Lecture21 Canonical Transformation

25
Mechanics Physics 151 Lecture 21 Canonical Transformations (Chapter 9)

description

Lecture on Analytical Mechanics. Notes by Masahiro Morii at Harvard.

Transcript of Lecture21 Canonical Transformation

Page 1: Lecture21 Canonical Transformation

MechanicsPhysics 151

Lecture 21Canonical Transformations

(Chapter 9)

Page 2: Lecture21 Canonical Transformation

What We Did Last Time

Canonical transformationsHamiltonian formalism isinvariant under canonical + scale transformationsGenerating functions define canonical transformationsFour basic types of generating functions

They are all practically equivalent

Used it to simplify a harmonic oscillatorInvariance of phase space

i i i idFPQ K p q Hdt

− + = −

1( , , )F q Q t 2 ( , , )F q P t 3 ( , , )F p Q t 4 ( , , )F p P t

Page 3: Lecture21 Canonical Transformation

Four Basic Generators

Trivial CaseDerivativesGenerator

1( , , )F q Q t

2 ( , , ) i iF q P t Q P−

3 ( , , ) i iF p Q t q p+

4 ( , , ) i i i iF p P t q p Q P+ −

1i

i

Fpq

∂=

∂1

ii

FPQ

∂= −

∂ 1 i iF q Q= i iQ p=

i iP q= −

2i

i

Fpq

∂=

∂2

ii

FQP

∂=

∂ 2 i iF q P=i iP p=i iQ q=

3i

i

Fqp

∂= −

∂3

ii

FPQ

∂= −

4i

i

Fqp

∂= −

∂4

ii

FQP

∂=

3 i iF p Q=i iP p= −i iQ q= −

4 i iF p P= i iQ p=

i iP q= −

Page 4: Lecture21 Canonical Transformation

Goals for Today

Dig deeper into Canonical TransformationsInfinitesimal Canonical Transformation

Very small changes in q and pDefine generator G for an ICT

Direct Conditions for Canonical TransformationNecessary-and-sufficient conditions for any CT

Poisson BracketInvariant of any Canonical TransformationConnect to Infinitesimal Canonical Transformation

Page 5: Lecture21 Canonical Transformation

Infinitesimal CT

Consider a CT in which q, p are changed by small (infinitesimal) amounts

ICT is close to identity transf.Generating function should be

i i iQ q qδ= + i i iP p pδ= + Infinitesimal Canonical Transformation (ICT)

2 ( , , ) ( , , )i iF q P t q P G q P tε= +

Identity CT generator Small

2i i

i i

F Gp Pq q

ε∂ ∂= = +

∂ ∂2

i ii i

F GQ qP P

ε∂ ∂= = +

∂ ∂Look at the

generator table

ii i

G GqP p

δ ε ε∂ ∂= ≈

∂ ∂ ii i

G Gpq Q

δ ε ε∂ ∂= − ≈ −

∂ ∂Since ε is

infinitesimal

Page 6: Lecture21 Canonical Transformation

Generator of ICT

An ICT is generated by

G is called (inaccurately) the generator of the ICTSince the CT is infinitesimal, G may be expressed in terms of q or Q, p or P, interchangeably

For example:

2 ( , , ) ( , , )i iF q P t q P G q P tε= +

i ii

GQ qP

ε ∂= +

∂ i ii

GP pq

ε ∂= −

( , , )G G q p t= i ii

GQ qp

ε ∂= +

∂ i ii

GP pq

ε ∂= −

Page 7: Lecture21 Canonical Transformation

Hamiltonian

Consider

What does ε look like? Infinitesimal time δt

Hamiltonian is the generator of infinitesimal time transformation

In QM, you learn that Hamiltonian is the operator that represents advance of time

( , , )G H q p t=

i ii

Hq qp

δ ε ε∂= =

∂ i ii

Hp pq

δ ε ε∂= − =

i iq q tδ δ= i ip p tδ δ=

Page 8: Lecture21 Canonical Transformation

Direct Conditions

Consider a restricted Canonical TransformationGenerator has no t dependence

Q and P depends only on q and p

0Ft

∂=

∂( , ) ( , )K Q P H q p= Hamiltonian

is unchanged

( , )i iQ Q q p= ( , )i iP P q p=

i i i ii j j

j j j j j j

Q Q Q QH HQ q pq p q p p q

∂ ∂ ∂ ∂∂ ∂= + = −

∂ ∂ ∂ ∂ ∂ ∂

i i i ii j j

j j j j j j

P P P PH HP q pq p q p p q

∂ ∂ ∂ ∂∂ ∂= + = −

∂ ∂ ∂ ∂ ∂ ∂

Hamilton’s equations

Page 9: Lecture21 Canonical Transformation

Direct Conditions

On the other hand, Hamilton’s eqns say

i ii

j j j j

Q QH HQq p p q

∂ ∂∂ ∂= −

∂ ∂ ∂ ∂

i ii

j j j j

P PH HPq p p q

∂ ∂∂ ∂= −

∂ ∂ ∂ ∂

j ji

i j i j i

q pH H HQP q P p P

∂ ∂∂ ∂ ∂= = +

∂ ∂ ∂ ∂ ∂

j ji

i j i j i

q pH H HPQ q Q p Q

∂ ∂∂ ∂ ∂= − = − −

∂ ∂ ∂ ∂ ∂

Direct Conditions

for a Canonical Transformation

,,

ji

j i Q Pq p

pQq P

⎛ ⎞ ∂⎛ ⎞∂=⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠ ,,

ji

j i Q Pq p

qQp P

⎛ ⎞ ∂⎛ ⎞∂= −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

,,

ji

j i Q Pq p

pPq Q

⎛ ⎞ ∂⎛ ⎞∂= −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠ ,,

ji

j i Q Pq p

qPp Q

⎛ ⎞ ∂⎛ ⎞∂=⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

Page 10: Lecture21 Canonical Transformation

Direct Conditions

Direct Conditions are necessary and sufficient for a time-independent transformation to be canonical

You can use them to test a CT

In fact, this applies to all Canonical TransformationsBut the proof on the last slide doesn’t work

,,

ji

j i Q Pq p

pQq P

⎛ ⎞ ∂⎛ ⎞∂=⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠ ,,

ji

j i Q Pq p

qQp P

⎛ ⎞ ∂⎛ ⎞∂= −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

,,

ji

j i Q Pq p

pPq Q

⎛ ⎞ ∂⎛ ⎞∂= −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠ ,,

ji

j i Q Pq p

qPp Q

⎛ ⎞ ∂⎛ ⎞∂=⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

Page 11: Lecture21 Canonical Transformation

Infinitesimal CT

Does an ICT satisfy the DCs?2( )i i i

ijj j i j

Q q q Gq q P q

δ δ ε∂ ∂ + ∂= = +

∂ ∂ ∂ ∂

2( )j j jij

i i i j

p P p GP P P q

δδ ε

∂ ∂ − ∂= = +

∂ ∂ ∂ ∂

ii i

G GqP p

δ ε ε∂ ∂= ≈

∂ ∂

ii i

G Gpq Q

δ ε ε∂ ∂= − ≈ −

∂ ∂

2( )i i i

j j i j

Q q q Gp p P p

δ ε∂ ∂ + ∂= =

∂ ∂ ∂ ∂

2( )j j j

i i i j

q Q q GP P P p

δε

∂ ∂ − ∂= = −

∂ ∂ ∂ ∂2( )i i i

j j i j

P p p Gq q Q q

δ ε∂ ∂ + ∂= = −

∂ ∂ ∂ ∂

2( )j j j

i i i j

p P p GQ Q Q q

δε

∂ ∂ − ∂= =

∂ ∂ ∂ ∂2( )i i i

ijj j i j

P p p Gp p Q p

δ δ ε∂ ∂ + ∂= = −

∂ ∂ ∂ ∂

2( )j j jij

i i i j

q Q q GQ Q Q p

δδ ε

∂ ∂ − ∂= = −

∂ ∂ ∂ ∂

Yes!

Page 12: Lecture21 Canonical Transformation

Successive CTs

Two successive CTs make a CT

Direct Conditions can also be “chained”, e.g.,

1i i i i

dFPQ K p q Hdt

− + = − 2i i i i

dFY X M PQ Kdt

− + = −

1 2( )i i i i

d F FY X M p q Kdt+

− + = − True for unrestricted CTs

,,

ji

j i Q Pq p

pQq P

⎛ ⎞ ∂⎛ ⎞∂=⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠ ,,

ji

j i X YQ P

PXQ Y

⎛ ⎞ ∂⎛ ⎞∂=⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

,,

ji

j i X Yq p

pXq Y

⎛ ⎞ ∂⎛ ⎞∂=⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

Easy to prove

Page 13: Lecture21 Canonical Transformation

Unrestricted CT

Now we consider a general, time-dependent CT

Let’s do it in two steps

First step is t-independent Satisfies the DCsWe must show that the second step satisfies the DCs

( , , )i iQ Q q p t= ( , , )i iP P q p t=FK Ht

∂= +

,q p 0 0( , , ), ( , , )Q q p t P q p t ( , , ), ( , , )Q q p t P q p t

Time-independent CT Time-only CT

Fixed time

Page 14: Lecture21 Canonical Transformation

Unrestricted CT

Concentrate on a time-only CTBreak t – t0 into pieces of infinitesimal time dt

Each step is an ICT Satisfies Direct Conditions“Integrating” gives us what we needed

The proof worked because a time-only CT is a continuous transformation, parameterized by t

( ), ( )Q t P t0 0( ), ( )Q t P t

0 0( ), ( )Q t P t 0 0( ), ( )Q t dt P t dt+ + ( ), ( )Q t P t

All Canonical Transformations satisfies the Direct Conditions, and vice versa

Page 15: Lecture21 Canonical Transformation

Poisson Bracket

For u and v expressed in terms of q and p

This weird construction has many useful featuresIf you know QM, this is analogous to the commutator

Let’s start with a few basic rules

[ ] ,,

q pi i i i

u v u vu vq p p q

∂ ∂ ∂ ∂≡ −

∂ ∂ ∂ ∂Poisson Bracket

[ ]1 1, ( )u v uv vui i

≡ − for two operators u and v

Page 16: Lecture21 Canonical Transformation

Poisson Bracket Identities

For quantities u, v, w andconstants a, b[ , ] 0u u =

[ ] ,,

q pi i i i

u v u vu vq p p q

∂ ∂ ∂ ∂≡ −

∂ ∂ ∂ ∂

[ , ] [ , ]u v v u= −

[ , ] [ , ] [ , ]au bv w a u w b v w+ = +

[ , ] [ , ] [ , ]uv w u w v u v w= +

[ ,[ , ]] [ ,[ , ]] [ ,[ , ]] 0u v w v w u w u v+ + =

Jacobi’s Identity

All easy to prove

This one is worth trying.See Goldstein if you are lost

Page 17: Lecture21 Canonical Transformation

Fundamental Poisson Brackets

Consider PBs of q and p themselves

Called the Fundamental Poisson Brackets

Now we consider a Canonical Transformation

What happens to the Fundamental PB?

[ , ] 0j jk k

i ij k

i i

q qqp q

q q qq p

∂ ∂∂ ∂= −

∂ ∂ ∂=

∂[ , ] 0j kp p =

[ , ] j jk k

i i i ij k jk

q qp pq p q

q pp

δ∂ ∂∂ ∂

=∂ ∂

=−∂ ∂

[ , ]j k jkp q δ= −

, ,q p Q P→

Page 18: Lecture21 Canonical Transformation

Fundamental PB and CT

Fundamental Poisson Brackets are invariant under CT

,[ , ] 0j j j j jk k i ij k q p

i i i i i k i k k

Q Q Q Q QQ Q q pQ Qq p p q q P p P P

∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂= − = − − = − =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

,[ , ] 0j j j j jk k i ij k q p

i i i i i k i k k

P P P P PP P q pP Pq p p q q Q p Q Q

∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂= − = + = =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

,[ , ] j j j j jk k i ij k q p jk

i i i i i k i k k

Q Q Q Q QP P q pQ Pq p p q q Q p Q Q

δ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂

= − = + = =∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

,[ , ] [ , ]j k q p k j jkP Q Q P δ= − = − Used Direct Conditions here

Page 19: Lecture21 Canonical Transformation

Poisson Bracket and CT

What happens to a Poisson Bracket under CT?For a time-independent CT

[ ] ,

, ,

,

[ , ] [ , ] [

j j j jk k k k

j i j i k i k i j i j i k i k i

j k j k j k

Q Pi i i i

j k Q P j k Q P

q p q pq p q pu u v v u u v v

q Q p Q q P p P q P p P q Q p Q

u v u v u v

q q q p p q

u v u vu vQ P P Q

q q q p

∂ ∂ ∂ ∂∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + − + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂≡ −

∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

= + +

[ ]

, ,

,

, ] [ , ]

,

j k

j k j k

j k Q P j k Q P

jk jk

q p

u v

p p

u v u v

q p p q

p q p p

u v

δ δ

∂ ∂

∂ ∂

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

+

= −

= Poisson Brackets are invariant under CT

Page 20: Lecture21 Canonical Transformation

Invariance of Poisson Bracket

Poisson Brackets are canonical invariantsTrue for any Canonical Transformations

Goldstein shows this using “simplectic” approach

We don’t have to specify q, p in each PB[ ] ,

,q p

u v [ ],u v good enough

Page 21: Lecture21 Canonical Transformation

ICT and Poisson Bracket

Infinitesimal CT can be expressed neatly with a PB

For a generator G,

On the other hand

We can generalize further…

i ii

GQ qp

ε ∂= +

∂ i ii

GP pq

ε ∂= −

[ , ] i ii i

j j j j i

q qG G Gq G qq p p q p

ε ε ε δ⎛ ⎞∂ ∂∂ ∂ ∂

= − = =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

[ , ] i ii i

j j j j i

p pG G Gp G pq p p q q

ε ε ε δ⎛ ⎞∂ ∂∂ ∂ ∂

= − = − =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

Page 22: Lecture21 Canonical Transformation

ICT and Poisson Bracket

For an arbitrary function u(q,p,t), the ICT does

That is

[ , ]

ICTi i

i i

i i i i

u u uu u u u q p tq p tu G u G uu tq p p q t

uu u G tt

δ δ δ δ

ε ε δ

ε δ

∂ ∂ ∂⎯⎯⎯→ + = + + +

∂ ∂ ∂∂ ∂ ∂ ∂ ∂

= + − +∂ ∂ ∂ ∂ ∂

∂= + +

[ , ] uu u G tt

δ ε δ∂= +

Page 23: Lecture21 Canonical Transformation

Infinitesimal Time Transf.

Hamiltonian generates infinitesimal time transf.Applying the Poisson Bracket rule

Have you seen this in QM?

If u is a constant of motion,

That is,

[ , ] uu t u H tt

δ δ δ∂= +

∂[ , ]du uu H

dt t∂

= +∂

[ , ] 0uu Ht

∂+ =

[ , ] uH ut

∂=

∂u is a constant of motion

Page 24: Lecture21 Canonical Transformation

Infinitesimal Time Transf.

If u does not depend explicitly on time,

Try this on q and p

[ , ] [ , ]du uu H u Hdt t

∂= + =

[ , ] i ii i

j j j j i

p pH H Hp p Hq p p q q

∂ ∂∂ ∂ ∂= = − = −

∂ ∂ ∂ ∂ ∂

[ , ] i ii i

j j j j i

q qH H Hq q Hq p p q p

∂ ∂∂ ∂ ∂= = − =

∂ ∂ ∂ ∂ ∂ Hamilton’sequations!

Page 25: Lecture21 Canonical Transformation

Summary

Direct ConditionsNecessary and sufficientfor Canonical Transf.

Infinitesimal CTPoisson Bracket

Canonical invariantFundamental PB

ICT expressed by

Infinitesimal time transf. generated by Hamiltonian

,,

ji

j i Q Pq p

pQq P

⎛ ⎞ ∂⎛ ⎞∂=⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠ ,,

ji

j i Q Pq p

qQp P

⎛ ⎞ ∂⎛ ⎞∂= −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

,,

ji

j i Q Pq p

pPq Q

⎛ ⎞ ∂⎛ ⎞∂= −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠ ,,

ji

j i Q Pq p

qPp Q

⎛ ⎞ ∂⎛ ⎞∂=⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

[ ],i i i i

u v u vu vq p p q

∂ ∂ ∂ ∂≡ −

∂ ∂ ∂ ∂

[ , ] [ , ] 0i j i jq q p p= = [ , ] [ , ]i j i j ijq p p q δ= − =

[ , ] uu u G tt

δ ε δ∂= +