Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!!...

29
LifeCycle Analysis of Orbio ® Technologies 5000Sc Evaluation of 5000Sc vs Conventional DailyUse Cleaning Chemicals in Three Cleaning Scenarios August 28, 2011 Prepared for: Analysis By: ®

Transcript of Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!!...

Page 1: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              1        

 

Life-­‐Cycle  Analysis  of    Orbio®  Technologies  5000-­‐Sc  

 Evaluation  of  5000-­‐Sc  vs  Conventional  Daily-­‐Use  Cleaning  Chemicals  in  Three  Cleaning  Scenarios  

                 August  28,  2011                  Prepared  for:    

                                                             Analysis  By:    

 ®  

Page 2: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              2        

 

This  analysis  and  report  was  prepared  for  Orbio  Technologies  by  Ecoform,  an  environmental  consulting  firm  committed  to  the  design,  evaluation,  and  adoption  of  clean  products  and  materials  through  technical  and  policy  research.        Results  and  conclusions  of  this  report  are  based  on  data  provided  to  Ecoform  for  5000-­‐  Sc    by  Orbio  and  its  suppliers.    This  analysis  would  not  have  been  possible  without  the  cooperation  of  individual  Orbio  suppliers  and  partners  who  voluntarily  provided  data  and  confidential  business  information  in  support  of  this  effort.    Ecoform  staff  would  like  to  thank  Orbio  and  its  partners  for  their  cooperation  and  assistance  in  this  analysis.    Please  direct  any  questions  or  enquiries  about  this  report  to  the  following:    Ecoform,  LLC  9417  States  View  Drive  Knoxville,  TN  37922,  USA  [email protected]  

 

 

 

 

 

 

     

Page 3: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              3        

 

OVERVIEW  OF  LCA  STUDY    Orbio  Technologies  Group  (Orbio)  is  the  sustainable  cleaning  technology  arm  of  Tennant  Company.    Established  in  2009  to  execute  Tennant  Company’s  vision  of  becoming  the  global  leader  in  chemical-­‐free  and  other  sustainable  cleaning  technologies,  Orbio  is  dedicated  to  developing  and  marketing  environmentally  friendly  technologies  that  will  set  the  standard  for  sustainable  cleaning  around  the  world.  With  the  rapidly  growing  emphasis  on  green  building  and  human  health,  the  market  is  increasingly  demanding  cleaning  systems  that  reduce  or  eliminate  our  dependence  on  conventional  cleaning  chemicals.        Recent  research  by  Orbio  has  led  to  the  development  of  a  breakthrough  product  called  5000-­‐Sc  with  Orbio®-­‐S,  Split  Stream  Technology.    The  unit  produces  a  multi-­‐purpose  cleaning  solution  on-­‐site  using  tap  water,  electricity,  and  salt.    Use  of  this  product  not  only  reduces  environmental  impacts  across  the  life-­‐cycle  from  the  off-­‐site  production  and  transport  of  more  complicated  conventional  chemical-­‐based  systems,  but  also  eliminates  much  of  the  associated  packaging  waste.        To  assist  in  market  positioning  of  5000-­‐Sc,  Orbio  has  contracted  with  Ecoform  to  fully  evaluate  the  environmental  and  human  health  benefits  associated  with  the  use  of  the  5000-­‐Sc.  This  study  evaluates  the  relative  life-­‐cycle  benefits  associated  with  the  use  of  5000-­‐Sc  as  compared  to  conventional  daily-­‐use  cleaning  chemicals  in  three  different  cleaning  scenarios.        ORBIO  5000-­‐Sc  DESCRIPTION    Utilizing  Orbio  Split  Stream  Technology,  the  Orbio  5000-­‐Sc  electrically  restructures  tap  water  and  salt  to  create  and  store  an  environmentally  friendly  cleaning  solution  which  can  be  dispensed  for  use  in  a  variety  of  cleaning  tools  such  as  spray  bottles,  carpet  extractors  and  automatic  floor  scrubbers.    It  can  effectively  replace  many  daily-­‐use  conventional  cleaning  chemicals  including  those  used  in  automatic  scrubbers  and  pre-­‐spray  chemicals  used  with  carpet  extraction,  plus  spray  and  wipe  cleaners  such  as  those  used  with  glass,  stainless  steel,  and  all-­‐purpose  cleaners.    The  multi-­‐purpose  cleaning  solution  produced  is  capable  of  cleaning  many  soils  including  fats,  proteins  and  organic  oils.          The  5000-­‐Sc  is  shown  at  right.    The  machine  generates  0.75  gallons  per  minute  (GPM)  of  the  ready-­‐to-­‐use  cleaning  solution,  which  is  held  in  the  unit’s  120-­‐gallon  tank.    The  unit  produces  0.75  gallons  of  cleaning  solution  from  every  gallon  of  incoming  tap  water  and  consumes  approximately  one  pound  of  conventional  water  softener  salt  pellets  for  every  225  gallons  of  cleaning  solution  produced.    Potential  contaminants  are  removed  from  the  incoming  tap  water  stream  by  an  input  filter,  while  the  waste  stream  containing  a  low  concentration  

 

 

 

 

 

 

 

 

Figure  1:  Orbio  5000-­‐Sc  

Page 4: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              4        

 

of  unused  chlorine  is  filtered  using  a  separate  activated  carbon  filter  prior  to  being  discharged  directly  to  the  drain.          LIFE-­‐CYCLE  ASSESSMENT  SCOPE   LIFE-­‐CYCLE  APPROACH   Life-­‐cycle  impacts  in  a  variety  of  human  health  and  environmental  categories  resulting  from  the  cleaning  of  several  buildings  types  were  evaluated  in  a  comparative  life-­‐cycle  assessment.    Three  separate  cleaning  scenarios  were  evaluated,  each  based  on  data  from  actual  building  maintenance  operations  associated  with  each  building  type.    For  each  scenario,  the  impacts  associated  with  the  production,  transportation  and  disposal  of  the  cleaning  solutions  and  their  associated  packaging  were  calculated  to  assess  the  environmental  and  human  health  performance  of  the  Orbio  5000-­‐Sc  as  compared  to  the  use  of  conventional,  daily-­‐use  cleaning  chemicals.    Because  cleaning  operations  are  independent  of  the  manner  in  which  the  cleaning  solutions  are  produced,  other  cleaning  materials  such  as  paper  towels  and  cleaning  clothes  were  scoped  out  of  the  comparative  study  the  effect  of  which  is  considered  to  be  minimal.    The  scope  of  the  study  is  depicted  in  Figure  2.      The  life-­‐cycle  analysis  was  performed  using  version  4.3  of  the  GaBi  Life-­‐Cycle  Software.      Secondary  data  from  GaBi  and  Ecoinvent  datasets,  supplemented  by  proprietary  Ecoform  data  sets,  comprised  the  entirety  of  the  life-­‐cycle  inventory  data.    Sample  GaBi  model  diagrams  are  presented  in  Appendix  A.    Specific  impact  categories  evaluated  are  described  in  Appendix  B.    Sensitivity  analyses  identified  no  significant  gaps  or  uncertainties  in  the  study.      Overall,  data  quality  is  considered  medium  for  this  analysis,  taking  into  account  the  lack  of  primary  manufacturing  data  for  either  alternative  and  the  average  quality  of  a  few  of  the  secondary  data  sets.    Overall,  87%  of  the  total  mass  of  the  5000-­‐Sc  was  characterized  in  this  assessment.    Sensitivity  analyses  were  conducted  around  these  potential  gaps,  with  minimal  affect  on  the  overall  disparity  in  the  impacts.    As  such,  the  overall  confidence  in  the  study  is  evaluated  to  be  good.          

Figure  2:    Scope  of  LCA  Analysis  

 

Page 5: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              5        

 

LIFE-­‐CYCLE  SCENARIOS    Individual  life-­‐cycle  scenarios  were  constructed  to  assess  the  life-­‐cycle  performance  of  the  Orbio  5000-­‐Sc  relative  to  cleaning  using  conventional,  daily-­‐use  chemicals.    Scenarios  characterize  the  critical  parameters  associated  with  building  maintenance  operations  and  are  used  to  define  a  functional  unit  for  the  study.    Specific  parameters  for  each  of  the  three  scenarios  evaluated  in  this  study  are  presented  in  the  Table  1.      

   

Table  1.    Life-­‐Cycle  Scenario  –  Building  Types  

Life-­‐Cycle  Evaluation  Scenarios  Parameter  Convention  

Center  Office  Building  

University  

Total  Facility  Size  (sq  ft)  

3  million   1.25  million   3.2  million  

Floor  Area  Cleaned  (sq  ft)  

2  million   750,000   2.3  million  

Carpet/Hard  Floor  Split  (%)  

33/67   50/50   40/60  

Hard  Flooring  Type  Terrazo/  Sealed  

Concrete  Granite/Terrazo/Cera

mic  Tile  Terrazo/  

VCT/Concrete  Cleaning  Staff  (#  of  workers)  

50   33   110  

Traffic/Use  1.5  million  visitors/year  

2,500  workers  

11,000  students  

   The  functional  unit  for  the  LCA  for  each  scenario  is  defined  as  the  production  and  transportation  of  cleaning  solutions  sufficient  in  volume  to  effectively  clean  the  indoor  building  space  defined  in  each  individual  scenario  over  the  period  of  five  years.    For  example,  the  functional  unit  for  the  convention  center  scenario  would  be  the  production  and  transportation  of  cleaning  solutions  sufficient  to  clean  2  million  square  feet  of  enclosed  building  space  used  for  the  purposes  of  hosting  conventions  for  five  years  under  the  conditions  described  in  Table  1.    For  the  purposes  of  this  study,  cleaning  operations  were  considered  to  include  the  need  for  floor,  glass,  all-­‐purpose,  and  carpet  pre-­‐spray  cleaners  and  their  associated  cleaning  operations.    The  five-­‐year  period  was  selected  to  reflect  a  conservative  estimate  of  the  expected  durability  of  the  5000-­‐Sc.    

 Chemical  usage  data  collected  from  actual  cleaning  operations  on  buildings  identical  to  those  described  in  each  of  the  scenarios,  along  with  key  parameters  such  as  water  and  energy  consumption,  and  operating  time  were  used  to  compile  a  bill  of  materials  (BOM)  for  both  the  Orbio  5000-­‐Sc  and  for  the  system  of  conventional  cleaning  chemicals.    The  BOMs  used  for  this  study,  as  well  as  tables  containing  the  key  parameters  and  data  for  this  study  are  presented  in  Appendix  C.        

Page 6: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              6        

 

LIFE  CYCLE  INVENTORY  ANALYSIS   The  Life  Cycle  Inventory  Analysis  covers  the  life-­‐cycle  stages  as  shown  in  Figure  3.    

       

   

Figure  3.  Inventory  Scope  by  Life-­‐cycle  Stage      LIFE-­‐CYCLE  IMPACT  ASSESSMENT      Impacts  to  a  variety  of  key  environmental  and  resource  categories  for  the  two  compared  systems  are  presented  for  each  of  the  three  cleaning  scenarios.    Results  reflect  impacts  associated  with  the  life-­‐cycle  product  chain  consistent  with  the  scope  of  the  inventory  data.    Detailed  descriptions  of  individual  impact  categories  are  described  in  the  Appendix  B.        CONVENTION  CENTER  SCENARIO    Life-­‐cycle  impacts  assessed  for  both  the  5000-­‐Sc  and  conventional,  daily-­‐use  chemical  cleaners  are  presented  in  Table  2.    Results  are  based  on  the  convention  center  scenario  and  functional  unit,  which  specifies  that  enough  cleaning  agent  be  produced  to  clean  a  3  million  square  foot  space  for  a  period  of  5  years.    Results  are  limited  to  cleaning  tasks  performed  with  glass,  all-­‐purpose,  carpet,  and  floor  cleaners.  Results  have  been  normalized,  and  the  percent  differences  have  been  presented  in  Table  2,  and  visually  depicted  in  Figure  4.      

Table  2.    Life  Cycle  Impacts  –  Convention  Center  

LCA  Categories  Conventional  Cleaners  

5000-­‐Sc   Benefit  (%)  

Acidification   (kg  SO2)   43.8   20.03   54  

CO2  Emissions   (kg  CO2)   14,400   3,900   73  

Ecotoxicity   (ton  TEQ  eq)   35,410   20,300   43  

Eutrophication   (kg  PO4)   1.33   0.119   91  

Ozone  Depletion   (g  CFCs)   0.0025   0.000083   97  

Particulate   (kg  PM2.5)   10.2   2.94   72  

Smog   (kg  NOx)   0.0074   0.00019   98  

Page 7: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              7        

 

 

 Figure  4.    Chart  of  Relative  Impacts  –  Convention  Center  

 All  together,  this  scenario  required  the  use  of  all  four  chemical  products  totaling  3,725  gallons  of  conventional  cleaning  chemical  product  concentrates,  at  various  dilution  levels.    Results  indicate  that  production  of  cleaning  solutions  on-­‐site  with  the  Orbio  5000-­‐Sc  is  clearly  preferential  to  the  distribution  and  use  of  conventional,  daily-­‐use  cleaning  chemicals  in  support  of  cleaning  operations.    Environmental  and  human  health  impacts  ranged  from  43-­‐98  percent  better  than  those  for  conventional  chemicals  with  only  the  ecotoxicity  score  falling  below  the  50%  level.    This  is  directly  related  to  the  large  volumes  of  all  types  of  chemicals  used  in  this  cleaning  scenario,  as  well  as  to  a  chemical  product  profile  with  an  overall  high  average  dilution  rate  of  2.4  ounces  per  gallon.    Calculation  of  a  series  of  equivalent  offsets  (e.g.  car  emissions  offset)  for  specific  categories  such  as  CO2  emissions  provide  additional  context  for  the  relative  results  of  the  life-­‐cycle  comparison.    Offsets  are  calculated  by  comparing  the  net  improvement  in  a  particular  category  (e.g.  energy  consumption)  to  established  factors  such  as  the  energy  content  of  coal,  or  emissions  from  an  airplane.    The  accumulated  benefits  of  the  5000-­‐Sc  expressed  in  common  equivalent  offsets  are  presented  in  Table  3.      

Table  3.  Equivalent  Offsets  per  5000-­‐Sc  –  Convention  Center  Category   Savings  

1  Year  Savings  5  year  

Equivalent  Offsets  (per  unit)  

Energy    (MJ)  

 30,900  

 154,700  

Barrels  of  Oil  Offset  (5  yr)  –  25.0  barrels  Months  of  Household  Energy  Offset  (5  yr)  –  45.5  mos  Number  of  Households  Offset    (5  yr)  –  3.8  households  Gallons  of  Gasoline  Offset  (5  yr)  –  1,180  gallons  

CO2  Emissions  (kgCO2)  

2,100   10,500   Months  of  Passenger  Car  Travel    (5  yr)  –  27.5  mos  Number  of  Cars  Offset  (5  yr)  –  2.3  cars    

 There  are  an  estimated  535  convention  center  locations  across  North  America  and  Europe  that  have  over  400,000  square  feet  of  exhibit  space,  which  is  typically  maintained  approximately  260  days  per  

0  

20  

40  

60  

80  

100  Acid  

Ecotox  

Eutro  

Pargculate  CO2  

Ozone  

Smog  

Tradigonal  

5000-­‐Sc  

Conv  chem    cleaners  

Page 8: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              8        

 

year.    Were  40  percent  of  these  convention  centers  to  use  an  Orbio  5000-­‐Sc  machine  to  produce  on-­‐site  the  cleaning  solution  required  to  support  building  maintenance  operations,  collectively  they  would  save  enough  energy  to  power  more  than  163  homes  annually  and  offset  the  global  warming  emissions  of  nearly  98  cars  annually.            OFFICE  BUILING  SCENARIO    Life-­‐cycle  impacts  assessed  for  both  the  5000-­‐Sc  and  conventional,  daily-­‐use  chemical  cleaners  are  presented  in  Table  4.    Results  are  based  on  the  office  building  scenario  and  functional  unit,  which  specifies  that  enough  cleaning  agent  be  produced  to  clean  a  1.25  million  square  foot  office  building  for  a  period  of  5  years.    Results  are  limited  to  cleaning  tasks  performed  with  glass,  all-­‐purpose,  carpet  and  floor  cleaners.      Results  have  been  normalized,  and  the  percent  differences  have  been  presented  in  Table  4,  and  visually  depicted  in  Figure  5.      

Table  4.  Life  Cycle  Impacts  –  Office  Building    

LCA  Categories  Conventional  Cleaners  

5000-­‐Sc   Benefit  (%)  

Acidification   (kg  SO2)   18.3   9.18   50  

CO2  Emissions   (kg  CO2)   6,200   1,870   70  

Ecotoxicity   (ton  TEQ  eq)   15,200   8,530   44  

Eutrophication   (kg  PO4)   0.55   0.059   89  

Ozone  Depletion   (g  CFCs)   0.0012   0.000041   97  

Particulate   (kg  PM2.5)   4.34   1.43   67  

Smog   (kg  NOx)   0.0033   0.00010   97  

 

 Figure  5.    Chart  of  Relative  Impacts  –  Office  Building  

 

0  

20  

40  

60  

80  

100  Acid  

Ecotox  

Eutro  

Pargculate  CO2  

Ozone  

Smog  

Tradigonal  

5000-­‐Sc  

Conv  chem    cleaners  

Page 9: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              9        

 

All  together,  this  scenario  required  the  use  of  all  four  chemical  products  totaling  1,475  gallons  of  conventional  cleaning  product  concentrates,  at  various  dilution  levels.    Like  the  convention  center  scenario,  the  Orbio  5000-­‐Sc  is  clearly  preferential  to  the  distribution  and  use  of  conventional  cleaning  chemicals  in  support  of  cleaning  operations.    This  is  again  mostly  due  to  the  use  of  a  more  balanced  chemical  product  profile  comprised  of  products  of  various  concentrations.    Environmental  and  human  health  impacts  ranged  from  45-­‐97  percent  better  than  those  for  conventional,  daily-­‐use  chemicals.      

 Calculation  of  a  series  of  equivalent  offsets  (e.g.  car  emissions  offset)  for  specific  categories  such  as  CO2  emissions  provide  additional  context  for  the  relative  results  of  the  life-­‐cycle  comparison.    Offsets  are  calculated  by  comparing  the  net  improvement  in  a  particular  category  (e.g.  energy  consumption)  to  established  factors  such  as  the  energy  content  of  coal,  or  emissions  from  an  airplane.    The  accumulated  benefits  of  the  5000-­‐Sc  expressed  in  common  equivalent  offsets  are  presented  in  Table  5.        

Table  5.  Equivalent  Offsets  per  5000-­‐Sc  –  Office  Building  Category   Savings  

1  Year  Savings  5  year  

Equivalent  Offsets  (per  unit)  

Energy    (MJ)  

 13,000  

 65,200  

Barrels  of  Oil  Offset  (5  yr)  –  10.6  barrels  Months  of  Household  Energy  Offset  (5  yr)  –  19.2  months  Number  of  Households  Offset    (5  yr)  –  1.6  households  Gallons  of  Gasoline  Offset  (5  yr)  –  497  gallons  

CO2  Emissions  (kgCO2)  

860   4,320   Months  of  Passenger  Car  Travel    (5  yr)  –  11.2  months  Number  of  Cars  Offset  (5  yr)  –  0.95  cars  

There  are  an  estimated  3,000  office  building  locations  worldwide  for  Fortune  500  corporations.    Assuming  that  40  percent  of  these  buildings  were  to  generate  on-­‐site  using  the  Orbio  5000-­‐Sc  the  cleaning  solutions  required  to  support  building  maintenance  operations,  and  that  they  resemble,  on  average,  the  office  building  modeled  in  this  analysis  (see  Table  1),  they  would  collectively  save  enough  energy  annually  to  power  383  homes  annually  and  offset  the  global  warming  emissions  from  more  than  220  cars  annually.       UNIVERSITY  SCENARIO    Life-­‐cycle  impacts  assessed  for  both  the  5000-­‐Sc  and  conventional,  daily-­‐use  chemical  cleaners  are  presented  in  Table  6.    Results  are  based  on  the  university  scenario  and  functional  unit,  which  specifies  that  enough  cleaning  agent  be  produced  to  clean  a  2.3  million  square  foot  campus  for  a  period  of  5  years.    Results  are  limited  to  cleaning  tasks  performed  with  all-­‐purpose,  carpet,  and  floor  cleaners.      Results  have  been  normalized,  and  the  percent  differences  have  been  presented  in  Table  6,  and  visually  depicted  in  Figure  6.      

         

Page 10: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              10        

 

Table  6.    Life  Cycle  Impacts  –  University  

LCA  Categories  Conventional  Cleaners  

5000-­‐Sc   Benefit  (%)  

Acidification   (kg  SO2)   25.1   18.0   28  

CO2  Emissions   (kg  CO2)   8,100   3,520   57  

Ecotoxicity   (ton  TEQ  eq)   22,700   18,100   20  

Eutrophication   (kg  PO4)   0.57   0.11   81  

Ozone  Depletion   (g  CFCs)   0.0013   0.000075   94  

Particulate   (kg  PM2.5)   5.71   2.66   54  

Smog   (kg  NOx)   0.0031   0.00017   94  

   

 Figure  6.    Chart  of  Relative  Impacts  –  University  

 The  cleaning  operations  performed  in  the  maintenance  of  the  university  consumed  a  significant  volume  of  chemicals,  totaling  2,415  gallons  of  conventional,  daily-­‐use  chemical  product  concentrates.    Much  like  the  other  scenarios  with  a  higher  average  chemical  dilution  rate,  the  Orbio  5000-­‐Sc  is  clearly  preferential  under  this  scenario,  displaying  benefits  in  all  evaluated  environmental  and  human  health  categories  ranging  from  20-­‐94  percent.    This  is  again  primarily  due  to  the  significant  volumes  of  lower  concentrated  cleaners  reported  used  in  this  scenario.    Calculation  of  a  series  of  equivalent  offsets  (e.g.  car  emissions  offset)  for  specific  categories  such  as  CO2  emissions  provide  additional  context  for  the  relative  results  of  the  life-­‐cycle  comparison.    Offsets  are  calculated  by  comparing  the  net  improvement  in  a  particular  category  (e.g.  energy  consumption)  to  established  factors  such  as  the  energy  content  of  coal,  or  emissions  from  an  airplane.    The  accumulated  benefits  of  the  5000-­‐Sc  expressed  in  common  equivalent  offsets  are  presented  in  Table  7.        

0  

20  

40  

60  

80  

100  Acid  

Ecotox  

Eutro  

Pargculate  CO2  

Ozone  

Smog  

Tradigonal  

5000-­‐Sc  

Conv  chem    cleaners  

Page 11: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              11        

 

Table  7.  Equivalent  Offsets  per  5000-­‐Sc  –  University  Category   Savings  

1  Year  Savings  5  year  

Equivalent  Offsets  (per  unit)  

Energy    (MJ)  

 14,200  

 70,900  

Barrels  of  Oil  Offset  (5  yr)  –  11.5  barrels  Months  of  Household  Energy  Offset  (5  yr)  –  20.9  months  Number  of  Households  Offset    (5  yr)  –  1.7  households  Gallons  of  Gasoline  Offset  (5  yr)  –  541  gallons  

CO2  Emissions  (kgCO2)  

900   4,480   Months  of  Passenger  Car  Travel    (5  yr)  –  11.6  months  Number  of  Cars  Offset  (5  yr)  –  1.0  cars  

There  are  an  estimated  11,160  University  and  higher  education  venues  across  both  North  America  and  Europe.    Were  40  percent  of  these  University  campuses  to  use  an  Orbio  5000-­‐Sc  to  produce  the  on-­‐site    cleaning  solution  required  to  support  building  maintenance  operations  for  260  days  per  year,  collectively  they  would  save  enough  energy  annually  to  power  more  than  1,550  homes  annually  and  offset  the  yearly  global  warming  emissions  of  more  than  870  passenger  cars.              ANALYSIS  OF  LCA  RESULTS    Results  of  the  life-­‐cycle  impact  assessment  demonstrate  clearly  the  significant  environmental  benefits  associated  with  the  use  of  the  5000-­‐Sc.    In  each  of  the  scenarios  considered,  the  Orbio  5000-­‐Sc  was  better  in  every  single  evaluation  category  making  it  clearly  the  better  choice  from  an  environmental  and  human  health  perspective.  Understanding  why  the  relative  performance  of  the  Orbio  5000-­‐Sc  was  better  requires  a  deeper  analysis  into  the  performance  of  the  system  and  the  drivers  of  that  performance.        Volume  of  Cleaning  Solution  and  Dilution  Rate    The  functional  unit  for  this  study  was  defined  earlier  in  this  report  as  the  production  of  the  volume  of  cleaning  solution  required  to  support  the  cleaning  and  maintenance  operations  for  the  various  scenarios  for  a  period  of  five  years.    To  inform  this  analysis,  chemical  usage  data  from  building  and  maintenance  operations  performed  with  conventional  chemical  cleaners  for  each  scenario  were  used  as  a  basis  for  the  life-­‐cycle  modeling.    The  quantity  of  each  type  of  chemical  cleaner  consumed  over  a  five-­‐year  period  for  each  scenario  is  presented  in  Table  8,  along  with  the  dilution  rate  for  each  product  type.        Cleaning  chemicals  are  routinely  concentrated  to  save  packaging  costs  and  to  limit  impacts  from  transportation.    Each  of  the  cleaning  chemicals  in  this  analysis  requires  on-­‐site  dilution  to  achieve  the  recommended  working  concentration  for  proper  cleaning  performance,  with  dilution  rates  ranging  from  1  ounce  to  12  ounces  per  gallon  of  cleaning  solution,  depending  on  the  chemical  cleaner.    Table  9  presents  the  total  volume  of  cleaning  chemical  consumed  for  each  scenario,  along  with  an  average  dilution  rate  over  the  entire  chemical  use  profile.        

Page 12: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              12        

 

Table  8.      Life-­‐Cycle  Scenario  –  Conventional,  Daily-­‐Use  Cleaners  (gals/  5  yr)  

Life-­‐Cycle  Evaluation  Scenarios  Product  Convention  

Center  Office  Building  

University  

Glass  Cleaner      (Diluted  12  oz  to  1  gal)  

525   250   -­‐  

Daily  Floor  Cleaner    (Diluted  1  oz  to  1  gal)  

1,000   425   1,085  

All-­‐Purpose  Cleaner  (Diluted  4  oz  to  1  gal)  

1,775   500   960  

Carpet  Pre-­‐Spray    (Diluted  10  oz  to  1  gal)  

425   300   370  

   

Table  9.  Average  Dilution  Rate  of  Conventional,  Daily-­‐Use  Cleaners  -­‐  By  Scenario  

Scenarios  Conventional,  Cleaner  Conc.  

(gal)  

Dilution  Water    (gal)  

Diluted  Chemical  

Cleaner  Sol’n  (gal)  

Avg  Dilution  (oz/gal)  

Convention   3,725   195,840   199,565   2.4  

University   2,415   174,336   176,751   1.8  

Office   1,475   76,907   78,382   2.5  

   To  identify  and  better  understand  the  correlation  between  the  various  factors  presented  and  the  results  of  this  LCA,  the  relative  benefits  associated  with  the  on-­‐site  production  of  chemicals  using  the  Orbio  5000-­‐Sc  are  presented  in  Table  10.    These  results  reflect  the  relative  differences  in  impact  scores  presented  earlier  in  this  LCA  under  each  scenario.    

Table  10.    Summary  of  Relative  Life-­‐Cycle  Benefits  of  Orbio  5000-­‐Sc  –  By  Scenario  

Relative  %  Life-­‐Cycle  Benefits  Impact  Category   Convention  

Center  Office  Building  

University  

Acidification   54   50   28  

CO2  Emissions   73   70   57  

Ecotoxicity   43   44   20  

Eutrophication   91   89   81  

Ozone  Depletion   97   97   94  

Particulate   72   67   54  

Smog   98   97   94  

   

Page 13: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              13        

 

The  calculation  of  an  average  dilution  rate  for  each  scenario  in  the  Table  9  provides  insight  into  the  relative  impacts  of  the  alternatives.    It  is  the  average  dilution  rate,  and  not  the  total  volume  of  concentrated  chemical  products  that  is  the  primary  driver  of  the  results.    For  example,  were  the  driver  to  be  total  volume  of  concentrated  chemical,  we  would  expect  the  office  scenario  to  display  the  lowest  comparable  benefits  as  it  uses  the  lowest  volume  of  concentrated  chemicals.    However,  despite  using  39%  less  concentrated  chemical  volume  than  that  used  under  the  university  scenario,  the  benefits  associated  with  the  use  of  the  Orbio  5000-­‐Sc  in  the  office  scenario  are  much  greater.    Rather,  It  is  the  higher  dilution  rate  associated  with  the  office  scenario  that  is  more  predicative  of  environmental  benefit.        Dilution  rate  is  a  critical  factor  in  the  comparative  analysis,  in  large  part  because  it  has  the  greatest  influence  on  the  primary  drivers  of  impacts  for  the  Orbio  5000-­‐Sc,  those  being  energy  consumption  and  water  use.    Highly  concentrated  chemicals  minimize  the  impacts  associated  with  transportation  and  packaging  for  the  chemical  alternative,  while  resulting  in  a  larger  volume  of  cleaning  solutions,  a  volume  that  the  5000-­‐Sc  must  run  longer  and  consume  more  resources  to  match  in  terms  of  production.    As  can  be  seen  in  the  table,  as  the  average  dilution  rate  of  the  chemicals  increases  (i.e.,  concentration  decreases)  over  the  entire  chemical  profile,  so  does  the  relative  effectiveness  of  the  Orbio  5000-­‐Sc.    This  suggests  that  there  may  be  a  pivotal  value,  or  range  of  values,  over  which  the  5000-­‐Sc  becomes  preferential.      However,  other  factors  play  a  role  in  this  determination  such  as  overall  mass  and  energy  consumption,  both  of  which  are  discussed  below.        Mass      When  comparing  alternatives  using  life-­‐cycle  assessment,  the  results  often  correspond  with  the  overall  mass  of  materials  required  for  each  alternative,  especially  in  comparisons  with  a  large  disparity  in  mass  over  the  period  of  the  analysis.    In  this  case,  evaluation  of  the  overall  mass  involves  totaling  the  mass  of  the  Orbio  5000-­‐Sc,  salt  and  input  and  discharge  filters  compared  to  the  overall  mass  of  the  chemical  products  and  their  associated  packaging.    These  values  are  reflected  in  the  Bill  of  Materials  for  each  of  the  systems  presented  in  Appendix  C  of  this  report.    The  total  mass  from  the  various  BOMs  is  summarized  in  Table  11.        While  dilution  rate  is  the  primary  driver  of  relative  life-­‐cycle  impacts,  the  mass  of  materials  associated  with  each  system  plays  a  role  in  the  overall  life-­‐cycle  benefits,  especially  in  situations  of  very  low  and  very  high  chemical  use.    Each  pound  of  material  utilized  incurs  impacts  throughout  the  life-­‐cycle  of  that  material  including  those  associated  with  the  extraction  and  processing  of  the  material,  its  transportation  and  manufacture,  through  it  use,  and  to  its  eventual  disposition  at  end-­‐of-­‐life.    These  impacts  can  be  significant  depending  on  the  material,  and  are  often  more  influential  on  a  comparative  basis  than  impacts  during  other  stages.                        

Page 14: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              14        

 

Table  11.    Material  Mass  By  Scenario    

Life-­‐Cycle  Evaluation  Scenarios  (lbs)  System  Convention  

Center  Office  Building  

University  

Orbio  5000-­‐Sc        

               Total  Materials   1,960   987   1,770  

               Water       2,129,000   836,100   1,885,000  

           Total  Materials/Resources  

2,131,000   837,100   1,887,000  

Conventional  Cleaners        

               Total  Materials   6,740   2,669   4,370  

               Water  (for  dilution)   1,556,000   615,300   1,395,000  

           Total  Materials/Resources  

1,573,000   617,900   1,399,000  

   It  can  be  seen  in  Table  11  that  the  Orbio  5000-­‐Sc  utilizes  less  material,  excluding  water,  than  conventional  chemicals  across  all  scenarios.    Advantages  in  material  consumption  range  from  a  low  of  145  percent  for  the  university  scenario  to  greater  than  240  percent  for  the  convention  center.    The  magnitude  of  the  disparity  is  in  part  due  to  the  fixed  material  mass  of  the  5000-­‐Sc  machine,  and  its  decreasing  importance  as  the  volume  of  cleaner  consumed  increases.    It  also  due  to  the  extent  to  which  chemical  cleaning  products  are  concentrated,  maximizing  the  efficiency  of  packaging  materials  associated  with  the  chemical  products.        The  effects  of  mass  are  more  influential  under  both  low  use  and  extremely  high  use  scenarios.    Under  low  use  scenarios  like  the  office  building  (refer  to  Table  13),  the  impacts,  though  significant,  were  less  substantial  than  those  associated  with  the  university  scenario.    And  that  is  despite  the  office  scenario  having  a  significantly  higher  average  dilution  rate  of  2.5  as  compared  to  1.8  for  the  university.    The  primary  reason  for  this  is  that  there  is  a  relatively  low  volume  of  chemical  use  under  the  office  scenario,  making  the  impacts  associated  with  mass  more  influential  to  the  overall  impact  profiles.    Likewise,  in  high  use  scenarios,  the  significance  of  differences  in  mass  is  minimized  as  chemical  use  increases.        Energy  Consumption    Production  of  Orbio  5000-­‐Sc  cleaning  solution  requires  energy  in  the  form  of  a  small  amount  of  electricity  that  is  responsible  for  powering  the  machine  during  its  production  of  solution.    The  5000-­‐Sc  uses  745  watts  of  electricity  while  producing  0.75  gallon  per  minute  of  cleaning  solution  (see  Table  C3  in  appendix  C).    The  overall  energy  consumption  is  therefore  directly  related  to  the  overall  volume  of  cleaning  solution  required  by  each  scenario.    Table  12  presents  the  overall  amount  of  ready-­‐to-­‐use  cleaning  solution  required  for  each  scenario  along  with  the  total  run  time  and  total  energy  consumed  by  the  Orbio  5000-­‐Sc.      

Page 15: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              15        

 

Table  12.    Key  5000-­‐Sc  Operating  Parameters  By  Scenario  –  5  years  

Life-­‐Cycle  Evaluation  Scenarios    System  Convention  

Center  Office  Building  

University  

Cleaning  Solution  Req’d  (gal)   199,600   78,380   176,800  

Operating  Time  -­‐  5000-­‐Sc    (hr)   4,435   1,742   3,928  

Energy  Consumption  (kWh)   3,304   1,298   2,926  

   The  energy  use  of  the  Orbio  5000-­‐Sc  is  not  large,  roughly  equivalent  to  half  the  amount  of  energy  consumed  by  a  microwave  oven1.    Yet,  the  overall  effect  of  that  energy  consumption  is  a  large  contributor  to  the  results.    To  demonstrate,  the  percent  contributions  from  energy  production  of  total  impacts  within  each  individual  impact  category  for  the  convention  center  scenario  are  presented  in  Figure  7.    

 Figure  7.    Percent  of  Life  Cycle  Impacts  from  Energy–  Convention  Center  

 The  impacts  associated  with  the  production  of  the  operating  energy  for  the  Orbio  5000-­‐Sc  account  for  as  much  as  83  percent  of  the  acidification  impacts  of  the  entire  product  life-­‐cycle,  and  for  72-­‐74  percent  of  the  particulate  and  CO2  emissions.    While  these  results  represent  the  impacts  from  the  convention  center  scenario,  the  importance  of  energy  consumption  is  mirrored  in  other  scenarios,  as  shown  in  Table  13.                                                                                                                                1  A  microwave  oven  consumes  approximately  1440  watts,  while  the  5000-­‐Sc  consumes  only  745  watts.  Source:  

http://michaelbluejay.com/electricity/howmuch.html  

0  

20  

40  

60  

80  

100  

Other  

Energy  

Page 16: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              16        

 

Table  13.    Percent  of  Overall  Impacts  of  5000-­‐Sc  due  to  Energy  Production    

Impacts  due  to  Energy  Production  (%  of  total)  

Impact  Category   Convention  Center  

Office  Building  

University  

Acidification   83   72   82  

CO2  Emissions   74   61   72  

Ecotoxicity   32   30   32  

Eutrophication   50   40   49  

Ozone  Depletion   55   44   55  

Particulate   72   59   71  

Smog   47   34   45  

   In  each  of  the  scenarios  analyzed,  energy  is  a  significant  driver  in  nearly  every  category.    Results  range  from  30-­‐72  percent  for  the  office  building  scenario,  the  lowest  chemical  use  scenario,  to  those  for  the  convention  center.    The  range  within  each  impact  category  varied  from  a  low  of  2  percent  for  ecotoxicity,  a  category  not  influenced  as  greatly  by  energy,  to  as  high  as  13  percent  for  smog  and  CO2  emissions.    These  results  are  relatively  consistent,  given  the  variation  of  chemical  volume,  type,  and  dilution  rate  across  the  scenarios,  indicating  that  energy  is  a  strong  driver  in  the  overall  life-­‐cycle  impacts.        Given  the  overall  mass  of  materials  associated  with  each  of  the  alternatives  (see  BOMs),  and  that  the  extraction  and  production  of  these  materials  also  consume  energy,  the  magnitude  of  the  effect  of  the  energy  consumed  during  the  use  stage  is  somewhat  surprising.      It  would  be  of  interest  to  compare  the  energy  consumed  during  the  use  phase  to  the  energy  consumed  for  each  alterative  during  the  upstream  manufacturing  processes,  especially  for  chemical  cleaners.    However,  because  it  was  necessary  to  use  existing  life-­‐cycle  data  sets  for  chemical  manufacturing,  and  because  energy  was  not  broken  out  in  sufficient  detail  (or  in  some  cases,  at  all),  comparison  of  these  values  is  not  possible.    In  fact,  while  energy  is  a  fundamental  portion  of  any  life-­‐cycle  inventory  (LCI)  dataset,  we  can  not  be  certain  to  what  extent  energy  was  in  fact  included  in  the  datasets  used  in  this  analysis,  as  they  are  poorly  documented.    This  is  an  uncertainty  in  this  life-­‐cycle  analysis.    The  impacts  directly  correlate  to  the  amount  of  5000-­‐Sc  operating  time  required  to  produce  the  cleaning  solution  for  each  scenario,  and  thus  the  results  relative  to  conventional  cleaners  are  indirectly  linked  to  the  factors  such  as  the  extent  and  frequency  of  cleaning  operations,  the  type  of  cleaner,  and  the  concentration  of  the  conventional  chemicals  requiring  dilution.            Energy  Production  Data  Source    Given  the  importance  of  energy  to  the  overall  outcome  of  this  study,  the  selection  of  the  life-­‐cycle  dataset  used  in  the  analysis  could  become  relevant.    In  this  study,  a  life-­‐cycle  inventory  was  developed  to  represent  the  energy  production  profile  of  the  local  utility  provider  for  Minneapolis-­‐USA,  Xcel  Energy  (Xcel).    This  profile  was  created  by  drawing  from  existing  life-­‐cycle  inventories  representing  100  percent  

Page 17: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              17        

 

production  of  various  forms  of  electrical  power  (e.g.  hydroelectric)  and  then  weighting  them  to  mirror  the  production  profile  reported  by  Xcel  energy  for  the  year  2009.    The  Xcel  Energy  profile  is  presented  in  Table  D1  of  Appendix  D.      To  determine  the  sensitivity  of  this  analysis  to  the  source  of  the  energy,  the  convention  center  scenario  was  run  with  both  the  Xcel  energy  inventory,  as  well  as  with  a  dataset  representing  the  US  national  power  grid.    The  results  for  this  analysis  are  presented  in  Table  14.    It  was  found  that  while  the  source  of  the  data  did  modify  the  overall  results  of  the  analysis  somewhat  as  expected,  the  system  did  not  display  a  high  sensitivity  to  this  factor.      

Table  14.  Effect  of  Energy  LCI  Source  on  Convention  Center  Impacts  LCA  Categories   Xcel  Energy   US  Grid   Change  (%)  

Acidification   (kg  SO2)   55   53   2  

CO2  Emissions   (kg  CO2)   73   76   -­‐3  

Ecotoxicity   (ton  TEQ  eq)   43   41   2  

Eutrophication   (kg  PO4)   91   90   1  

Ozone  Depletion   (g  CFCs)   97   98   -­‐1  

Particulate   (kg  PM2.5)   72   73   -­‐1  

Smog   (kg  NOx)   98   96   2  

   The  results  of  similar  analyses  on  the  remaining  scenarios  are  similar  in  magnitude  and  effect  as  to  those  for  the  convention  scenario  shown.      Water  Consumption    Both  of  the  cleaning  solution  production  alternatives  rely  on  significant  amounts  of  water  on-­‐site  to  produce  or  prepare  the  cleaning  solution  at  a  ready-­‐to-­‐use  concentration.    Conventional,  daily-­‐use  chemical  cleaners  are  sold  in  concentrated  form,  requiring  tap  water  to  dilute  the  chemicals  to  a  concentration  suitable  for  use  in  addition  to  the  water  in  the  formulation  of  the  concentrate.    By  contrast,  the  5000-­‐Sc  produces  a  ready-­‐to-­‐use  cleaning  solution  from  tap  water,  electricity,  and  a  small  amount  of  salt.    Figure  8  displays  the  water  consumption  by  each  system  for  the  three  evaluated  scenarios.    As  can  be  seen  from  the  figure,  both  systems  use  considerable  amounts  of  water;  the  5000-­‐Sc  uses  approximately  34%  percent  more  water  regardless  of  the  scenario  over  the  analysis  period  of  5  years.    This  is  due  to  the  nature  of  the  conventional  cleaning  chemical  system,  whose  total  volume  of  cleaning  agent  is  the  combination  of  not  only  the  water  required  for  dilution,  but  also  from  the  chemicals  themselves.    For  the  5000-­‐Sc,  the  entire  volume  of  the  cleaning  solution  is  derived  directly  from  tap  water.    In  addition,  the  5000-­‐Sc  makes  efficient  use  of  75  percent  of  the  tap  water  input  into  the  system  through  its  conversion  to  cleaning  solution,  leaving  the  remaining  25  percent  to  be  disposed  to  drain.      

Page 18: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              18        

 

Figure  8.    On-­‐Site  5-­‐Year  Water  Consumption  By  Scenario    

   

The  disparity  in  water  use  is  directly  reflected  in  the  results  of  this  analysis.    As  shown  in  Figure  9,  water  consumption  is  a  significant  contributor  to  the  aquatic  ecotoxicity  impact  category  contributing  more  than  60  percent  of  the  impacts  for  the  entire  product  system,  and  to  a  lesser  extent  to  both  the  smog  (23%)  and  ozone  (19%)  impact  categories.    These  results  explain  the  lower  relative  benefits  of  the  technology  in  the  ecotoxicity  impact  category  as  compared  to  those  of  other  impact  categories.      

   

Figure  9.    Percent  of  Life  Cycle  Impacts  due  to  Tap  Water–  Convention  Center    

                           

0  

50,000  

100,000  

150,000  

200,000  

250,000  

300,000  

Convengon   Office   University  

Orbio  5000-­‐Sc  Convengonal  Chem  Cleaners  

0%  

20%  

40%  

60%  

80%  

100%  

Other  

Water  

Page 19: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              19        

 

While  the  additional  water  usage  is  a  negative  in  terms  of  resource  consumption,  the  displacement  of  chemicals  results  in  other  advantages  in  terms  of  human  heath  and  environmental  impacts,  and  in  other  life-­‐cycle  phases  such  as  shipping.      ADDITIONAL  ENVIRONMENTAL  INFORMATION    Toxic  Hazards   Conventional  chemical  cleaners  are  comprised  of  a  variety  of  chemical  compounds,  some  of  which  may  pose  a  potential  threat  to  human  health  or  the  environment.    Cleaning  chemicals  are  often  applied  during  the  cleaning  process  in  a  variety  of  methods,  many  of  which  result  in  inhalation  exposures  to  chemicals  of  unknown  toxicity,  or  which  may  leave  a  film  of  chemical  residue  leading  to  potential  dermal  exposures  to  children  or  other  vulnerable  populations.    In  addition,  many  of  the  chemicals  applied  to  floor  or  carpet  cleaning  are  subsequently  disposed  directly  into  the  local  water  works  where  they  may  pose  a  potential  hazard  to  aquatic  ecosystems.        The  cleaning  solution  produced  by  the  5000-­‐Sc  is  a  low  concentration  of  sodium  hydroxide,  produced  through  the  process  of  electrolysis.    The  solution  has  been  3rd  party  tested  to  US  EPA  guidelines  and  proven  to  be  nonirritating  to  both  eyes  and  skin  (Eurofils  Study  Numbers  31592  and  31593,  respectively).      The  cleaning  solution  is  also  free  of  VOCs  such  as  fragrances,  asthmagens  or  other  additives  that  potentially  contribute  to  reduced  indoor  air  quality.    The  5000-­‐Sc  solution  is  also  registered  by  the  NSF  International  (NSF.org)  as  appropriate  for  use  in  food  and  beverage  handling  environments.    In  addition,  production  of  the  chemicals  through  this  on-­‐site  process  prevents  impacts  associated  with  the  upstream  extraction  of  raw  materials,  and  production  and  handling  of  the  chemicals,  greatly  reducing  the  risk  of  human  or  environmental  exposure  to  chemicals  or  their  by-­‐products  elsewhere  in  the  manufacturing  chain.          LIMITATIONS  AND  UNCERTAINTIES    With  any  LCA,  there  are  a  number  of  limitations  and  uncertainties  that  should  be  considered  as  appropriate  context  for  the  study.  One  such  limitation  was  the  manner  in  which  conventional  chemical  cleaners  were  characterized.    Formulations  for  each  of  the  chemical  cleaning  products  were  developed  based  on  established  knowledge  and  used  for  characterizing  the  conventional  chemical  cleaner  alternative.    While  these  formulations  were  representative  of  such  cleaners,  variations  in  chemical  formulation  are  common  within  the  market  place.    As  such,  these  results  reflect  one  such  representation.      The  effect  of  the  selection  of  a  different  chemical  formulation  as  representative  for  any  of  the  chemical  cleaners  on  the  final  outcome  of  the  study  is  unknown.        There  are  several  limitations  and  uncertainties  associated  with  this  report.    Some  of  the  formulations  contained  chemicals  for  which  no  life-­‐cycle  inventory  data  exist.    In  such  cases,  chemicals  were  either  modeled  by  using  combinations  of  data  sets  that  together  mimic  the  synthesis  process  for  the  missing  chemical,  by  using  available  data  for  a  chemically  or  structurally  similar  chemical,  or  as  a  last  resort  by  

Page 20: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              20        

 

determining  an  average  inventory  profile  from  other  chemicals  that  serve  an  identical  function  (e.g.  non-­‐ionic  surfactants).    Given  that  any  such  approach  involves  an  approximation  in  lieu  of  actual  inventory  data  for  the  specific  chemical,  the  affect  of  this  uncertainty  on  the  overall  results  of  this  analysis  can  not  be  specifically  determined,  but  is  unlikely  to  be  significant  given  the  relative  impacts  of  any  of  the  chemicals  involved.    A  portion  of  the  Orbio  5000-­‐Sc  roughly  equivalent  to  7  percent  of  the  overall  composition  of  the  machine  could  not  be  modeled,  mostly  due  to  an  inability  to  accurately  characterize  the  material  composition  of  a  complex  transformer  assembly.    The  data  gaps  in  the  model  prevented  the  full  evaluation  of  the  5000-­‐Sc.      However,  an  alternate  analysis  was  performed  to  assess  this  gap  by  modifying  the  overall  model  to  account  for  the  additional  material,  assuming  the  material  had  a  similar  impact  profile  to  the  93  percent  characterized.    Reported  results  reflect  the  adjusted  values.          

Finally,  secondary  data  sources  were  used  in  this  analysis  in  lieu  of  data  that  could  not  be  collected  directly.    Secondary  data  sources  can  vary  significantly  in  quality  and  completeness  and  it  is  not  often  easy  to  determine  the  quality  of  a  data  set.    Every  effort  was  made  by  the  authors  to  vet  any  secondary  data  sources  for  quality  and  completeness,  but  the  authors  cannot  ultimately  guarantee  the  accuracy  of  this  data.      For  data  sets  that  had  a  profound  affect  on  the  overall  results  of  this  study,  such  as  those  for  energy  and  water  production,  alternative  analyses  were  performed  using  substitute  data  sets  to  confirm  the  integrity  of  the  results.

Page 21: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              21        

 

REFERENCES  

 Baird  C,  Cann  M.  2005.  Environmental  Chemistry.  3rd  ed.  W.H.  Freemand  and  Company:  New  York.    California  Air  Resources  Board  (CARB).  California  Environmental  Protection  Agency.  http://www.arb.ca.gov/homepage.htm    Milhelcic  J.  1999.    Fundamentals  of  Environmental  Engineering.  John  Wiley  and  Sons,  Inc:  New  York.    Office  of  Air  and  Radiation.    U.S.  Environmental  Protection  Agency.  http://www.epa.gov/air/.    XCEL  Energy.    2009  Power  generation  breakdown  by  source-­‐  MN.    XCEL  Energy  website  accessed  April  4,  

2011.  http://www.xcelenergy.com/Minnesota/Company/ABOUT_ENERGY_AND_RATES/Power%20Generation/Pages/Power_Generation.aspx  

Orbio  Technologies.    5000-­‐Sc  Technical  Data  Sheet.    Orbio  Technologies  website  accessed  on-­‐line  April  4,  

2011.    http://www.orbiotechnologies.com/wp-­‐content/uploads/5000-­‐ScTechPB-­‐Rev-­‐3.30.111.pdf  

 

                                           

Page 22: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              22        

 

APPENDIX  A  –  GABI  MODEL  DIAGRAMS    Life  cycle  calculations  were  performed  using  the  GaBi  4.3.Life-­‐Cycle  Software.    GaBi  model  diagrams  for  both  the  Orbio  5000-­‐Sc  and  chemical-­‐based  cleaning  systems  are  presented  as  samples  of  the  life-­‐cycle  modeling  performed  for  this  analysis.        Sample  5000-­‐Sc  Model  Diagram    

                       

Page 23: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              23        

 

Sample  Chemical-­‐based  Cleaning  Model  Diagrams  

   

                                       

Page 24: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              24        

 

APPENDIX  B  –  IMPACT  CATEGORY    Acidification,  (AP):    Acidification  originates  from  the  emissions  of  sulfur  dioxide  and  oxides  of  nitrogen.    These  oxides  react  with  water  vapor  in  the  atmosphere  to  form  acids,  which  subsequently  fall  to  earth  in  the  form  of  precipitation,  and  present  a  hazard  to  fish  and  forests  by  lowering  the  pH  of  water  and  soil.      The  most  significant  man-­‐made  sources  of  acidification  are  combustion  processes  in  electricity  and  heating  production,  and  transport.    Acidification  potentials  are  typically  presented  in  g  SO2

 equivalents      CO2  Emissions,  (CO2):  Global  warming  of  the  atmosphere  occurs  when  carbon  dioxide,  methane,  or  other  gases  contributing  to  global  warming  absorb  infrared  radiation  from  sunlight,  trapping  it  within  the  atmosphere.      Some  of  the  biggest  human  contributors  to  global  warming  are  the  combustion  of  fossil  fuels  like  oil,  coal  and  natural  gas.    This  impact  category  includes  the  contributions  of  all  such  gases,  even  though  it  is  expressed  as  CO2  Emissions.    Global  warming  potential  are  typically  presented  in  g  CO2  equivalents.        Ecotoxicity,  (AEP):    Living  organisms  that  inhabit  a  given  ecosystem  may  be  harmed  through  exposure  to  chemicals  and  other  toxins  released  into  the  aquatic  ecosystem.    Such  toxins  may  have  a  particularly  harmful  affect  on  ecosystem  health  including  biochemistry,  physiology,  and  the  behavior  and  interactions  of  living  organisms  inhabiting  the  ecosystem.    Ecotoxicity  potentials  are  typically  presented  in  g  TEQ  equivalents.    Eutrophication,  (EP): Nutrients  from  discharged  wastewater  and  fertilized  farmland  act  to  accelerate  the  growth  of  algae  and  other  vegetation  in  the  water.    Oxygen  deficiency  then  results  from  the  degradation  of  organic  material  in  the  water,  posing  a  threat  to  fish  and  other  life  in  the  aquatic  ecosystem.    Oxides  of  nitrogen  from  combustion  processes  are  of  significance.    Eutrophication  potentials  are  typically  presented  in  g  NO3  equivalents.   Ozone  Depletion  Potential,  (ODP):  Stratospheric  ozone  is  broken  down  as  a  consequence  of  man-­‐made  emissions  of  halocarbons  (CFC's,  HCFC's,  haloes,  chlorine,  bromine  etc.).  The  ozone  content  of  the  stratosphere  is  therefore  decreasing,  resulting  in  a  thinning  of  ozone  layer,  often  referred  to  as  the  ozone  hole.  The  consequences  are  increased  frequency  of  skin  cancer  in  humans  and  damage  to  plants.    Ozone  depletion  potentials  are  typically  presented  in  g  CFC  equivalents.    Particulates,  (P):  Particulates  are  released  as  a  consequence  of  both  mobile  and  point  source  operations,  usually  involving  combustion  of  materials.      When  inhaled,  particulates  directly  affect  humans  often  resulting  in  respiratory  irritation  and  even  prolonged  chronic  respiratory  illness.    Smaller  diameter  particulates,  such  as  those  smaller  than  2.5  microns  (PM  2.5)  pose  the  greatest  threat.    Particulates  are  typically  presented  in  g  PM  2.5  released.    Photochemical  Smog,  (POCP):  Photochemical  smog  (also  referred  to  as  ground  level  ozone)  is  formed  by  the  reaction  of  volatile  organic  compounds  and  nitrogen  oxides  in  the  presence  of  heat  and  sunlight.    Smog  forms  readily  in  the  atmosphere,  usually  during  hot  summer  weather,  and  contributes  to  respiratory  illness  in  humans  such  as  chronic  bronchitis  and  emphysema.    Photochemical  smog  formation  potentials  are  typically  presented  in  g  ethane  equivalents.  

Page 25: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              25        

 

APPENDIX  C  –  KEY  PARAMETERS  AND  BOMS    

Life-­‐cycle  analysis  was  conducted  on  each  of  the  alternatives  for  producing  cleaning  solutions  and  transporting  them  to  the  cleaning  venue.    The  model  for  each  scenario  was  based  on  a  BOM  calculated  from  data  collected  from  actual  cleaning  operations  for  identical  buildings,  key  operating  parameters,  or  both.    A  BOM  is  a  listing  of  the  total  materials  and  resources  that  make  up  that  alternative.    This  appendix  presents  the  key  usage  and  operating  data,  as  well  as  the  BOMs  for  the  Orbio  5000-­‐Sc  as  well  as  for  the  system  of  conventional  cleaning  chemicals.        Orbio  5000-­‐Sc   The  Bill  of  Materials  (BOM)  in  Table  C1  characterizes  all  of  the  materials  and  resources,  excluding  energy,  required  for  the  5000-­‐Sc  to  produce  sufficient  quantities  of  cleaning  solution  to  perform  the  required  maintenance  and  cleaning  operations  for  each  building  type  over  the  five-­‐year  period  of  this  analysis.    Energy  use  for  each  scenario  is  presented  in  the  Impact  Analysis  portion  of  this  document.    

Table  C1.    Bill  of  Material  of  Orbio  5000-­‐Sc  -­‐  By  Scenario  (lbs)  

Life-­‐Cycle  Evaluation  Scenarios    Chemical/Material   Convention  

Center  Office  Building  

University  

Machine   363   363   363  

Salt   1,580   622   1,400  

Filter  Media   8.5   2.2   7.3  

Total  Materials–  Non-­‐H20     1,960   987   1,770  

     Water  Input   2,281,000   896,700   2,020,000  

Total  Materials   2,283,000   896,800   2,022,000  

 The  Orbio  5000-­‐Sc  technology  itself  is  comprised  of  a  number  of  materials,  each  listed  in  Table  C2.    The  total  weight  of  5000-­‐Sc  is  measured  at  363  pounds.    This  total  includes  all  of  the  components  in  the  machine  itself,  but  does  not  include  the  water,  salt,  or  any  other  process  stream.        

Table  C2.  Materials  Breakdown  –  Orbio  5000-­‐Sc  Metals   Lbs   %     Plastics   Lbs   %     Other  Materials   Lbs   %  

Carbon  Steel   38.9   11.6     Polyethylene  –  HD   182.3   54.2     PW  Board   1.50   0.4  

Brass   3.17   0.9     Polypropylene   43.8   13.0     Activated  Carbon   1.10   0.3  

Stainless  Steel   1.88   0.6     ABS   17.3   5.1     Paint   0.06   0.02  

Copper   19.9   5.9     FIberglass   14.5   4.3     Other  Plastics   0.103   0.03  

Aluminum   0.02   0.006     Polycarbonate   3.0   0.9     Other  materials   5.7   1.7  

        Polystyrene   1.85   0.6          

        Polyvinyl  Chloride   1.14   0.3          

        Nylon   0.068   0.02          

 

Page 26: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              26        

 

Additional  materials  such  as  salt,  tap  water,  and  some  filter  media,  in  addition  to  electrical  power  are  required  for  the  5000-­‐Sc  to  produce  the  5000-­‐Sc  cleaning  solution.    The  quantities  of  these  are  dependent  on  the  amount  of  cleaning  solution  required  to  clean  each  scenario.    The  cleaning  solution  produced  by  the  5000-­‐Sc  can  be  used  without  modification  and  is  thus  considered  a  ready-­‐to-­‐use  product,  and  can  be  used  as  a  direct  replacement  for  the  four  chemical  cleaners  cited  in  this  analysis.    

 Table  C3.  Orbio  5000-­‐Sc  Operating  Parameters  

Parameter   Scenario  Value  Cleaning  Solution  Prod  Rate    

0.75  gal/min  

Water  Efficiency  Rate    (cleaning  solution  prod/total  water)  

75  %  

Energy  Consumption    (while  generating  solution)  

745  Watts  

Salt  Usage    

40  lbs  Salt/  9,000  gal  cleaning  solution  

Filter  Life    

20,000  gals  cleaning  solution  

     Conventional  Cleaning  Chemicals    A  BOM  for  a  conventional,  daily-­‐use  chemical  cleaning  system  is  presented  in  Table  C4  for  each  of  the  three  scenarios  defined  in  this  report.    Values  reported  in  the  table  represent  the  total  materials  and  resources  required  to  provide  conventional  chemical  cleaning  solutions  in  support  of  typical  building  maintenance  and  cleaning  operations  for  each  building  type  over  a  period  of  five  years.          

Table  C4.    Bill  of  Material  of  Conventional  Cleaning  Chemicals  -­‐  By  Scenario  (lbs)  

Life-­‐Cycle  Evaluation  Scenarios    Chemical/Material   Convention  

Center  Office  Building  

University  

Chemicals     6,195   2,453   4,016  

Packaging     236   93.5   153  

Corrugate     309   122   200  

Total  Materials–  Non-­‐H20     6,740   2,669   4,370  

     Water  (dilution)     1,556,000   615,300   1,395,000  

Total  Materials   1,573,000   617,900   1,399,000  

   The  BOMs  for  each  scenario  were  based  on  actual  chemical  usage  data  from  cleaning  operations  on  buildings  identical  to  those  defining  each  scenario.    Chemical  usage  by  product  is  presented  in  Table  12  of  this  report  for  each  scenario,  along  with  the  dilution  rate  for  each  product  type.    All  values  reflect  gallon  of  concentrate  consumed  per  year  of  cleaning.  

Page 27: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              27        

 

The  chemical  content  for  each  of  the  four  cleaning  products  was  broken  out  by  chemical  ingredient  and  totaled  by  scenario  in  table  C5.    Chemical  ingredients  for  each  chemical  product  are  identified  in  Tables  C6-­‐C9.    When  combined  with  the  chemical  usage  number  in  Table  11,  these  chemical  formulations  formed  the  basis  for  the  numbers  reported.          

Table  C5.    Breakdown  of  Chemical  Content-­‐  By  Scenario  

Life-­‐Cycle  Evaluation  Scenarios    Chemical/Material  Convention  

Center  Office  Building  

University  

CHEMICALS  (gal  conc/yr)  

           Propylene  glycol  monobutyl  ether   67   25   19.2  

           Isopropyl  alcohol   8.4   4   -­‐  

           Alcohol  ethoxy  sulfate   6.3   3   -­‐  

           Propylene  glycol  monomethyl  ether   5.25   2.5   -­‐  

           Ammonium  hydroxide   4.2   2   -­‐  

           Ethyl  alcohol   1.05   0.5   -­‐  

           Tripropylene  glycol  methyl  ether     17   12   14.8  

           Naphthalene  sodium  sulfonate     8.5   6   7.4  

           Diethylene  glycol  monobutyl  ether     12.75   9   11.1  

           Linear  primary  alcohol  ethoxylate     8.5   6   7.4  

           Tetrasodium  ethylenediamine     2.55   1.8   2.22  

           Alcohol  Ethoxylate   61.6   20.08   43.66  

           SXS   19.2   6.125   13.1  

           Veresene  100,  EDTA   12.05   3.64   7.39  

           Sodium  metasilicate  5H20   10.65   3   5.76  

           Water  (in  concentrate)   499.9   190.4   351  

 Tables  C6-­‐C10  present  the  formulations  for  each  of  the  conventional  daily-­‐use  chemical  cleaners  assessed  in  this  study.    These  formulations  were  developed  using  MSDS  data  from  multiple  leading  brand  chemical  cleaners.        Table  C6.    Chemical  Formulation-­‐  Glass  Cleaner  Glass Cleaner Diluted 12oz cleaner to 1 gallon of water CAS # Wt % Propylene glycol monobutyl ether 5131-66-8 30 Isopropyl alcohol 67-63-0 8 Alcohol ethoxy sulfate 999999-83- 5 6 Propylene glycol monomethyl ether 107-98-2 5 Ammonium hydroxide 1336-21-6 4 Ethyl alcohol 64-17-5 1 Water 7732-18-5 46

Page 28: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              28        

 

 Table  C7.    Chemical  Formulation-­‐  All-­‐Purpose  Cleaner  All Purpose Cleaner Diluted 4 oz cleaner to 1 gallon of water CAS # Wt % Water 7732-18-5 68 Alcohol Ethoxylate 68439-46-3 12 Propylene glycol monobutyl ether 5131-66-8 10 SXS 1300-72-7 4 Veresene 100, EDTA 64-02-8 3 Sodium metasilicate 5H20 6834-92-0 3    Table  C8.    Chemical  Formulation-­‐  Daily  Floor  Cleaner  Daily Floor Cleaner Diluted 1oz cleaner to 1 gallon of water CAS # Wt% Water 7732-18-5 87.25 Alcohol Ethoxylate 68439-46-3 9.5 SXS 1300-72-7 2.5 Veresene 100, EDTA 64-02-8 0.75    Table  C9.    Chemical  Formulation-­‐  Carpet  Pre-­‐Spray  Cleaner  Carpet Pre-Spray Diluted 10oz cleaner to 1 gallon of water CAS # Wt % Tripropylene glycol methyl ether 25498-49-1 20 Naphthalene sodium sulfonate 26264-58-4 10 Diethylene glycol monobutyl ether 112-34-5 15 Linear primary alcohol ethoxylate 34398-01-1 10 Tetrasodium ethylenediamine 64-02-8 3 Water 7732-18-5 42                              

Page 29: Life0Cycle!Analysis!of!! Orbio Technologies50000Sc! · August!28,2011!!!!! !1!!!! Life0Cycle!Analysis!of!! Orbio ®Technologies50000Sc! Evaluationof!50000Scvs!Conventional!Daily0Use!

 

August  28,  2011                                                                              29        

 

APPENDIX  D  –  XCEL  ENERGY  PROFILE    The  following  table  lists  the  percent  power  produced  by  XCEL  Energy  in  2009,  by  source  of  the  power.    XCEL  is  the  utility  provider  for  the  Minneapolis,  MN  area,  where  Orbio  Technologies  is  currently  located.    

Table  D1.    XCEL  Energy  Production  Fuel  Profile  for  2009    

Source   %  of  Profile  Hard  coal,  power  plant   49.4%  

Natural  gas,  power  plant   31.6%  Nuclear,  power  plant   12.7%  Hydropower   4.4%  

Oil,  power  plant   0.9%  Refuse  Derived  Fuel   0.8%  Wind     0.1%