Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement...

31
Lidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre, B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular, A. Hallermeyer, L. Lombard, C. Planchat, M. Valla, C. Besson

Transcript of Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement...

Page 1: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Lidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat,

N. Cézard, A. Durécu, D. Goular, A. Hallermeyer, L. Lombard, C. Planchat, M. Valla, C. Besson

Page 2: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Lidar for Wake vortex measurement at Onera past, present , future

Past activities Lidar technology development for wake vortex understanding From cw 10.6µm Lidar (1993) to pulsed 1.55µm fibered lidar (2007)

(DST, Cwake, Awiator, ….. Awiator, Credos , Fidelio, Sesar, UFO).

Present activities Lidar technology development for wake vortex surrounding measurement

for long range wind measurement on glide slope, EDR measurement (UFO project)

Improved signal processing for lidar wake vortex measurement Lidar technology development for onboard wake vortex measurement.

Future activities Lidar technology development for faster long range wind measurement Lidar measurement for improved wake vortex models.

2 Titre présentation

Page 3: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Lidar Wake vortex measurements at Onera A.Dolfi-Bouteyre 2016/06/08

Wake vortex measurement with Cw CO2 lidarReduced scale

Vortex_lillex.mpg

3

Page 4: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

temps (s)

vite

sse

(m/s

)

image n°5

5.9 6 6.1 6.2 6.3 6.4 6.5

-6

-4

-2

0

2

4

6 -50

-45

-40

-35

-30

-25

-20

-15

-10

Olive oil seeding .

Reduced scale wale-vortex measurements with cw CO2 Lidar

4

• Velocity resolution : 5cm/s• Cores localisation : 10 cm• Measurements up to 100 spans

Page 5: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Wake vortex measurement with Cw CO2 lidar

5

Page 6: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Wake vortex measurement with Cw CO2 lidar

6

Page 7: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

7

Wake vortex measurement with Cw CO2 lidar

Page 8: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

1,55 Fibered lidar :Why fiber laser?

Good beam quality (even at high averagepower) long range lidar

free-space optics are avoided easy alignment, compact setups

vibration-resistant design onboard applications

telecom industry components low cost

Good efficiency 30% @ 1,5 µm60% @ 2 µm

Compact system and airborneapplications

Complex pulse shape (amplitude modulation or phase modulaiton, agility…)

Monolithic integration of functions :Doppler - DIAL- ranging

Spectral agility (wavelength accordability, narrow linewidth) thanks to MOPFA

architecture Higher spectral coverage than in crystals

Guided architecture into small core fiber Increase of non linear effect (eg for superK)

8

EOLA – transfert Keopsys

Page 9: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Wake vortex measurement with Cw 1,55 µm lidar B20 Awiator 2004

9 Titre présentation

Integrated all fiber architecture

Page 10: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Wake vortex measurement with Cw 1,55 µm lidar B20 Awiator 2004

10

Page 11: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

11

Pulsed 1,55µm lidar Wind profiler

Fibered technology of pulsed lidars developed at ONERATransfer of technology from Onera to Leosphere (2006)

Lidar

WindCube parameters :

Range : 40 to 200 m Averaging time 1 sWind speed accuracy : 0.2 m.s-1Wind range : -30 to 30 m.s-1Vertical resolution : 15 to 30 mWind direction accuracy : 2°

2005 20062007

Page 12: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

12

Wake vortex measurement with pulsed 1,55 µm lidar Onera pulsed fiber lidar – CREDOS Setup (2007)

Lidar characteristics :

- wavelength: 1.55 µm- range : 400m- min distance: 50m- Spatial resolution : 30 m- Speed resolution : 0.5 m/s- Frame rate : 0.2Hz

• Fibered PM Laser 100µJ designed and built at Onera/DOTA•Fibered PM architecture•Real time signal processing•Eye safety

Scanner

Lidar

750

630

550

Page 13: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

SESAR XP0 (2011) & XP1 (2012) in CDG

13

All-weather sensors (lidar + radar) for Wake-Vortex hazards mitigation on Airport.

Beam for φ = 4°

XP1 : Real time monitoring of wake vortices with a scanning Doppler lidar

Page 14: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

14

High detection rates for all aircraft categories:

•SuperHeavy : 100%•Heavy: 91%•Medium:86%

SESAR XP0 (2011) & XP1 (2012) in CDG

Page 15: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

UFO project

15

UFO project aims at improving Wake-Vortex Prediction for future weather dependent separation regulations

To develop new ultra-fast RADAR/ LIDAR sensors

Design of high peak power coherent fiber lasers for lidar applications

Page 16: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

16

Design of high peak power coherent fiber lasersfor lidar applications

ModulationAmplification

injection

Design and build of a MOFPAWith 3 amplification stages

Design and build of MOFPAWith 4 amplification stages

Based on special fiber developments

800 µJ, 1 kW peak, 4 kHz, ∆ν < 1 MHz, M² = 1,1

multifilaments core fiber

MOFPA laser(Master Oscillator Fiber Power Amplifier)

Incease in peak power by control of the Brillouin threshold

200 µJ commercial amplifier

with narrow linewidth

Spécificities:• high spectral & spatial quality• Modularity of beam characteristics

2005 2006 2007 2008100 µJ 240 µJ 600 µJ 800 µJM² = 1,8 M² = 1,4 M² = 2,2 M² = 1,1

tomorrow> 1 mJ

- special fibers- coherent combining

- other innovative techniques…

technology transfer

(Laboratory proof year)

Page 17: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

17

Strain distribution technique for MOFPA peak power increase

Increase of the extractable peak power :by increasing the SBS threshold with adistributed strain on the fiber (Onera Patent)Applicable to various laser architectures designs• Results:

Fiber Ppic without Ppic with Gain

ErYb 7 28 W 186 W 8 dB

ErYb 12 L1 58 W 223 W 6 dB

ErYb 12 L2 106 W 420 W 6 dB

ErYb 25 300 W 600 W 3 dB

0 200 400 600 800 1000 12000

50

100

150

200

250

Po

wer

(W

)

Time (ns)

τeff

≈ 300 ns

• Conclusion : with standard (SM)ErYb fibre : Ppic ≈ 400W, +3dB / best commercialy available sources

With large coreErYb fibre : Ppic ≈ 600W, +5dB / best commercialy available sources

τpulse~1µs, Ep~0.6mJ

Page 18: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Wind Measurements of Windcube UFO Lidar

3D WIND

Windcube UFO

Windcube7

• Continuous 1-hour sequence

to provide Volume and

GlidePath Wind & EDR data

and Vertical DBS profiles

1.5µm Scanning Lidars200m-resolution

Page 19: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Lidar Wake vortex measurements at Onera A.Dolfi-Bouteyre 2016/06/08

-10000 -5000 0 5000

-6000

-4000

-2000

0

2000

4000

6000

15-Apr-2014 09:19:39

-6

-4

-2

0

2

4

Vr (m/S)

EDR from scanning lidar

Azimuthal structure function

07:12 08:10 09:09 10:08 11:07 12:06 13:05 14:04 15:03 16:020

0.1

0.2

0.3

0.4

Time

ED

R1/

3 (m

2/3

.s-1

)

averaged over 10 mn, no error terms24-Apr-2014... : EDR1/3

z=0050 m to0100 m z=0100 m to0150 m z=0150 m to0200 m z=0200 m to0250 m z=0250 m to0300 m z=0300 m to0350 m z=0350 m to0400 m

altit

ude(

m)

time

08:12 09:09 10:07 11:04 12:01 12:59 13:56 14:53

50

100

150

200

250

300

350

0

0.05

0.1

0.15

0.2

0.25

0.3

EDR1/3 (m2/3.s-1)24-Apr-2014. EDR1/3 (m2/3.s-1) averaged over 10 mn, no error terms

0 100 200 300 400 500 600 700 8000

0.05

0.1

0.15

0.2

0.25 15-Apr-2014 09:14:47 averaged 10 mn

m

m²/

EDR 1/3 = 0.0476 m 2/3. s-1

L0 = 505 m

Azimuthal structure fonction for 150m <h< 200m

Page 20: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Lidar Wake vortex measurements at Onera A.Dolfi-Bouteyre 2016/06/08

Lidar Signal processing for aircraft wake vortex un biased circulation estimation :

development of a spectral parametric algorithm

20

Wake vortex analytical

modelθ = ( x1,y1,Γ1; x2,y2 ,Γ2)

Lidar measurements

Velocity Spectra Yi

Detection & localisation Algorithm

(Γ1, Γ2)

( x1,y1,Γ1, x2,y2 ,Γ2)

Quick evaluation( x1,y1,Γ1, x2,y2 ,Γ2)

Refined(Γ1, Γ2)

Wake vortex characterization algorithm bloc diagram

Page 21: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Lidar Wake vortex measurements at Onera A.Dolfi-Bouteyre 2016/06/08

Validation (1/3)

After the Least Squares After the MLE

21

Page 22: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Lidar Wake vortex measurements at Onera A.Dolfi-Bouteyre 2016/06/08

Validation (2/3)

Results : Influence of atmospheric turbulence

Conclusion : The turbulence is the main source of the estimates

dispersion

With turbulence Without turbulence

22

Page 23: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Validation (2/3)

23

After the Least SquaresAfter the MLE

Large Eddy Simulations• A340 : Γ = 390

.

• Generated with a Hallock-Burnham model• 1,31m/s crosswind• In Ground Effect

Page 24: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Lidar Wake vortex measurements at Onera A.Dolfi-Bouteyre 2016/06/0824

Improved Lidar measurements of wake vortices using dataassimilation

PHD work :

•Data assimilation process to constrain Lidar measurements with the equations of flow motion

•Account for a more complex dynamics of the flow in the post-processing of the raw Lidar data.

Page 25: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Onboard Wake vortex measurements Fidelio – configuration longitudinale

Lidar FoV

LIDAR

Design of a lidar simulator

Design of a fibered laser

Pulse characteristics: 120 µJ-12kHz-800ns

WV detection at 1.2 km

Orly field trials 2008

25

Page 26: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Lidar Wake vortex measurements at Onera A.Dolfi-Bouteyre 2016/06/0826

Onboard lidar Performance with vibrations – set up

Lidar

VibratingPot

θ=45°

Ωtarget

θscan

Doppler Target: reliable and reproductible response (no meteo dependancy)Rotation of Doppler target Speckle averagingBeam scan of Doppler target Albedo averaging

Objective : Measurement of CNR with vibrations

Vibrations tests: Accelerations & frequenciesrepresentative of a medium size aircraft

Z

Page 27: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Lidar Wake vortex measurements at Onera A.Dolfi-Bouteyre 2016/06/0827

Without vibration With vibration~ 5Hz

No vibrations influence on CNR and speed on hard target LIDAR performs nominally duringvibrations tests

temps (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5-8

-6

-4

-2

0

2

4

6

2016-04-11--15-16-59

vitesse

vitesse-narcisse

vitesse-cible

temps (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 520

22

24

26

28

30

32CNR

CNR-narcisse

CNR-cible

temps (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

vite

sse

(m/s

)

-8

-6

-4

-2

0

2

4

6

2016-04-11--15-13-54

vitesse

vitesse-narcisse

vitesse-cible

temps (s)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5C

NR

(d

B)

20

22

24

26

28

30

32CNR

CNR-narcisse

CNR-cible

Onboard lidar Performances with vibrations - results

Rotation hard target Narcisse

Page 28: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Lidar Wake vortex measurements at Onera A.Dolfi-Bouteyre 2016/06/0828

Onboard lidar : All altitude measurements with Rayeigh Lidar

Laboratory development : Rayleigh lidar @ 355nm

Page 29: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Lidar Wake vortex measurements at Onera A.Dolfi-Bouteyre 2016/06/0829

Analyse spectrale par Double-Interferometre de Michelson

FCP

FCP

Delay line

Double shutter

LASER

CCD

Emission-Reception Head

MI of 10cm OPD (Mie)

MI of 3cm OPD(Rayleigh-Mie)

T=273K, α=1.2

α=1.2

α (contrast)

Onboard lidar : All altitude measurements with Rayeigh Lidar

Laboratory development : Rayleigh lidar @ 355nmSpectral analysis with a double Michelson interferometer

u (fringe phase)T (contrast + α)ρ (energy + α)

Page 30: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Dire

ctio

n -

Con

fére

nce

Projet DELICAT - coll. Thales, DLR, NLR, Latmos, Mét eo France…

Simulation of LIDAR signal:• Generation of 3D map realizations of atmospheric parameters: density ρ(x,y,z), aerosol attenuation and BS coefficient αMie(x,y,z), βMie(x,y,z), and axial wind wind(x,y,z)• Generation of aircraft trajectory (X,Y,Z(t)) as well as yaw and pitch (yaw(t), pitch(t))• => generation of lidar signal

ρ(x,y,z),βRayleigh(x,y,z), αMie(x,y,z), βMie(x,y,z),wind(x,y,z),

x

z

rho_3D

0 0.5 1 1.5 2 2.5 3

x 104

0.98

1

1.02

x 104

8.5

8.6

8.7

x 1024

beta_mol_3D -6

Turbulent zone centered at 23 km

0 20 40 60 80 100 120 140 160 180 2000.9995

1

1.0005x 10

4

Time (s)

Z_a

c_1T

0 20 40 60 80 100 120 140 160 180 200-0.5

0

0.5

Time (s)

pitc

h_ac

_1T

0 20 40 60 80 100 120 140 160 180 200-0.5

0

0.5

Time (s)

yaw

_ac_

1T

0 20 40 60 80 100 120 140 160 180 200160

165

170

Time (s)

tas_

ac_1

T

0 2000 4000 6000 8000 10000 12000 14000 1600010

-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

Distance along opt axis (m)

Det

ecto

r in

cide

nt p

ower

s (W

)

first A/C position (1st shot)

Paer (Mie Channel)

Pmol (Mie Channel)

Psun (Mie Channel)Paer (Ray Channel)

Pmol (Ray Channel)

Psun (Ray Channel)

2011-2012: signal processing

Page 31: Lidar for Wake vortex measurement at Onera - DLR · PDF fileLidar for Wake vortex measurement at Onera Agnès Dolfi-Bouteyre , B. Augère, G. Canat, N. Cézard, A. Durécu, D. Goular,

Lidar Wake vortex measurements at Onera A.Dolfi-Bouteyre 2016/06/0831

Lidar for Wake vortex measurement at Onerasummary

Onera develops laser & lidar for aeronautical applications.

Onera currently works on : • fiber laser power increasing for faster and longer range wind measurement• improved signal processing for wake-vortex measurement with optimized fiber

lidar • Lidar study & technology development for onboard Doppler measurements.

Future activities

Lidar study & technology development for onboard Doppler measurements.

Lidar technology development for faster long range wind measurements.

Lidar measurement and processing for improved wake vortex models.