Lesson 25: Areas

41
. . . . . . Section 5.1 Areas Math 1a Introduction to Calculus April 9, 2008 Announcements Problem Sessions Sunday, Thursday, 7pm, SC 310 Office hours Tues, Weds, 2–4pm SC 323 Midterm II: 4/11 in class (§3.4 through §4.8) . . Image: Flickr user Rappensuncle

description

The general area problem needs some kind of infinite process, whether an infinite series or a limit of finite sums. Once we define the definite integral, we examine its properties.

Transcript of Lesson 25: Areas

Page 1: Lesson 25: Areas

. . . . . .

Section5.1Areas

Math1aIntroductiontoCalculus

April9, 2008

Announcements

◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323◮ MidtermII:4/11inclass(§3.4 through§4.8)

..Image: FlickruserRappensuncle

Page 2: Lesson 25: Areas

. . . . . .

Announcements

◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323◮ MidtermII:4/11inclass(§3.4 through§4.8)

Page 3: Lesson 25: Areas

. . . . . .

Outline

Lasttime: Antiderivatives

Archimedes

Cavalieri

GeneralizingCavalieri’smethod

Worksheet

Page 4: Lesson 25: Areas

. . . . . .

Outline

Lasttime: Antiderivatives

Archimedes

Cavalieri

GeneralizingCavalieri’smethod

Worksheet

Page 5: Lesson 25: Areas

. . . . . .

Meetthemathematician: Archimedes

◮ 287BC –212BC (afterEuclid)

◮ Geometer◮ Weaponsengineer

Page 6: Lesson 25: Areas

. . . . . .

.

Archimedesfoundareasofasequenceoftrianglesinscribedinaparabola.

A =

1 + 2 · 18

+ 4 · 164

+ · · ·

= 1 +14

+116

+ · · · + 14n

+ · · ·

Page 7: Lesson 25: Areas

. . . . . .

.

.1

Archimedesfoundareasofasequenceoftrianglesinscribedinaparabola.

A = 1

+ 2 · 18

+ 4 · 164

+ · · ·

= 1 +14

+116

+ · · · + 14n

+ · · ·

Page 8: Lesson 25: Areas

. . . . . .

.

.1.18 .18

Archimedesfoundareasofasequenceoftrianglesinscribedinaparabola.

A = 1 + 2 · 18

+ 4 · 164

+ · · ·

= 1 +14

+116

+ · · · + 14n

+ · · ·

Page 9: Lesson 25: Areas

. . . . . .

.

.1.18 .18

.164 .164

.164 .164

Archimedesfoundareasofasequenceoftrianglesinscribedinaparabola.

A = 1 + 2 · 18

+ 4 · 164

+ · · ·

= 1 +14

+116

+ · · · + 14n

+ · · ·

Page 10: Lesson 25: Areas

. . . . . .

.

.1.18 .18

.164 .164

.164 .164

Archimedesfoundareasofasequenceoftrianglesinscribedinaparabola.

A = 1 + 2 · 18

+ 4 · 164

+ · · ·

= 1 +14

+116

+ · · · + 14n

+ · · ·

Page 11: Lesson 25: Areas

. . . . . .

Wewouldthenneedtoknowthevalueoftheseries

1 +14

+116

+ · · · + 14n

+ · · ·

Butforanynumber r andanypositiveinteger n,

(1− r)(1 + r + · · · + rn) = 1− rn+1

So

1 + r + · · · + rn =1− rn+1

1− r

Therefore

1 +14

+116

+ · · · + 14n

=1− (1/4)n+1

1− 1/4→ 1

3/4=

43

as n → ∞.

Page 12: Lesson 25: Areas

. . . . . .

Outline

Lasttime: Antiderivatives

Archimedes

Cavalieri

GeneralizingCavalieri’smethod

Worksheet

Page 13: Lesson 25: Areas

. . . . . .

Cavalieri

◮ Italian,1598–1647

◮ Revisitedtheareaproblemwithadifferentperspective

Page 14: Lesson 25: Areas

. . . . . .

Cavalieri’smethod

.

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =

127

+427

=527

L4 =

164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+1625

=30125

Ln =?

Page 15: Lesson 25: Areas

. . . . . .

Cavalieri’smethod

.

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =

127

+427

=527

L4 =

164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+1625

=30125

Ln =?

Page 16: Lesson 25: Areas

. . . . . .

Cavalieri’smethod

.

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =

127

+427

=527

L4 =

164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+1625

=30125

Ln =?

Page 17: Lesson 25: Areas

. . . . . .

Cavalieri’smethod

.

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =127

+427

=527

L4 =

164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+1625

=30125

Ln =?

Page 18: Lesson 25: Areas

. . . . . .

Cavalieri’smethod

.

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =127

+427

=527

L4 =

164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+1625

=30125

Ln =?

Page 19: Lesson 25: Areas

. . . . . .

Cavalieri’smethod

.

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =127

+427

=527

L4 =164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+1625

=30125

Ln =?

Page 20: Lesson 25: Areas

. . . . . .

Cavalieri’smethod

.

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =127

+427

=527

L4 =164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+1625

=30125

Ln =?

Page 21: Lesson 25: Areas

. . . . . .

Cavalieri’smethod

.

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =127

+427

=527

L4 =164

+464

+964

=1464

L5 =1

125+

4125

+9

125+

1625

=30125

Ln =?

Page 22: Lesson 25: Areas

. . . . . .

Cavalieri’smethod

.

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =127

+427

=527

L4 =164

+464

+964

=1464

L5 =1

125+

4125

+9

125+

1625

=30125

Ln =?

Page 23: Lesson 25: Areas

. . . . . .

Whatis Ln?Dividetheinterval [0, 1] into n pieces. Theneachhaswidth

1n.

Therectangleoverthe ithintervalandundertheparabolahasarea

1n·(i− 1n

)2

=(i− 1)2

n3.

So

Ln =1n3

+22

n3+ · · · + (n− 1)2

n3=

1 + 22 + 32 + · · · + (n− 1)2

n3

TheArabsknewthat

1 + 22 + 32 + · · · + (n− 1)2 =n(n− 1)(2n− 1)

6

So

Ln =n(n− 1)(2n− 1)

6n3→ 1

3as n → ∞.

Page 24: Lesson 25: Areas

. . . . . .

Whatis Ln?Dividetheinterval [0, 1] into n pieces. Theneachhaswidth

1n.

Therectangleoverthe ithintervalandundertheparabolahasarea

1n·(i− 1n

)2

=(i− 1)2

n3.

So

Ln =1n3

+22

n3+ · · · + (n− 1)2

n3=

1 + 22 + 32 + · · · + (n− 1)2

n3

TheArabsknewthat

1 + 22 + 32 + · · · + (n− 1)2 =n(n− 1)(2n− 1)

6

So

Ln =n(n− 1)(2n− 1)

6n3→ 1

3as n → ∞.

Page 25: Lesson 25: Areas

. . . . . .

Whatis Ln?Dividetheinterval [0, 1] into n pieces. Theneachhaswidth

1n.

Therectangleoverthe ithintervalandundertheparabolahasarea

1n·(i− 1n

)2

=(i− 1)2

n3.

So

Ln =1n3

+22

n3+ · · · + (n− 1)2

n3=

1 + 22 + 32 + · · · + (n− 1)2

n3

TheArabsknewthat

1 + 22 + 32 + · · · + (n− 1)2 =n(n− 1)(2n− 1)

6

So

Ln =n(n− 1)(2n− 1)

6n3→ 1

3as n → ∞.

Page 26: Lesson 25: Areas

. . . . . .

Whatis Ln?Dividetheinterval [0, 1] into n pieces. Theneachhaswidth

1n.

Therectangleoverthe ithintervalandundertheparabolahasarea

1n·(i− 1n

)2

=(i− 1)2

n3.

So

Ln =1n3

+22

n3+ · · · + (n− 1)2

n3=

1 + 22 + 32 + · · · + (n− 1)2

n3

TheArabsknewthat

1 + 22 + 32 + · · · + (n− 1)2 =n(n− 1)(2n− 1)

6

So

Ln =n(n− 1)(2n− 1)

6n3

→ 13

as n → ∞.

Page 27: Lesson 25: Areas

. . . . . .

Whatis Ln?Dividetheinterval [0, 1] into n pieces. Theneachhaswidth

1n.

Therectangleoverthe ithintervalandundertheparabolahasarea

1n·(i− 1n

)2

=(i− 1)2

n3.

So

Ln =1n3

+22

n3+ · · · + (n− 1)2

n3=

1 + 22 + 32 + · · · + (n− 1)2

n3

TheArabsknewthat

1 + 22 + 32 + · · · + (n− 1)2 =n(n− 1)(2n− 1)

6

So

Ln =n(n− 1)(2n− 1)

6n3→ 1

3as n → ∞.

Page 28: Lesson 25: Areas

. . . . . .

Cavalieri’smethodfordifferentfunctions

Trythesametrickwith f(x) = x3. Wehave

Ln =1n· f

(1n

)+

1n· f

(2n

)+ · · · + 1

n· f

(n− 1n

)

=1n· 1n3

+1n· 2

3

n3+ · · · + 1

n· (n− 1)3

n3

=1 + 23 + 33 + · · · + (n− 1)3

n3

Theformulaoutofthehatis

1 + 23 + 33 + · · · + (n− 1)3 =[12n(n− 1)

]2So

Ln =n2(n− 1)2

4n4→ 1

4as n → ∞.

Page 29: Lesson 25: Areas

. . . . . .

Cavalieri’smethodfordifferentfunctions

Trythesametrickwith f(x) = x3. Wehave

Ln =1n· f

(1n

)+

1n· f

(2n

)+ · · · + 1

n· f

(n− 1n

)=

1n· 1n3

+1n· 2

3

n3+ · · · + 1

n· (n− 1)3

n3

=1 + 23 + 33 + · · · + (n− 1)3

n3

Theformulaoutofthehatis

1 + 23 + 33 + · · · + (n− 1)3 =[12n(n− 1)

]2So

Ln =n2(n− 1)2

4n4→ 1

4as n → ∞.

Page 30: Lesson 25: Areas

. . . . . .

Cavalieri’smethodfordifferentfunctions

Trythesametrickwith f(x) = x3. Wehave

Ln =1n· f

(1n

)+

1n· f

(2n

)+ · · · + 1

n· f

(n− 1n

)=

1n· 1n3

+1n· 2

3

n3+ · · · + 1

n· (n− 1)3

n3

=1 + 23 + 33 + · · · + (n− 1)3

n3

Theformulaoutofthehatis

1 + 23 + 33 + · · · + (n− 1)3 =[12n(n− 1)

]2So

Ln =n2(n− 1)2

4n4→ 1

4as n → ∞.

Page 31: Lesson 25: Areas

. . . . . .

Cavalieri’smethodfordifferentfunctions

Trythesametrickwith f(x) = x3. Wehave

Ln =1n· f

(1n

)+

1n· f

(2n

)+ · · · + 1

n· f

(n− 1n

)=

1n· 1n3

+1n· 2

3

n3+ · · · + 1

n· (n− 1)3

n3

=1 + 23 + 33 + · · · + (n− 1)3

n3

Theformulaoutofthehatis

1 + 23 + 33 + · · · + (n− 1)3 =[12n(n− 1)

]2

So

Ln =n2(n− 1)2

4n4→ 1

4as n → ∞.

Page 32: Lesson 25: Areas

. . . . . .

Cavalieri’smethodfordifferentfunctions

Trythesametrickwith f(x) = x3. Wehave

Ln =1n· f

(1n

)+

1n· f

(2n

)+ · · · + 1

n· f

(n− 1n

)=

1n· 1n3

+1n· 2

3

n3+ · · · + 1

n· (n− 1)3

n3

=1 + 23 + 33 + · · · + (n− 1)3

n3

Theformulaoutofthehatis

1 + 23 + 33 + · · · + (n− 1)3 =[12n(n− 1)

]2So

Ln =n2(n− 1)2

4n4→ 1

4as n → ∞.

Page 33: Lesson 25: Areas

. . . . . .

Cavalieri’smethodwithdifferentheights

.

Rn =1n· 1

3

n3+

1n· 2

3

n3+ · · · + 1

n· n

3

n3

=13 + 23 + 33 + · · · + n3

n4

=1n4

[12n(n + 1)

]2=

n2(n + 1)2

4n4→ 1

4

as n → ∞.

Soeventhoughtherectanglesoverlap, westillgetthesameanswer.

Page 34: Lesson 25: Areas

. . . . . .

Cavalieri’smethodwithdifferentheights

.

Rn =1n· 1

3

n3+

1n· 2

3

n3+ · · · + 1

n· n

3

n3

=13 + 23 + 33 + · · · + n3

n4

=1n4

[12n(n + 1)

]2=

n2(n + 1)2

4n4→ 1

4

as n → ∞.Soeventhoughtherectanglesoverlap, westillgetthesameanswer.

Page 35: Lesson 25: Areas

. . . . . .

Outline

Lasttime: Antiderivatives

Archimedes

Cavalieri

GeneralizingCavalieri’smethod

Worksheet

Page 36: Lesson 25: Areas

. . . . . .

Cavalieri’smethodingeneralLet f beapositivefunctiondefinedontheinterval [a,b]. Wewanttofindtheareabetween x = a, x = b, y = 0, and y = f(x).Foreachpositiveinteger n, divideuptheintervalinto n pieces.

Then ∆x =b− an

. Foreach i between 1 and n, let xi bethe nth

stepbetween a and b. So

..a .b. . . . . . ..x0 .x1 .x2 .xi.xn−1.xn

x0 = a

x1 = x0 + ∆x = a +b− an

x2 = x1 + ∆x = a + 2 · b− an

· · · · · ·

xi = a + i · b− an

· · · · · ·

xn = a + n · b− an

= b

Page 37: Lesson 25: Areas

. . . . . .

FormingRiemannsums

Wehavemanychoicesofhowtoapproximatethearea:

Ln = f(x0)∆x + f(x1)∆x + · · · + f(xn−1)∆x

Rn = f(x1)∆x + f(x2)∆x + · · · + f(xn)∆x

Mn = f(x0 + x1

2

)∆x + f

(x1 + x2

2

)∆x + · · · + f

(xn−1 + xn

2

)∆x

Ingeneral, choose ci tobeapointinthe ithinterval [xi−1, xi].Formthe Riemannsum

Sn = f(c1)∆x + f(c2)∆x + · · · + f(cn)∆x

=n∑

i=1

f(ci)∆x

Page 38: Lesson 25: Areas

. . . . . .

FormingRiemannsums

Wehavemanychoicesofhowtoapproximatethearea:

Ln = f(x0)∆x + f(x1)∆x + · · · + f(xn−1)∆x

Rn = f(x1)∆x + f(x2)∆x + · · · + f(xn)∆x

Mn = f(x0 + x1

2

)∆x + f

(x1 + x2

2

)∆x + · · · + f

(xn−1 + xn

2

)∆x

Ingeneral, choose ci tobeapointinthe ithinterval [xi−1, xi].Formthe Riemannsum

Sn = f(c1)∆x + f(c2)∆x + · · · + f(cn)∆x

=n∑

i=1

f(ci)∆x

Page 39: Lesson 25: Areas

. . . . . .

TheoremoftheDay

TheoremIf f isacontinuousfunctionon [a,b] orhasfinitelymanyjumpdiscontinuities, then

limn→∞

Sn = limn→∞

{f(c1)∆x + f(c2)∆x + · · · + f(cn)∆x}

existsandisthesamevaluenomatterwhatchoiceof ci wemade.

Page 40: Lesson 25: Areas

. . . . . .

Outline

Lasttime: Antiderivatives

Archimedes

Cavalieri

GeneralizingCavalieri’smethod

Worksheet

Page 41: Lesson 25: Areas

. . . . . .

Worksheet

Wewilldeterminetheareaunder y = ex between x = 0 andx = 1.