Exploring mass-loss in M-type AGB stars · 2014. 9. 1. · Exploring mass-loss in M-type AGB stars...

12
Exploring mass-loss in M-type AGB stars Sara Bladh, Uppsala University Collaborators: Susanne Höfner, Kjell Eriksson, Bernhard Aringer and Walter Nowotny

Transcript of Exploring mass-loss in M-type AGB stars · 2014. 9. 1. · Exploring mass-loss in M-type AGB stars...

  • Exploring mass-loss in M-type AGB stars

    Sara Bladh, Uppsala University

    Collaborators: Susanne Höfner, Kjell Eriksson,

    Bernhard Aringer and Walter Nowotny

  • RHD model atmospheres

    (W. Nowotny)

  • Wind models of M-type AGB stars

    (Bladh et al. 2014, in prep.) a < b < c < d

    M=1M!

  • Dynamical properties

    (Bladh et al. 2014, in prep.) 0 5 10 15 20

    u [km/s]

    -8

    -7

    -6

    -5

    -4

    log

    (dM

    /dt [

    Msu

    n/yr

    ])

    Observations (Olofsson et al. 2002, Delgado et al. 2003)Wind models (M-type)

  • Photometric properties in near-IR

    (Bladh et al. 2014, in prep.)

    4 6 8 10 12 14(V-K)0

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    (J-K

    ) 0

    Bulge Miras (Groenewegen & Blommaert 2005)Field C-type LPVs (Bergeat 2001)Field M-type LPVs (Mendoza 1967)Wind models (M-type)

    Model values shown are means over the

    pulsation period.

  • 4 6 8 10 12 14(V-K)0

    1

    2

    3

    4

    5

    (J-K

    ) 0

    RR ScoR CarR HyaR OctR VirT ColT HorRU Vir (C-type)

    4 6 8 10 12 14(V-K)0

    1

    2

    3

    4

    5

    (J-K

    ) 0

    Model A2Model A3Model B1Model B2Model B3Model C1

    4 6 8 10 12(V-K)

    1.1

    1.3

    1.5

    1.7

    (J-K

    ) 0

    4 6 8 10 12(V-K)

    1.1

    1.3

    1.5

    1.7

    (J-K

    ) 0

    (Bladh et al. 2013)

    The photometric variations are characterised by large variations in (V-K) and small variations in (J-K)

  • 4 6 8 10 12 14(V-K)0

    1

    2

    3

    4

    5

    (J-K

    ) 0

    RR ScoR CarR HyaR OctR VirT ColT HorRU Vir (C-type)

    4 6 8 10 12 14(V-K)0

    1

    2

    3

    4

    5

    (J-K

    ) 0

    Model A2Model A3Model B1Model B2Model B3Model C1

    4 6 8 10 12(V-K)

    1.1

    1.3

    1.5

    1.7

    (J-K

    ) 0

    4 6 8 10 12(V-K)

    1.1

    1.3

    1.5

    1.7

    (J-K

    ) 0

    4 6 8 10 12 14(V-K)0

    1

    2

    3

    4

    5

    (J-K

    ) 0

    RR ScoR CarR HyaR OctR VirT ColT HorRU Vir (C-type)

    4 6 8 10 12 14(V-K)0

    1

    2

    3

    4

    5

    (J-K

    ) 0

    Model A2Model A3Model B1Model B2Model B3Model C1

    4 6 8 10 12(V-K)

    1.1

    1.3

    1.5

    1.7

    (J-K

    ) 0

    4 6 8 10 12(V-K)

    1.1

    1.3

    1.5

    1.7

    (J-K

    ) 0

    (Bladh et al. 2013)

    The photometric variations are characterised by large variations in (V-K) and small variations in (J-K)

    The variations in (V-K) are due to molecular changes during the pulsation cycle, not changes in the dust

  • Spectra in the mid-IR

    1 10 [µm]

    1032

    1033

    1034

    1035

    1036

    1037

    1038

    L [e

    rg/s

    ]

    V I J H K L M

    Missing silicate features!

    (Bladh et al. 2013)

  • 1 10λ [µm]

    1032

    1033

    1034

    1035

    1036

    1037

    1038

    νL

    ν [

    erg

    /s]

    V I J H K L M

    Freezing of dust temp at 800KFreezing of dust temp at 500K

    No freezing of dust temp

    Spectra in the mid-IR

    (Bladh et al. 2014, in prep)

    Keeping the grain temperature constant from ~3R* outwards shows that the missing features are not due to low abundance of silicates, but too cool grains.

  • 1 10λ [µm]

    1032

    1033

    1034

    1035

    1036

    1037

    1038

    νL

    ν [

    erg

    /s]

    V I J H K L M

    Freezing of dust temp at 800KFreezing of dust temp at 500K

    No freezing of dust temp

    1 10 [µm]

    1032

    1033

    1034

    1035

    1036

    1037

    1038

    L [e

    rg/s

    ]

    V I J H K L M

    Mg2SiO4 core, MgFeSiO4 mantel (10% of the radius)Mg2SiO4 cor, MgFeSiO4 mantel (5% of the radius)

    Mg2SiO4 core, MgFeSiO4 mantel (1% of the radius)Pure Mg2SiO4 grains

    Spectra in the mid-IR

    Keeping the grain temperature constant from ~3R* outwards shows that the missing features are not due to low abundance of silicates, but too cool grains.

    (Bladh et al. 2014, in prep)

    Adding a thin mantel of MgFeSiO4 when this material is thermally stable will also heat up the grains, resulting in silicate features.

  • 0.1

    1.0

    10.0

    Norm

    alize

    d flu

    x [J

    y]

    R Aqr (Kramer 2002, Sloan 2003)

    Model A3, 10% MgFeSiO4 mantelModel A3, 5% MgFeSiO4 mantelModel A3, 1% MgFeSiO4 mantelModel A3, pure Mg2SiO4 grains

    10 [µm]

    0.1

    1.0

    10.0

    Norm

    alize

    d flu

    x [J

    y]

    R Cas (Kramer 2002, Sloan 2003)

    Qualitative comparison

    (Bladh et al. 2014, in prep)

  • Summary

    •  We present the first extensive set of time-dependent wind models for M-type AGB stars.

    •  These wind models reproduce well both observed dynamic properties and photometry, especially the large photometric variation in the visual band during a pulsation cycle.

    •  The current wind models of M-type AGB stars

    (with pure forsterite grains) do not reproduce the characteristic silicate features. “Dirty” grains may solve this problem.