Lesson 22: Triple Integrals

21
. . . . . . Section 12.7 Triple Integrals Math 21a April 4, 2008 Announcements Office hours Tuesday, Wednesday 2–4pm SC 323 Problem Sessions: Mon, 8:30; Thur, 7:30; SC 103b . . Image: Flickr user The K Team

description

You knew this was coming. From double integrals over plane regions we move onward to triple integrals over solid regions. The visualization is a little harder, but the calculus not that much.

Transcript of Lesson 22: Triple Integrals

Page 1: Lesson 22: Triple Integrals

. . . . . .

Section 12.7Triple Integrals

Math 21a

April 4, 2008

Announcements

◮ Office hours Tuesday, Wednesday 2–4pm SC 323◮ Problem Sessions: Mon, 8:30; Thur, 7:30; SC 103b

..Image: Flickr user The K Team

Page 2: Lesson 22: Triple Integrals

. . . . . .

Announcements

◮ Office hours Tuesday, Wednesday 2–4pm SC 323◮ Problem Sessions: Mon, 8:30; Thur, 7:30; SC 103b

Page 3: Lesson 22: Triple Integrals

. . . . . .

Outline

Last time: Surface Area

Triple integrals over boxesThe Riemann sumFubini’s Theorem for triple integrals

Triple integrals over solid regions

Worksheet

Next Time

Page 4: Lesson 22: Triple Integrals

. . . . . .

Last Time: Surface Area

◮ if r : D → S is a parametrization, the surface area of S is

A(S) =

∫∫D

|ru × rv| dA

◮ If S is the graph of f(x, y) over D, then

A(S) =

∫∫D

√1 +

(∂f∂x

)2

+

(∂f∂y

)2

dA

◮ If S is the graph of y = f(x) over [a, b] rotated about the x-axis,then

A(S) = 2π

∫ b

af(x)

√1 + f′(x)2 dx

Page 5: Lesson 22: Triple Integrals

. . . . . .

Outline

Last time: Surface Area

Triple integrals over boxesThe Riemann sumFubini’s Theorem for triple integrals

Triple integrals over solid regions

Worksheet

Next Time

Page 6: Lesson 22: Triple Integrals

. . . . . .

The Riemann sum

To integrate a function f(x, y, z) over the three-dimensional box

B = [a, b] × [c, d] × [r, s]

= { (x, y, z) | a ≤ x ≤ b, c ≤ y ≤ d, r ≤ z ≤ s }

◮ Divide up [a, b] into ℓ pieces, [c, d] into m pieces, [r, s] into npieces

◮ choose a sample point (x∗ijk, y∗ijk, z∗ijk) in each sub-box◮ form the Riemann sum

Sℓmn =ℓ∑

i=1

m∑j=1

n∑k=1

f(x∗ijk, y∗ijk, z∗ijk)∆x ∆y ∆z

◮ take the limit!

Page 7: Lesson 22: Triple Integrals

. . . . . .

Definition

∫∫∫B

f(x, y, z) dV = limℓ,m,n→∞

ℓ∑i=1

m∑j=1

n∑k=1

f(x∗ijk, y∗ijk, z∗ijk)∆x ∆y ∆z

Page 8: Lesson 22: Triple Integrals

. . . . . .

TheoremIf f is continuous on the rectangular box

B = [a, b] × [c, d] × [r, s]

then ∫∫∫B

f(x, y, z) dV =

∫ s

r

∫ d

c

∫ b

af(x, y, z) dx dy dz

Page 9: Lesson 22: Triple Integrals

. . . . . .

ExampleEvaluate the triple integral∫∫∫

B

2xey sin z dV, where B = [1, 2] × [0, 1] × [0, π]

Answer

∫∫∫B

2xey sin z dV =

∫ π

0

∫ 1

0

∫ 2

12xey sin z dx dy dz = 6(e − 1)

Page 10: Lesson 22: Triple Integrals

. . . . . .

ExampleEvaluate the triple integral∫∫∫

B

2xey sin z dV, where B = [1, 2] × [0, 1] × [0, π]

Answer

∫∫∫B

2xey sin z dV =

∫ π

0

∫ 1

0

∫ 2

12xey sin z dx dy dz = 6(e − 1)

Page 11: Lesson 22: Triple Integrals

. . . . . .

Outline

Last time: Surface Area

Triple integrals over boxesThe Riemann sumFubini’s Theorem for triple integrals

Triple integrals over solid regions

Worksheet

Next Time

Page 12: Lesson 22: Triple Integrals

. . . . . .

Motivation

◮ We can define triple integrals over non-box regions◮ For double integrals, we found some regions which converted

easily to iterated integrals (type I and type II)◮ What’s the three-dimensional analogue of such simple regions

Page 13: Lesson 22: Triple Integrals

. . . . . .

DefinitionA solid region E is said to be of type 1 if it lies between the graphsof two continuous function of x and y:

E = { (x, y, z) | (x, y) ∈ D, u1(x, y) ≤ z ≤ u2(x, y) }

FactLet E be as above, and f a continuous function. Then∫∫∫

E

f(x, y, z) dV =

∫∫D

[∫ u2(x,y)

u1(x,y)f(x, y, z) dz

]dA

Page 14: Lesson 22: Triple Integrals

. . . . . .

DefinitionA solid region E is said to be of type 1 if it lies between the graphsof two continuous function of x and y:

E = { (x, y, z) | (x, y) ∈ D, u1(x, y) ≤ z ≤ u2(x, y) }

FactLet E be as above, and f a continuous function. Then∫∫∫

E

f(x, y, z) dV =

∫∫D

[∫ u2(x,y)

u1(x,y)f(x, y, z) dz

]dA

Page 15: Lesson 22: Triple Integrals

. . . . . .

If D is of type I, we can further reduce the integral. Suppose

D = (x, y)a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)

Then∫∫∫E

f(x, y, z) dV =

∫∫D

[∫ u2(x,y)

u1(x,y)f(x, y, z) dz

]dA

=

∫ b

a

∫ g2(x)

g1(x)

∫ u2(x,y)

u1(x,y)f(x, y, z) dz dy dx

Page 16: Lesson 22: Triple Integrals

. . . . . .

A type 2 region is of the form

E = { (x, y, z) | (y, z) ∈ D, u1(y, z) ≤ x ≤ u2(y, z) }

The integral of f over E can be computed as∫∫∫E

f(x, y, z) dV =

∫∫D

∫ u2(y,z)

u1(y,z)f(x, y, z) dx dA

Page 17: Lesson 22: Triple Integrals

. . . . . .

A type 3 region is of the form

E = { (x, y, z) | (x, z) ∈ D, u1(x, z) ≤ y ≤ u2(x, z) }

The integral of f over E can be computed as∫∫∫E

f(x, y, z) dV =

∫∫D

∫ u2(x,z)

u1(x,z)f(x, y, z) dy dA

Page 18: Lesson 22: Triple Integrals

. . . . . .

Outline

Last time: Surface Area

Triple integrals over boxesThe Riemann sumFubini’s Theorem for triple integrals

Triple integrals over solid regions

Worksheet

Next Time

Page 19: Lesson 22: Triple Integrals

. . . . . .

Worksheet

.

.Image: Erick Cifuentes

Page 20: Lesson 22: Triple Integrals

. . . . . .

Outline

Last time: Surface Area

Triple integrals over boxesThe Riemann sumFubini’s Theorem for triple integrals

Triple integrals over solid regions

Worksheet

Next Time

Page 21: Lesson 22: Triple Integrals

. . . . . .

Next time:More Triple Integrals