Network of GW Detectors

LIGOGEO Virgo

TAMA

AIGO

Page 38: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 38LIGO-G010028-00-D

Event Localization with Array of Detectors

SOURCE SOURCE

SOURCE SOURCE

LIGOLivingston

LIGOHanford

TAMA GEO

VIRGO

1 2

L =

c t

~ c t / D12

~ 0.5 deg

Page 39: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 39LIGO-G010028-00-D

Initial LIGO Sensitivity Goal

Facility limits more than 100 times lower than initial detector sensitivity

Lots of room for future improvements

Page 40: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 40LIGO-G010028-00-D

Advanced LIGO

Now being designed by the LIGO Scientific Collaboration

Goal:» Quantum-noise-limited

interferometer

» Factor of ten increase in sensitivity

» Factor of 1000 in event rate. One day > entire2-year initial data run

Schedule:» Begin installation: 2006

» Begin data run: 2008

Page 41: LIGO-G010028-00-D The LIGO-I Gravitational-wave Detectors Stan Whitcomb CaJAGWR Seminar February 16, 2001.

CaJAGWR Seminar 41LIGO-G010028-00-D

Where do we go from here?

2001» Detector commissioning

» Engineering runs

» First coincidence operation

» Improve sensitivity/ reliability

» Initial data run (“upper limitrun”)

2002» Begin Science Run

» Interspersed data taking and machine improvements

Advanced LIGO R&DFirst Lock in the Hanford Observatorycontrol room