LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the...

34
1 LIGHTWEIGHT DESIGN OF Ti6Al4V FORGINGS Authors: Bernd Oberwinkler (Inst. of Mech. Eng. – University of Leoben) Martin Riedler (Böhler Schmiedetechnik GmbH & Co KG) Wilfried Eichlseder (Inst. of Mech. Eng. – University of Leoben) ABSTRACT Forged parts made of titanium are generally used in aerospace industry, e.g. for engine mounts, pylon fitting and frame parts. To achieve damage tolerant together with lightweight design of such components the local microstructure resulting from thermomechanical treatment has to be considered. Further influences (e.g. multiaxial loading, notches and impressed mean stress) play also a major role with respect to the fatigue behavior. Therefore a new approach is introduced in this paper containing methodologies for the determination of local S/Ncurves for Ti6Al4V. They can be embedded in a lifetime prediction based on local stresses. INTRODUCTION In the aerospace industry, the realization of lightweight structural components is a top priority. Reducing the weight of structural components increases the potential payload of the aircraft and decreases the fuel consumption. Lightweight design is thereby based on three principal points: Material Processing Design Material Titanium alloys have become very important materials in the aircraft industry, due to their excellent properties (such as high fatigue strength and good corrosion resistance) and low density; ideal for lightweight design. Titanium components (particularly Ti6Al4V) are used in place of heavy steel components (e.g. airfoils, pylon fitting, undercarriage components, and other structural parts). Processing Manufacturing parts according to customer specifications by using forming techniques has both cost and quality advantages, compared to cutting and machining parts out of feedstock plates or bars. Because of this, components are increasingly manufactured by forging. Forging results in better utilization of material through near net shape manufacturing, and also reduces manufacturing costs and provides better mechanical properties, such as high fatigue strengths. Therefore forging is suitable for the processing of lightweight titanium components. Design Depending on the thermomechanical treatment of a titanium alloy, in this case Ti6Al4V, the microstructure and thus also the mechanical properties can vary in a wide range. Such influences have been documented in numerous reports in the literature, see, for example, Refs [112], with the problem that a holistic optimization of the whole product development chain (design, thermomechanical processing) is still lacking. Therefore it is currently not possible to optimize Ti6Al4V components with respect to thermomechanical processing and design. The objective of this study was to determine the fatigue behavior of Ti6Al4V in the finite and in the high cycle fatigue region as well as the fatigue crack growth properties in respect of microstructure, mean stress, notches and multiaxial loading. These results were then embedded in a new approach for determination of local S/Ncurves to provide a basis for the lifetime prediction and optimization of forged Ti6Al4V lightweight structural components. The verification will be done on a purpose designed engine mount.

Transcript of LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the...

Page 1: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

1

LIGHTWEIGHT DESIGN OF Ti‐6Al‐4V FORGINGS Authors:  Bernd Oberwinkler (Inst. of Mech. Eng. – University of Leoben) 

Martin Riedler (Böhler Schmiedetechnik GmbH & Co KG) Wilfried Eichlseder (Inst. of Mech. Eng. – University of Leoben)   

 ABSTRACT 

Forged  parts  made  of  titanium  are  generally used  in  aerospace  industry,  e.g.  for  engine mounts,  pylon  fitting  and  frame  parts.  To achieve  damage  tolerant  together  with lightweight design of such components the local microstructure  resulting  from  thermo‐mechanical  treatment  has  to  be  considered. Further  influences  (e.g.  multiaxial  loading, notches and  impressed mean stress) play also a major role with respect to the  fatigue behavior. Therefore a  new approach  is  introduced  in  this paper  containing  methodologies  for  the determination of  local  S/N‐curves  for Ti‐6Al‐4V. They  can  be  embedded  in  a  lifetime  prediction based on local stresses.  

INTRODUCTION 

In  the  aerospace  industry,  the  realization  of lightweight  structural  components  is  a  top priority.  Reducing  the  weight  of  structural components  increases  the potential payload of the aircraft and decreases the fuel consumption. Lightweight  design  is  thereby  based  on  three principal points: 

• Material 

• Processing 

• Design  Material Titanium  alloys  have  become  very  important materials  in  the  aircraft  industry,  due  to  their excellent  properties  (such  as  high  fatigue strength and good corrosion resistance) and low density;  ideal  for  lightweight  design.  Titanium components  (particularly Ti‐6Al‐4V) are used  in place  of  heavy  steel  components  (e.g.  airfoils, pylon  fitting,  undercarriage  components,  and other structural parts). 

Processing Manufacturing  parts  according  to  customer specifications  by  using  forming  techniques  has both cost and quality advantages, compared  to cutting  and  machining  parts  out  of  feedstock plates or bars. Because of this, components are increasingly  manufactured  by  forging.  Forging results  in better utilization of material  through near net shape manufacturing, and also reduces manufacturing  costs  and  provides  better mechanical  properties,  such  as  high  fatigue strengths.  Therefore  forging  is  suitable  for  the processing of lightweight titanium components.  Design Depending on the thermomechanical treatment of  a  titanium  alloy,  in  this  case  Ti‐6Al‐4V,  the microstructure  and  thus  also  the  mechanical properties  can  vary  in  a  wide  range.  Such influences have been documented  in numerous reports  in  the  literature,  see,  for example, Refs [1‐12],  with  the  problem  that  a  holistic optimization of the whole product development chain  (design,  thermomechanical  processing)  is still lacking. Therefore it is currently not possible to optimize Ti‐6Al‐4V  components with  respect to thermomechanical processing and design. 

 The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V  in the finite and  in the  high  cycle  fatigue  region  as  well  as  the fatigue  crack  growth  properties  in  respect  of microstructure,  mean  stress,  notches  and multiaxial  loading.  These  results  were  then embedded in a new approach for determination of  local  S/N‐curves  to  provide  a  basis  for  the lifetime  prediction  and  optimization  of  forged Ti‐6Al‐4V  lightweight  structural  components. The  verification  will  be  done  on  a  purpose designed engine mount. 

Page 2: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

2

APPROACH 

With  the  aid of  forming  simulation using  finite element analysis it will be possible to predict the local  microstructure  in  Ti‐6Al‐4V  forgings  in respect of  the  thermomechanical processing. A link  between  this  local microstructure  and  the fatigue  life  is  necessary  to  enable  an  accurate lifetime  prediction  for  forged  Ti‐6Al‐4V components  and  to  optimize  their  processing. Therefore  a  new  approach  (Fig. 1)  has  been developed where  local microstructure results  in local  microstructural‐based  S/N‐curves  and stress  intensity  factor  thresholds.  The  local microstructural‐based  S/N‐curves  can  be combined with  additional  important  influences regarding fatigue, e.g. mean stress, notches and multiaxial  loading,  to  local  S/N‐curves.  They provide  the  basis  for  computation  of  the  local lifetime  of  forged  components.  In  combination with  the  local  (microstructural‐based)  stress intensity  factor  threshold  it  is  furthermore possible  to  predict  the  local  damage  tolerance (cf.  e.g.  [13])  by  application  of  the  Kitagawa‐Takahashi  relationship  [14]  between  flaw  size and  fatigue  strength.  In  addition  this  new approach  provides  a  direct  link  of  forging simulation  and  local  lifetime  or  damage tolerance. With these closed optimization  loops (forging  simulation    local  lifetime  /  damage tolerance) the thermomechanical processing can be  optimized  for  forgings  where  the  fatigue lifetime  or  the  damage  tolerance  is  the  main criterion.  

Fig. 1 – Approach for damage tolerant lightweight 

design of Ti‐6Al‐4V forgings  

 

MATERIAL CHARACTERIZATION 

 Fig. 2 – Micrographs of analyzed materials 

 The material  used  for  this  research  work  was provided  by  Böhler  Schmiedetechnik  GmbH  & Co  KG  (Kapfenberg,  Austria)  in  the  form  of  Ti‐6Al‐4V  open‐die  V‐shape  and  closed‐die  side‐pressed  pancake  forgings,  respectively. Additionally  the  feedstock  billet  (FB,  diameter 230  mm)  for  the  V‐shape  forgings  was investigated in as‐received condition (AR). Different heat  treatments  (HT) were performed on  the  forgings:  mill‐annealing  (MA),  solution treating with  air  cooling  (ST),  solution  treating with  polymer  quenching  (STPQ),  recryst.‐annealing  (RA)  and  beta‐annealing  (BA).  These different heat treatments  led to a high diversity of  equiaxed  and  bimodal  microstructures, respectively  (Fig. 2). Due  to  the  chosen  forging temperature  of  930°C  no  crystallographic texture  occurs.  Mill‐annealing  does  not  cause complete  recrystallization,  and  therefore  leads to  a  distinct  texture  of  the  primary  α‐grain shapes, representative of the forging process. A detailed  characterization  of  the  different forgings can be found in [15]. The  microstructures  were  characterized  with respect  to  several  microstructural  parameters (Tab. 1). These are  the average primary α‐grain size αp, the (α+β)‐content Cα+β, the connectivity Con of the primary α‐grains, the colony size Col of  the  lamellae‐packets  and  the  mean  α‐lamellae width Lam.  

Page 3: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

3

HT αp 

[µm] Cα+β [%] 

Con [%] 

Col [µm] 

Lam [µm] 

MAV  11.5  20.3  28.7  9.2  0.65

STPQV  8.1  61.4  39.5  13.4  0.58

STV  9.0  67.0  78.9  32.4  1.21

MAP  8.2  30.9  45.2  7.1  0.57

STP  8.9  50.9  33.7  16.1  0.74

RAP  10.3  0  99.0  ‐  ‐

ARFB  9.8  0  0  ‐  ‐

Tab. 1 – Microstructural characterization  

EXPERIMENTAL PROCEDURE 

The test program consisted of rotating bending, tension/compression,  torsional  and  multiaxial fatigue tests and long crack propagation tests. In addition  the  crack  initiation  and  short  crack growth was studied for two microstructures. All tests  were  performed  at  ambient  air  and  at room  temperature.  Specimens  from  V‐shapes were sampled in transverse direction. This led – in consideration of a constant effective strain  in longitudinal  direction  –  to  specimens  with identical  effective  strain  in  the  highest  loaded cross section. The specimens from pancakes and feedstock  bars  were  taken  in  longitudinal direction.  The  sampling was  done  by water  jet cutting or sawing with a band saw,  followed by milling  and  fine  turning,  respectively.  The roughness was measured with  a  confocal  laser scanning microscope  (LEXT). The  fine  turning of the  round  fatigue  specimens  led  to an average roughness height of 0.6 μm.  Influence of microstructure Rotating bending  (RB)  fatigue  tests  (stress  ratio  R  =  ‐1)  were  performed  on  round  hourglass specimens with  a  frequency  of  63 Hz.  All  S/N‐curves  (cf.  Fig.  3)  correspond  with  a  survival probability  of  50 %.  The  results  show  that  the fatigue  strength  varies  in  a  wide  spectrum  in respect of  the microstructure. The  fatigue  limit of  the  equiaxed materials  is much  lower  than those  of  the  bimodal  and  mill‐annealed microstructures.  

 Fig. 3 – Fatigue behavior in respect of microstructure 

 The  fatigue  strength  in  the  finite  life  region shows  also  strong  interdependencies  with  the microstructure, whereas  the  slope  of  the  S/N‐curves  in  the  finite  life  region  is  almost unaffected. The  characterization  of  the  long  crack  growth behavior (Fig. 4) was done with V‐notched single edge bending (SEB) specimens under four point bending  loading at a resonant testing rig with a frequency of approximately 140 Hz. Thereby the crack  length was measured with  the  potential drop  method.  The  measurements  were performed  for  four  different  stress  ratios  R (ratio of minimum and maximum stress or stress intensity  factor  respectively).  The  stress intensity factor range ΔK was derived according to  linear elastic fracture mechanics for all stress ratios, cf. [15]. 

Fig. 4 – Fatigue crack growth behavior in respect of microstructure 

 

Page 4: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

4

 Fig. 5 – Linking stress intensity factor threshold and 

fracture surface roughness  Distinct  differences  were  found  in  the  near‐threshold  region  in  respect  of  the  stress  ratio owing  to  crack  closure  effects.  This  was confirmed  by  roughness measurements  of  the fracture  surface.  A  linear  relationship  between average roughness height Ra and stress intensity factor  threshold  ΔKth  was  found  (Fig. 5). Especially  the  forged  materials  with  the equiaxed and bimodal microstructures exhibit a good  accordance  with  the  linear  fit.  This  is caused by a linear correlation of primary α‐grain size and fracture surface roughness. The  ranking  of  the  different  microstructures regarding  fatigue  crack  propagation  is  not affected by the stress ratio.  Influence of impressed mean stress Tension/compression (TC) tests were performed on  round  hourglass  specimens  with  different stress ratios R. The results show that  impressed mean  stress  significantly  reduces  the  fatigue strength of Ti‐6Al‐4V (Fig. 6). Furthermore it was observed that the transition point shifts beyond 107  load cycles for stress ratios greater‐than‐or‐equal  0.  This  is  important  because  literature data ([2], [11], [16], [17]) was only found for 107 load  cycles  resulting  in  a  non‐conservative fatigue  limit  for  stress  ratios  greater‐than‐or‐equal 0. The  slope  of  the  S/N‐curves  in  the  finite  life region is not affected by the stress ratio.  

 Fig. 6 – Fatigue behavior in respect of mean stress 

 Influence of multiaxial loading Alternating  torsion  and  multiaxial  (combined rotating  bending  and  alternating  torsion  with τ/σ  =  0.5)  fatigue  tests  were  performed  on round hourglass specimens in ambient air (room temperature)  with  a  frequency  of  30  Hz.  In addition  tension/compression  tests  were  done on mild notched round specimens (same relative stress  gradient  as  unnotched  specimens  under torsional or multiaxial  loading).  It was observed that  the  fatigue  limit  for  tension/compression load σf  is  560 MPa.  The  endurance  limit  under alternating  torsion  load  τf  is  approximately 315 MPa.  This  leads  to  a  ratio  τf/σf  of  0.56; typical for ductile materials. Therefore the Mises equivalent  stress  (for  plane  stress  state  cf. Equ. 1)  was  used  for  comparison  of  the  S/N‐curves  for  tension/compression,  torsional  and multiaxial loading, respectively.   

2 2 23ES x y x y xyσ = σ + σ − σ σ + τ   (1) 

 The  experimental  results  (Fig. 7)  show  that  the Mises  equivalent  stress  leads  to  a  good accordance of fatigue limits in respect of type of loading.  In  the  finite  life  region differences  can be found; caused by an overestimation of shear stresses  with  respect  to  crack  propagation. Therefore the Mises equivalent stress is valid for high  cycle  fatigue  region  and  conservative  for finite life.  

Page 5: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

5

 Fig. 7 – Fatigue behavior in respect of type of loading  Influence of notches Notches  cause  stress  concentration  in combination with high  relative stress gradients. The  relative  stress  gradient,  χ*  [1/mm],  is defined as the slope of the stress distribution at the  point  of maximum  stress  and  is  related  to the maximum stress (Equ. 2).  

max

1* ddxσ

χ = ⋅σ

   (2) 

 In a  lifetime estimation based on  local  stresses the  so‐called  supporting  effect  of  notches  is included  by  consideration  of  the  local  relative stress gradient (e.g. [18]). Fatigue  tests  were  hence  done  on  unnotched and  notched  round  specimens  (mill‐annealed microstructure)  under  tension/compression  or rotating  bending  loading  (ambient  air,  room temperature).  The  experimental  results  are shown  in  Fig. 8.  The  plotted  stress  amplitudes are  Mises  equivalent  stresses  due  to  the multiaxial  stress  state  in  the  notch  roots.  All S/N‐curves  correspond  to  a  survival probability of 50%. The  experimental  results  show  that  the  mill‐annealed microstructure exhibits for χ*<0.4 and χ*>0.5  no  supporting  effect  in  the  high  cycle fatigue  region.  Only  stress  gradients  between 0.4 and 0.5  led  to higher  fatigue  limits. Due  to additional fatigue tests on STPQ Ti‐6Al‐4V  it can be  suggested  that  this  (currently  unclear) behavior is limited on MA microstructures. 

 Fig. 8 – Fatigue behavior in respect of notches 

 FATIGUE MODELS 

The experimental  results  show  that  the  fatigue behavior  of  Ti‐6Al‐4V  is  influenced  by microstructure,  mean  stress  and  notches. Models were hence developed for consideration of these influences in a lifetime prediction based on local stresses.  Linking microstructure and fatigue The microstructure was related to  fatigue using several microstructural parameters. The  fatigue limit was  thereby  linked with mean primary α‐grain size  (via Hall‐Petch  relationship) or  (α+β)‐colony  size  (via  linear  relation),  depending  on the (α+β)‐content, cf. Fig. 9. The fatigue  limit of microstructures  with  low  (α+β)‐content depends  on  the  primary  α‐grain  size,  those  of microstructures  with  higher  (α+β)‐content depends on the (α+β)‐colony size.  

Fig. 9 – Linking microstructure and fatigue limit 

Page 6: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

6

Equ. 3 (for Cα+β< 20%) and Equ. 4 (for Cα+β> 30%, cf.  Fig. 10)  represent  the  mathematic description  for  both  regions  marked  in  Fig. 9. Thereby αp is the mean primary α‐grain size [m] and Col the (α+β)‐colony size [µm].  

,10.36 350f M

p

σ = +α

  (3) 

 

, 685 6.8f M Colσ = −     (4) 

 

 Fig. 10 – Linking microstructure and fatigue limit 

 Analyses  of  the  crack  initiation  phase  in  mill‐annealed  and  solution  treated  Ti‐6Al‐4V  were done under rotating bending loading (R=‐1) with constant  stress  amplitude  (750 MPa). Approximately  25%  of  the  total  lifetime  were thereby defined as crack initiation phase.  

 Fig. 11 – Initial crack length distribution 

These  measurements  confirmed  that  fatigue cracks  initiate  even  in  primary  α‐grains  or  in (α+β)‐colonies. The size of these microstructural features  is  hence  affecting  the  fatigue  limit.  In spite  of  the  low  (α+β)‐content  (approximately 20%)  of  the mill‐annealed microstructure,  58% of  the  fatigue  cracks  initiate  in  the  lamellar (α+β)‐phase.  In  the  solution  treated microstructure with the higher (α+β)‐content of 51% almost 80% of the cracks nucleate in (α+β)‐phase.  Therefore  it  can  be  concluded  that  the cracks initiate easier in (α+β)‐phase owing to an alloy element partitioning effect, cf. [4]. The  initial  crack  length  distributions  for  both microstructures can be found in Fig. 11. Weibull‐fits were used for approximation. A comparison of  the  initial  crack  length  distributions  shows that  the  initial  cracks  are  smaller  in  the  mill‐annealed microstructure.  The measurement  of the  microstructurally  short  crack  growth exhibited  that the cracks propagate  faster  in α‐phase  than  in  (α+β)‐regions.  This  seems  to  be the  reason  for  the  lower  fatigue  strength  of microstructures with low (α+β)‐content. The  microstructure  also  plays  a  major  role regarding  long  crack  growth  (cf.  Fig. 4).  For  a quantitative  link  between  microstructure  and crack  growth  the  experimental  stress  intensity factor thresholds were plotted  in respect of the stress  ratio  R,  [15].  A  linear  relationship  was chosen  to  fit  the  data  points.  Thereby  a  fixed point was  found at a  stress  ratio of 0.87 and a stress intensity factor threshold of 1.75 MPa√m. The  slope  kth of  the  fitting  lines was  linked  via combination  of  Hall‐Petch‐approach  and Boltzmann  sigmoid  with  the  microstructural parameters connectivity Con [%] and primary α‐grain size αp [m], cf. Equ. 5 and Fig. 12.  

 5

1 3.20.0156 9.38

1th Con

p

k

e⎛ ⎞⎜ ⎟⎝ ⎠

= − −α

+

  (5) 

 This  microstructural‐based  slope  leads  in combination  with  the  fixed  point  mentioned before  to  a  model  for  the  estimation  of  the stress  intensity  factor  threshold  in  respect  of microstructure and stress ratio. 

Page 7: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

7

Additional  information  and  the  link  of  fatigue strength  in  the  finite  life  region  with microstructural parameters can be found in [15]. 

 Fig. 12 – Linking microstructure and crack growth 

 Linking relative stress gradient and fatigue The  supporting  effect  of  a  relative  stress gradient  is  often  considered  in  lifetime prediction  based  on  local  stresses  with  an exponential  relation  [19].  Previous  work  [10] and the fatigue tests on unnotched and notched specimens  show  that  Ti‐6Al‐4V  exhibits  no supporting  effect  in  the  high  cycle  fatigue region, and  in the finite  life region for χ*<2 too (Fig. 13). Therefore  it can be suggested that the fatigue  limit  in  respect  of  the  stress  gradient σf,MG  is  equal  to  the  fatigue  limit  of  the microstructural‐based model σf,M, Equ. 6.  

, ,f MG f Mσ = σ     (6)  

 Fig. 13 – Linking relative stress gradient and fatigue 

The  mill‐annealed  microstructure  shows  some anomalies  at  low  stress  gradients (approximately  0.5 mm‐1).  Higher  fatigue strengths  were  observed;  both,  under tension/compression  and  under  rotating bending  loading.  It  can  be  suggested  that  the “normal”  fatigue  limit  owing  to  the microstructure  is  increased  if the relative stress gradient  χ*  is  between  0.4  and  0.5 mm‐1.  For finite life, the tension/compression test result at χ*=0.5  is  concordant  with  the  test  results  at higher and  lower stress gradients and also with the  microstructural‐based  fatigue  strength  (cf. [15]).  But  the  rotating  bending  test  result  for χ*=0.4  exhibits  anomalous  fatigue  behavior  in finite  life  region  too.  It  is  assumed  that  these anomalies  are  limited  on  mill‐annealed microstructures  only.  Further  research  will  be done  on  Pancake  mill‐annealed  and  V‐shape STPQ for clarification of these anomalies.  Linking mean stress and fatigue Several models exist to describe the influence of mean  stress  on  the  fatigue  strength  in  the region  between  R=‐1  and  R=1,  e.g.  Goodman relation  or  Gerber  parable  [20].  But  the experimental  results  show  that  these  models are non‐conservative  for Ti‐6Al‐4V with  respect to the fatigue limit. Therefore a new model was developed where the stress ratio R is linked with the  stress  amplitude  at  108  load  cycles  via exponential relation (Equ. 7), cf. Fig. 14.  

0.834(1 ), ,

Rf MGM f MG e− +σ = σ ⋅   (7) 

 

 Fig. 14 – Linking stress ratio and fatigue limit 

Page 8: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

8

This model was  used  for  the Haigh  diagram  in Fig. 15;  supplemented by  the  run‐out  level at a stress ratio R=‐∞ and the 0.2% yield strength at R=1.  

 Fig. 15 – Haigh diagram for mill‐annealed Ti‐6Al‐4V 

  Importance of maximum stress Both,  the  experimental  results with  impressed mean  stress  and  those  with  different  stress gradients  lead  to  the  assumption  that  the maximum stress determines the fatigue  limit of Ti‐6Al‐4V.  It  can  be  concluded  that  the  crack initiates  if  a  certain  equivalent  stress  level  is reached (Fig. 16); independent of stress gradient or stress ratio.  

Fig. 16 – Importance of maximum stress 

 Considering further influences Further  important  influences  on  the  fatigue behavior  of  Ti‐6Al‐V  are  the  surface  state  and operation temperature. The  influence  of  surface  state  (with  respect  to surface roughness and residual stresses) on  the fatigue  behavior  is  reported  in  [21]. Additional research  work  will  be  done  to  include  these results  in  a  computational  lifetime  prediction. 

One  possible  approach  is  to  include  residual stresses  in  the  finite element  simulation. These residual  stresses acting  in a  lifetime estimation as  mean  stresses.  The  roughness  can  be included as a separate reduction factor. Ti‐6Al‐4V  is used up  to 350°C but  the  influence of elevated temperature on the fatigue behavior has  very  rarely  been  reported.  Tokaji  [22] showed  that  the  high  cycle  fatigue  behavior  is significantly  influenced  by  temperature.  His experimental  results  are  shown  in  Fig. 17; supplemented  by  yield  strengths  of  mill‐annealed  Ti‐6Al‐4V  at  different  temperatures reported by Boyer et al. [1].  It can be seen that the tensile strength and the fatigue limit exhibit, up  to  approximately  630 K  (the  maximum operation  temperature  of  Ti‐6Al‐4V components),  the  same  decrease  with increasing  temperature.  Therefore  a  model  is suggested  using  a  linear  relation  between temperature T [K] and fatigue strength (Equ. 8).  

, ,0.9(293 )f f MGM RTTσ = − + σ   (8) 

 Further research work is necessary to verify this model for the present materials.  

 Fig. 17 – Linking strength and temperature 

 VERIFICATION 

The  verification  of  the  presented  models  has been  done  on  a  purpose  designed  engine mount.  First  results  regarding  computational lifetime  estimation  are  presented;  component tests will follow. 

Page 9: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

9

A  first  approach  was  used  to  link thermomechanical  processing  and microstructure. Therefore  it was possible to get the  microstructure‐distribution  in  the component  via  forging  simulation.  This distribution  was  mapped  from  the  forging simulation mesh  to  a  finite  element  (FE) mesh for stress calculation. The local stress tensor and the local S/N‐curve (based on the fatigue models presented  above)  were  hence  calculated  in every  node  of  the  FE  mesh.  A  damage accumulation  (according  to Miner, cf.  [20]) was done  to  get  the  damage  distribution  in  the component.  The  combination  of  fatigue  limit and  stress  intensity  factor  threshold  (e.g. according  to  Kitagawa  and  Takahashi  [14]) results  in  a  distribution  of  the  allowable  crack size for no‐growth (Fig. 18). 

Fig. 18 – Colony size (l) and allowable crack size (r) 

 CONCLUSION 

Fatigue tests were done on Ti‐6Al‐4V specimens. The  experimental  results  were  analyzed  and used  for  generation  of  several  fatigue models, cf. (Fig. 19). With the knowledge of the geometry and load of a  component a  finite element  (FE) analysis  can be  done  to  get  the  stress  distribution.  An additional  forging  simulation  leads  to  the microstructure‐distribution  in  the  forging.  A combination  of  stresses,  microstructural parameters  and  fatigue  models  affords  a lifetime prediction based on  local  stresses. This information  can  then  be  used  for  optimization of the thermomechanical processing and/or the geometry for maximum durability and minimum weight.  Finally,  the  forging  simulation  delivers the  optimized  process  parameters  for  the forging of an optimized lightweight component.  

Fig. 19 – Lightweight design of Ti‐6Al‐4V forgings 

 ACKNOWLEDGMENTS 

The  authors  would  like  to  thank  the  Austrian Federal Ministry  for  Transport,  Innovation  and Technology,  the  Austrian  Federal  Ministry  of Economics and  Labor,  the  federal governments of Styria, Tyrol, Vienna, Upper Austria and Lower Austria  and  the  Austrian  Research  Promotion Agency  for  the  funding  of  this  work,  in  the framework of the Austrian Aeronautics Research Program  and  FFG’s  BRIDGE  program.  The support by Böhler Schmiedetechnik GmbH & Co KG Kapfenberg is much valued.  

REFERENCES 

[1]  Boyer R., Welsch G., Collings E.W. Materials Properties Handbook: Titanium Alloys. ASM International, 1994, ISBN 0‐871‐70481‐1, 483‐547. 

[2]  Adachi S., Wagner L., Lütjering G. Influence of microstructure and mean stress on fatigue strength of Ti‐6Al‐4V. In: Lütjering G, Zwicker U, Bunk W, editors. Titanium '84 – Science and Technology, Vol. 4. Munich, Deutsche Gesellschaft für Metallkunde EV 1985:2051‐58. 

[3]  Nalla R.K., Boyce B.L., Campbell J.P., Peters J.O., Ritchie R.O. Influence of Microstructure on High‐Cylce Fatigue of Ti‐6Al‐4V: Bimodal vs. Lamellar Structures. Metallurgical and Materials Transactions A; 2002, 33A: 899‐918. 

[4]  Lütjering G., Williams J.C. Titanium. 2nd Edition, Springer‐Verlag, 2007, ISBN 978‐3‐540‐71397‐5 

[5]  Peters M., Gysler A., Lütjering G. Influence of microstructure on the fatigue behavior of Ti‐6Al‐4V. Titanium '80, Science and Technology, Vol. 3, pp. 1777‐1786, Japan, 1980. 

[6]  Oberwinkler B., Javidi A., Leitner H. Schwingfestigkeit von Ti‐6Al‐4V – Betrachtung mehrerer Einflussgrößen. Pohl M, editor. Tagung Werkstoffprüfung 2007. Düsseldorf: Verlag Stahleisen GmbH, pp. 145‐150, ISBN 978‐3‐514‐00753‐6. 

 

Page 10: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

10

[7]  Bache M.R., Evans W.J., Suddell B., Herrouin F.R.M. The effects of texture in titanium alloys for engineering components under fatigue. International Journal of Fatigue, 2001; 23: S153‐S159. 

[8]  Zuo J.H., Wang Z.G., Han E.H. Effect of microstructure on ultra‐high cycle fatigue behaviour of Ti‐6Al‐4V. Materials Science and Engineering A, 2008; 473: 147‐152. 

[9]  Bower A. The Effect of Testing Direction on the Fatigue and Tensile Properties of a Ti‐6Al‐4V Bar. Paper presented at the 2nd International Conference on Titanium, reported in: Fatigue Data Book: Light Structural Alloys. Library of Congress Cataloging‐in‐Publication Data, ASM International, 1995, ISBN 0‐87170‐607‐9. 

[10] Oberwinkler B. Schwingfestigkeit von Ti‐6Al‐4V – Betrachtung mehrerer Einflussgrößen. Diploma thesis, University of Leoben, 2007. 

[11]  Ivanova S.G., Cohen F.S., Biederman R.R., Sisson R.D. Jr. Role of microstructure in the mean stress dependence of fatigue strength in Ti‐6Al‐4V alloy. In: Boyer R.R., Eylon D., Lütjering G., editors. Fatigue Behavior of Titanium Alloys. TMS 1999 

[12] Calles W. Schwingfestigkeit und Gefügeparameter der Legierung TiAl6V4. Roell Amsler Symposium 98/99, World of Dynamic Testing, 2000, 147‐153, ISBN 3‐89653‐883‐7. 

[13]  Lazzeri L., Mariani U. Application of Damage Tolerance principles to the design of helicopters. International Journal of Fatigue, 2009; 31: 1039‐1045. 

[14] Kitagawa H., Takahashi S. Applicability of fracture mechanics to very small cracks or cracks in the early stage. In Proceedings of the second int. conference on mech. behaviour of matls., ASM; 1976. pp. 627‐631. 

[15] Oberwinkler B, Riedler M, Eichlseder W. Importance of local microstructure for damage tolerant light weight design of Ti–6Al–4V forgings. Int. J. Fatigue, 2009, Article in Press, doi:10.1016/j.ijfatigue.2009.06.021 

[16] Morrissey R.J., McDowell D.L., Nicholas T. Frequency and stress ratio effects in high cycle fatigue of Ti‐6Al‐4V. Int. J. Fatigue, 1999, 21: 679‐685 

[17] Bellows R.S., Muju S., Nicholas T. Validation of the step test method for generating Haigh diagrams for Ti‐6Al‐4V. Int. J. Fatigue, 1999, 21:687‐697 

[18]  Leitner H. Simulation des Ermüdungsverhaltens von Aluminiumgusslegierungen. Dissertation, University of Leoben, 2001. 

[19]  Eichlseder W. Rechnerische Lebensdaueranalyse von Nutzfahrzeugkomponenten mit der Finite Elemente Methode. Dissertation, TU Graz, 1989. 

[20] Haibach E. Betriebsfestigkeit: Verfahren und Daten zur Bauteilberechnung. Springer, 2006, ISBN 9783540293637. 

[21] Oberwinkler B., Riedler M., Eichlseder W. Importance of Residual Stresses and Surface Roughness Regarding Fatigue of Titanium Forgings. J. of ASTM Int., 2009, Article in Press. 

[22]  Tokaji K. High cycle fatigue behaviour of Ti‐6Al‐4V alloy at elevated temperatures. Scripta Materialia, 2006; 54: 2143‐2148. 

CONTACT 

Name:   Bernd Oberwinkler Affiliation:  University of Leoben (Austria)   Institute of Mechanical Engineering Address:  Franz‐Josef‐Strasse 18   8700 Leoben   Austria Phone:  0043 3842 / 402 ‐ 1466 Fax:  0043 3842 / 402 ‐ 1402 E‐Mail:  [email protected] Homepage: www.unileoben.ac.at  Biography Bernd Oberwinkler was born  in 1984  in Austria. He  studied  Mechanical  Engineering  at  the University of Leoben  (Austria) and graduated  in 2007 with  honors.  Since  2007 Oberwinkler  has been scientific assistant and PhD student at the Institute  of  Mechanical  Engineering  at  the University  of  Leoben.  In  2008,  he  received  the Johann‐Puch‐Award  for  Excellence  in Automotive  Engineering  and  the  Honor  Award of  the  Austrian  Motor  Vehicle  Association  in recognition of his diploma thesis. In addition, he was  awarded  the  Appreciation  Prize  of  the Austrian  Federal  Minister  for  Science  and Research.  

Page 11: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

Lightweight Design of Ti-6Al-4V Forgings

B. Oberwinkler1, M. Riedler2, W. Eichlseder1 , M.F. Gutknecht3

1Institute of Mechanical Engineering, University of Leoben, Austria2Böhl S h i d t h ik G bH & C KG K f b A t i2Böhler Schmiedetechnik GmbH & Co KG Kapfenberg, Austria

3Embraer S.A., S.J. dos Campos, Brazil

TITANIUM 2009Hawaii USA

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 1

Hawaii, USASeptember 15, 2009

Page 12: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

OverviewOverview

Overview

ModelsConclusion

Material CharacterizationVerification

Experimental Results

Motivation

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 2

Page 13: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

OverviewOverview

Overview

ModelsConclusion

Material CharacterizationVerification

Experimental Results

Motivation

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 3

Page 14: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

Lightweight Design in AviationLightweight Design in Aviation

Motivation

Airframe: 7 wt.-% Ti

Reduction of fuel consumption:~ 30 % of take-off weight is fuel

I f l dIncrease of payload

Snowball effect:1 kg reduction of a component save additional1 kg reduction of a component save additional1 kg in airplane (engine, gears, …)

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 4

Engine: 36 wt.-% Ti

Page 15: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

Light Weight Design of Ti-6Al-4V Structural Components

Motivation

?Design

?

?? ??

LightWeight Design

Low density

Corrosionresistance

Good mechanicalproperties

Material ProcessingLow density

Hi h t th

Ti-6Al-4V ForgingNear net shape

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 5

High strength Near net shape

Page 16: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

Approach for Damage Tolerant Lightweight Design

Motivation

Geometry ForgingSimulation

FE Analysis Stress Distribution

Local Microstructure

Local Stress Intensity ThresholdMicrostructure Intensity Threshold

Local Microstructural-

based S/N-Curves

Local S/N-CurvesLocal Lifetime Local Damage Tolerance

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 6

Further Influences Mean Stress, NotchesSurface, Multiax. Loading

Page 17: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

Approach for Damage Tolerant Lightweight Design

Motivation

Geometry ForgingSimulation

FE Analysis Stress Distribution

Local Microstructure

Local Stress Intensity ThresholdMicrostructure Intensity Threshold

Local Microstructural-

based S/N-curves

Local S/N-CurvesLocal Lifetime Local Damage Tolerance

Closed Otimization Loop

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 7

Mean Stress, NotchesSurface, Multiax. Loading Further Influences

p

Page 18: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

OverviewOverview

Overview

ModelsConclusion

Material CharacterizationVerification

Experimental Results

Motivation

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 8

Page 19: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

Material Characterization

Material Characterization

V Shapes PancakesFeedstock billet V-Shapes PancakesFeedstock billet

Closed-die forgingForged on screw pressForging temp 930°C

Open-die forgingForged on hydraulic press

Forging temp 930°CØ230mm

As received

© Metalysis

Forging temp. 930°CTwo heats

Forging temp. 930°COne heat

As-received

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 9

Page 20: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

Material Characterization

Material Characterization

MA

STAR

Highdiversity

STPQ

diversity

STRA

AR…As-receivedMA…Mill-annealed

BA…Beta-annealed

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 10

MA

BA ST…Solution treatedRA…Recyrst.-annealed

STPQ…ST polymer quenched

Page 21: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

OverviewOverview

Overview

ModelsConclusion

Material CharacterizationVerification

Experimental Results

Motivation

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 11

Page 22: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

Fatigue Behavior in Respect of MicrostructureFatigue Behavior in Respect of Microstructure

Experimental Results

Huge variation of fatigue strength and crack propagation rate

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 12

Page 23: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

Fatigue Behavior in Respect of Microstructure

Experimental Results

V-Shape MA Pancake ST(α+β)-content: 20%

Crack initiates in:58% (α+β)-phase

(α+β)-content: 51%

Crack initiates in:77% (α+β)-phase58% (α+β) phase

42% α-phase77% (α+β) phase

23% α-phase

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 13

Page 24: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

High Cycle Fatigue in Respect of Mean Stress and Notches

Experimental Results

χ* = 0.4…0.5ΝΤ > 107

χ* < 0.4 or > 0.5

R = 0

σ Relative

Significant influence of impressed mean stress

High notch sensitivity &

σmax

σ Relativestress gradient

max

σχ ⋅=′dxd

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 14

g yno supporting effect due to stress gradient

x

Page 25: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

Influence of Multiaxial Loading

Experimental Results

Differences atDifferences atfinite life region

Accordance atfatigue limit

Mises equivalent stress:2 23σ σ + τ

Valid for high cycle fatigueOverestimation of shear stress in finite life region

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 15

, 3a ES nσ = σ + τ gConservative for finite life

Page 26: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

OverviewOverview

Overview

ModelsConclusion

Material CharacterizationVerification

Experimental Results

Motivation

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 16

Page 27: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

Influence of Local Microstructure

Models

Stress intensity factor threshold

kth

Fixedpoint

f(Col)f(αp)

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 17

Page 28: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

Influence of Mean Stress and Notches

Models

σmax = const.

100%

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 18

Maximum stress significant for HCF100%

Page 29: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

OverviewOverview

Overview

ModelsConclusion

Material CharacterizationVerification

Experimental Results

Motivation

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 19

Page 30: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

Verification

Verification

Geometry FE-Analyses Results

Purpose designedengine mount

Forging simulationMicrostructure distribution

Damage distribution

Computational lifetimeprediction has been done

C t t t

Finite-element analysisMises stress distribution

Allowable crack sizedistribution

Component testswill follow

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 20

Page 31: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

OverviewOverview

Overview

ModelsConclusion

Material CharacterizationVerification

Experimental Results

Motivation

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 21

Page 32: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

ConclusionConclusion

Conclusion

LoadSpecimens

FE-Analysis Fatigue-ModelsStress

OptimizedDurabilityGeometry Lifetime-Prediction

OptimizationMicrostructural Parameters

Forging-Simulation

Forging Optimized

Microstructural Parameters

Process Parameters

Forging pComponent

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 22

Page 33: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

Acknowledgements & Literature

Acknowledgments & Literature

The authors would like to thank the Austrian Federal Ministry for Transport,Innovation and Technology, the Austrian Federal Ministry of Economics and Labor,the federal governments of Vienna, Styria, Tyrol, Upper Austria and Lower Austriag y y ppand the Austrian Research Promotion Agency for the funding of this work, in theframework of the Austrian Aeronautics Research Program and FFG’s BRIDGEprogram. The support by Böhler Schmiedetechnik GmbH & Co KG is much valued.

Literature[1] Oberwinkler B. et al.: “Importance of local microstructure for damage tolerant

light weight design of Ti–6Al–4V forgings“ Int J Fatigue (2009)light weight design of Ti 6Al 4V forgings , Int. J. Fatigue (2009), doi:10.1016/j.ijfatigue.2009.06.021, Article in Press.

[2] Oberwinkler B. et al.: “Importance of Residual Stresses and Surface Roughness Regarding Fatigue of Titanium Forgings” J of ASTM Int (2009)Roughness Regarding Fatigue of Titanium Forgings , J. of ASTM Int. (2009), Article in Press.

[3] Oberwinkler B. et al.: “Influence of Shot Peening on the Fatigue Behaviour of Ti-6Al-4V in Respect of Multiaxial Loading” 10th Int Conf on Shot Peening

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 23

Ti 6Al 4V in Respect of Multiaxial Loading , 10 Int. Conf. on Shot Peening (ICSP10), Japan, Conf. Proc., Ed. Tosha K., pp. 388-393, 2008.

Page 34: LIGHTWEIGHT DESIGN OF Ti 6Al 4V FORGINGS€¦ · The objective of this study was to determine the fatigue behavior of Ti‐6Al‐4V in the finite and in the high cycle fatigue region

University of LeobenInstitute of Mechanical Engineering

Thank you forThank you for your attention!

DI Bernd OberwinklerDI Bernd OberwinklerUniversity of LeobenUniversity of Leoben

Institute of Mechanical EngineeringInstitute of Mechanical Engineering

TITANIUM2009_OberwinklerB.ppt© MUL-AMB, 2009 24

[email protected]@unileoben.ac.atPhone: 0043 3842 / 402Phone: 0043 3842 / 402--14661466

www.unileoben.ac.atwww.unileoben.ac.at