Light and heavy elements nucleosynthesis in low mass AGB Stars

20
O. Straniero, L. Piersanti (Osservatorio di Teramo, INAF) R. Gallino (Universita’ di Torino) I. Dominguez (Univerdad de Granada) Light and heavy elements nucleosynthesis in low mass AGB Stars S. Cristallo (Osservatorio di Teramo, INAF)

description

Light and heavy elements nucleosynthesis in low mass AGB Stars. S. Cristallo. (Osservatorio di Teramo , INAF). O. Straniero, L. Piersanti (Osservatorio di Teramo , INAF) R. Gallino (Universita’ di Torino) I. Dominguez (Univerdad de Granada). OUTLINE. M=2M  AGB models (FRANEC Code). - PowerPoint PPT Presentation

Transcript of Light and heavy elements nucleosynthesis in low mass AGB Stars

Page 1: Light and heavy elements nucleosynthesis in low mass AGB Stars

O. Straniero, L. Piersanti (Osservatorio di Teramo, INAF)

R. Gallino (Universita’ di Torino)

I. Dominguez (Univerdad de Granada)

Light and heavy elements nucleosynthesis in low

mass AGB Stars

S. Cristallo(Osservatorio di Teramo, INAF)

Page 2: Light and heavy elements nucleosynthesis in low mass AGB Stars

OUTLINE

The formation of the 13C pocket and the nuclear network

Light and heavy elements nucleosynthesis

Comparison with observations

M=2M AGB models (FRANEC Code)

(Z=1.5x10-2 ≡ Z) (Z=1x10-4)

DISK STARS HALO STARS

Page 3: Light and heavy elements nucleosynthesis in low mass AGB Stars

s-process

Z

Β stability

valley

N

Z

Weak component (A<90)

Main component (90<A<204)

Strong component (204<A<209)AGB

13C(α,n)16O reaction

Page 4: Light and heavy elements nucleosynthesis in low mass AGB Stars

How we treat the convection

• Schwarzschild criterion: to determine convective borders

• Mixing length theory: to calculate velocities inside the convective zones

At the inner border of the convective At the inner border of the convective envelopeenvelope, we assume that the velocity , we assume that the velocity profile drops following an profile drops following an exponentially decaying lawexponentially decaying law

v = vbce · exp (-d/β Hp) • Vbce is the convective velocity at the

inner border of the convective envelope (CE)

• d is the distance from the CE

• Hp is the scale pressure height

• β = 0.1REF: Freytag (1996), Herwig (1997),REF: Freytag (1996), Herwig (1997),

Chieffi (2001), Straniero(2005), Chieffi (2001), Straniero(2005), Cristallo (2001,2004,2006)Cristallo (2001,2004,2006)

WARNING: vbce=0 except during Dredge Up episodes

Page 5: Light and heavy elements nucleosynthesis in low mass AGB Stars

Gradients profiles WITHOUT exponentially decaying velocity profileGradients profiles WITH exponentially decaying velocity profile

CONVECTIVEENVELOPE

RADIATIVE He-INTERSHELL

Duringa TDUepisode

Page 6: Light and heavy elements nucleosynthesis in low mass AGB Stars

Formation of the 13C-pocket

M=2M

Z=Z

a) Maximum envelope penetration (during TDU);

b) 12C(p,)13N(β+)13C and13C(p,)14N reactions;

c) 22Ne(p,)23Na;

d) the envelope receeds.

Page 7: Light and heavy elements nucleosynthesis in low mass AGB Stars

The resulting pocket(s)

ΔM~10-3 M

13C-pocket

23Na-pocket

14N-pocket

Page 8: Light and heavy elements nucleosynthesis in low mass AGB Stars

Variation of the 13C-pocket pulse by pulse

X(13Ceff)=X(13C)-X(14N)*13/14

1st 11th

14N strong neutron poison via

14N(n,p)14C reaction

Page 9: Light and heavy elements nucleosynthesis in low mass AGB Stars

Calibration of the free parameter

Different choices ofthe β parameter in the velocity profile

algorithm

β~0.11. Low mass AGB Stars2. Treatment of convection

Cristallo S. (PhD Thesis)

H12C

14N13C

Page 10: Light and heavy elements nucleosynthesis in low mass AGB Stars

About 500 isotopes

linked by more than linked by more than 700700 reactions reactions

Reactions Reference(n,γ)

(n,p) and (n,α)p and α captures

β decays

Bao & KaeppelerKoehler,Wagemans

NACRETakahashi&Yokoi

THE NETWORK

Page 11: Light and heavy elements nucleosynthesis in low mass AGB Stars

Solarmetallicity

Page 12: Light and heavy elements nucleosynthesis in low mass AGB Stars

First TDU episode andconsequent 13C-pocket

formation

THE AGB PHASETHE AGB PHASEM=2M

Z=Z

(Z=1.5x10-2)

Engulfment of the 13C-pocket in theconvective shell

Radiative burning of13C(α,n)16O reaction

C/O=1

C/O~2

Page 13: Light and heavy elements nucleosynthesis in low mass AGB Stars

Convective 13C(α,n)16O

22Ne(α,n)25Mg

CONVECTIVE 13C burning 60Fe production

t=0 at the13C-pocket ingestion

in the convective shellCristallo et al. 2006 (astro-ph/0606374)

Page 14: Light and heavy elements nucleosynthesis in low mass AGB Stars

1st TDUNO 60Fe

1st TDU26Al dredged up MAINLY

from the He-intershell

2nd TDUconvective 13C

60Fe

Page 15: Light and heavy elements nucleosynthesis in low mass AGB Stars

Finaldistributions

Comparison with post-process calculations

POST PROCESS(Gallino et al. 1998)

M=2M , Z=2x10-2

(Straniero et al. 2003)

13C pocket 1. Artificially introduced

2. Constant pulse after pulse

1. Artificially introduced2. Constant pulse after pulse

Page 16: Light and heavy elements nucleosynthesis in low mass AGB Stars

Comparison with Galactic Carbon Stars

Abia et al. 2002 FRANEC

( 6th pulse with TDU)

Surface C/O=1

[ls/Fe]=([Sr/Fe]+[Y/Fe]+[Zr/Fe])/3 [hs/Fe]=([Ba/Fe]+[La/Fe]+[Ce/Fe] +[Nd/Fe] +[Sm/Fe])/5

Z ~ Z

Page 17: Light and heavy elements nucleosynthesis in low mass AGB Stars

Lowmetallicity

Page 18: Light and heavy elements nucleosynthesis in low mass AGB Stars

[C/Fe]=3.3 deX

[F/Fe]=3.7 deX

[ls/Fe] ~ 1.7

[Pb/hs] ~ 3.1

[hs/Fe] ~ 2.3

[Na/Fe]=2.8 deX

Pulse by pulse surface enrichments (Z=10-4)

1

10

last

5

C-star Lead-star

Page 19: Light and heavy elements nucleosynthesis in low mass AGB Stars

Comparison with LEAD (Halo) stars

(Van Eck et al. 2003)

McClure & Woodsworth 1990 ORBITAL PARAMETERS

REQUESTED DILUTION

EXTRINSIC AGB?√

Page 20: Light and heavy elements nucleosynthesis in low mass AGB Stars

Future plans

• Exploring effects induced by C/O surface variations in models at low metallicities

• Performing new models with a reduced mass-loss

• Calculating more massive AGB stars (Al production)1. M=3M and Z=Z (already done)2. Currently running M=6M and Z=Z

Yields and pulse by pulse [El/Fe] soon available on-line at:

http://www.oa-teramo.inaf.it/osservatorio/personale/cristallo/data_online.html