15.7 Triple Integrals in Cylindrical and Spherical...

17
15.7 Triple Integrals in Cylindrical and Spherical Coordinates Ulrich Hoensch Friday, November 9, 2012

Transcript of 15.7 Triple Integrals in Cylindrical and Spherical...

15.7 Triple Integrals in Cylindrical and SphericalCoordinates

Ulrich Hoensch

Friday, November 9, 2012

Cylindrical CoordinatesIn R3, we can represent each point (x , y , z) as follows.

z

x

y

Hx,y,0L

Hx,y,zL

Θ

Hx,y,zL

r

h

This means:

x = r cos θ r =√

x2 + y2

y = r sin θ or tan θ = y/x

z = h h = z .

Cylindrical CoordinatesThe coordinates (r , θ, h) are the cylindrical coordinates of thepoint P. The Cartesian coordinates of this point are obtained bythe transformation

(x , y , z) = T (r , h, θ) = (r cos θ, r sin θ, h).

This transformation is one-to-one if r > 0 and 0 ≤ θ < 2π. ItsJacobian determinant is

∂(x , y , z)

∂(r , θ, h)=

∣∣∣∣∣∣cos θ −r sin θ 0sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣ = r cos2 θ + r sin2 θ = r .

Applying Theorem 15.6 gives the following integration formulawhen using cylindrical coordinates:∫∫∫

T (S)f (x , y , z) dV (x , y , z) =

∫∫∫S

f (r cos θ, r sin θ, h)r dV (r , θ, h).

Example

Find the value of the integral∫ 1

−1

∫ √1−x2

−√

1−x2

∫ 2−x2−y2

x2+y2

(x2 + y2)3/2 dz dy dx

by expressing the region of integration in cylindrical coordinates.

We have:

I −1 ≤ x ≤ 1;

I −√

1− x2 ≤ y ≤√

1− x2, so x2 + y2 ≤ 1;

I x2 + y2 ≤ z ≤ 2− x2 − y2.

When using cylindrical coordinates, we get:

I 0 < r ≤ 1;

I 0 ≤ θ < 2π;

I r2 ≤ h ≤ 2− r2.

Example

This means the region Q over which we integrate is the solid thatlies between the two paraboloids z = r2 and z = 2− r2, andQ = T (S), where S = {0 < r ≤ 1, 0 ≤ θ < 2π, r2 ≤ h ≤ 2− r2}.

Example

Using that x2 + y2 = r2 and switching to cylindrical coordinatesgives ∫ 1

−1

∫ √1−x2

−√

1−x2

∫ 2−x2−y2

x2+y2

(x2 + y2)3/2 dz dy dx

=

∫ 1

0

∫ 2π

0

∫ 2−r2

r2

(r2)3/2r dh dθ dr

= . . .

=8π

35.

Example

We want to find the volume of the interior of the torus with innerradius A and tube radius R. The figure below shows a torus withA = 1 and R = 1.

Example

The torus can be obtained by rotating the circle with center atr = A + R and radius R about the vertical axis:

A A+R A+2Rr

-R

R

h

In cylindrical coordinates, this gives us:

I A ≤ r ≤ A + 2R;

I 0 ≤ θ < 2π;

I −√

R2 − (r − (A + R))2 ≤ h ≤√

R2 − (r − (A + R))2.

To see the last inequality, note that h2 = R2 − (r − (A + R))2.

ExampleThe volume of the interior Q of the torus is∫∫∫

QdV (x , y , z) =

∫ A+2R

A

∫ 2π

0

∫ √R2−(r−(A+R))2

−√

R2−(r−(A+R))2r dh dθ dr

= 2π

∫ A+2R

A2r√

R2 − (r − (A + R))2 dr

Using the substitution r − (A + R) = R cos u, −π ≤ u ≤ 0 givesr = (A + R) + R cos u, dr = −R sin u du, and√

R2 − (r − (A + R))2 =√

R2 − R2 cos2 u = −R sin u.

Thus, the integral becomes:

∫ 0

−π((A + R) + R cos u)(−R sin u)(−R sin u) du

= 4πR2

∫ 0

−π(A + R) sin2 u + R cos u sin2 u du.

Example

The first term can be integrated by using the power-reducingformula sin2 u = (1− cos(2u))/2 and the second term via thesubstitution v = sin u. We obtain∫ 0

−πsin2 u du = π/2,∫ 0

−πcos u sin2 u du = 0.

Thus,

vol(Q) = 4πR2

∫ 0

−π(A + R) sin2 u + R cos u sin2 u du

= 4πR2(A + R)(π/2) = 2π2R2(A + R).

Spherical CoordinatesWe can also represent a point (x , y , z) ∈ R3 like this:

z

x

y

Hx,y,0L

Hx,y,zL

Θ

Hx,y,zL

r sinΦ

h

Note that cosφ = z/r , so z = r cosφ. Since x2 + y2 + z2 = r2, wehave x2 + y2 = r2 − r2 cos2 φ = r2 sin2 φ. This gives the sphericalcoordinates

x = r sinφ cos θ, y = r sinφ sin θ, z = r cosφ.

Spherical CoordinatesThe Cartesian coordinates of this point are obtained by thetransformation

(x , y , z) = T (r , h, θ) = (r sinφ cos θ, r sinφ sin θ, r cosφ),

where r > 0, 0 ≤ θ ≤ 2π, 0 ≤ φ < π. The Jacobian determinant is

∂(x , y , z)

∂(r , θ, φ)=

∣∣∣∣∣∣sinφ cos θ −r sinφ sin θ r cosφ cos θsinφ sin θ r sinφ cos θ r cosφ sin θ

cosφ 0 −r sinφ

∣∣∣∣∣∣ = −r2 sinφ.

Applying Theorem 15.6 gives the following integration formulawhen using spherical coordinates:∫∫∫

T (S)f (x , y , z) dV (x , y , z) =

∫∫∫S

f (r sinφ cos θ, r sinφ sin θ, r cosφ)r2 sinφ dV (r , θ, φ).

ExampleFind the volume of the spherical sector Q shown here. The radiusof the sphere is

√2, and the interior angle of the sector is π/2.

In spherical coordinates, Q is given by

0 ≤ r ≤√

2, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π/4.

Example

So,

vol(Q) =

∫∫∫Q

dV (x , y , z)

=

∫ √2

0

∫ 2π

0

∫ π/4

0r2 sinφ dφ dθ dr

= . . .

=4π(√

2− 1)

3.

Example

Find the value of the integral∫ 2

−2

∫ √4−x2

−√

4−x2

∫ √4−x2−y2

0x2 + y2 + z2 dz dy dx

by expressing the region of integration in spherical coordinates.

We have:

I −2 ≤ x ≤ 2;

I −√

4− x2 ≤ y ≤√

4− x2, so x2 + y2 ≤ 4;

I 0 ≤ z ≤√

4− x2 − y2, so x2 + y2 + z2 ≤ 4.

The region of integration Q is the part of the ball with radius 2that lies above the xy -plane. Q can be expressed in sphericalcoordinates as:

0 ≤ r ≤ 2, 0 ≤ θ < 2π, 0 ≤ φ ≤ π/2.

Example

Note that x2 + y2 + z2 = r2 when using spherical coordinates.The integral becomes∫∫∫

Qx2 + y2 + z2 dV =

∫ 2

0

∫ 2π

0

∫ π/2

0(r2)(r2 sinφ)dφ dθ dr

= . . .

=64π

5.

Practice Problems for Section 15.7

p.901-903: 1, 3, 5, 7, 11, 15, 21, 23, 27, 43, 45.