Lecture142 Transmission Line€¦ · Transmission Line -Dr. Ray Kwok Common transmission lines most...

42
Transmission Line Theory EE142 Dr. Ray Kwok

Transcript of Lecture142 Transmission Line€¦ · Transmission Line -Dr. Ray Kwok Common transmission lines most...

Transmission Line

Theory

EE142Dr. Ray Kwok

Transmission Line - Dr. Ray Kwok

RF Spectrum

Advanced Light SourceBerkeley Lab

km mm µm Å

Transmission Line - Dr. Ray Kwok

RF / Microwave Circuit

1 – port

network2 wires

GND

2 – port

networkinput

source

outputload

Transmission Line - Dr. Ray Kwok

Series connection

A B

A B

RF

low f

Transmission Line - Dr. Ray Kwok

Parallel connection

Alow f

B

RF

A

B

Transmission Line - Dr. Ray Kwok

Common transmission linesmost correct schematic

twisted pair

VLFlossy & noisy

paralllel wire

LF - HFnoisy & lossy

coaxial cable

no distortionwide freq range

microstrip (line)

no distortionwide freq rangelowest cost

co-planar waveguide

low costflip chip accesscomplex design

waveguide

lowest lossfreq bands

lZo

Transmission Line - Dr. Ray Kwok

Equivalent circuit

zz

)t,z(V)t,z(V)t,zz(V

t

)t,z(i)zL()t,z(V ∆

∂∂

+≈∆+=∂

∂∆−

z

)t,z(V

t

)t,z(iL

∂∂

=∂

∂−

zz

)t,z(i

t

)t,z(V)zC()t,z(i)t,zz(i ∆

∂∂

≈∂

∂∆−=−∆+

L∆zC∆z

V(z,t) V(z+∆z,t)

i(z+∆z,t)i(z,t)

Kirchhoff”s law:Taylor

Junction rule:

z

)t,z(i

t

)t,z(VC

∂∂

=∂

∂−

Q=CVdQ/dt=i=C dV/dt

Ideal transmission line

Transmission Line - Dr. Ray Kwok

Coupled equations (V – i)

z

)t,z(V

t

)t,z(iL

∂∂

=∂

∂−

z

)t,z(i

t

)t,z(VC

∂∂

=∂

∂−

2

2

2

2

2

22

2

2

t

iLC

z

i

z

i

C

1

z

i

C

1

zzt

V

t

iL

∂∂

=∂∂

∂∂

−=

∂∂

−∂∂

=∂∂

∂=

∂∂

current wave

2

2

2

2

2

22

2

2

t

VLC

z

V

z

V

L

1

z

V

L

1

zzt

i

t

VC

∂∂

=∂∂

∂∂

−=

∂∂

−∂∂

=∂∂

∂=

∂∂

−similarly

voltage wave

Transmission Line - Dr. Ray Kwok

Wave equation

2

2

22

2

2

2

2

2

2

t

f

v

1

x

f

)u("fvt

u)u("vf

t

f

)u('vft

u)u('f

t

f

)u("fx

u)u("f

x

f

)u('fx

u)u('f

x

f

)u(f)vtx(f

∂∂

=∂∂

=∂∂

±=∂∂

±=∂∂

=∂∂

=∂∂

=∂∂

=∂∂

=∂∂

≡± reverse / forward traveling wave

wave equation

( )

( )

( )( )rktf

kxtf)vtx(f

kxtk

1

ft2kxk

1

vt2

x2

k

1vtx

rr⋅−ω

±ω=±

±ω±=

π±=

λπ

±λπ

note:

(3D)

Transmission Line - Dr. Ray Kwok

Voltage & Current Waves

)zt(j

o

)zt(j

o

)zt(j

o

)zt(j

o

eIeI)t,z(i

eVeV)t,z(V

β+ω−β−ω+

β+ω−β−ω+

−=

+= λπ

=β2

[ ]

±±±±±

−−

++

β+ω−β−ω+

β+ω−β−ω+

≡==ω

β=

ω=β

ω=β

ω+ω−=∂∂

−=∂∂

β−β−=∂∂

oooooo

oo

oo

)zt(j

o

)zt(j

o

)zt(j

o

)zt(j

o

IZIC

LI

C

LCI

CV

VCI

VCI

eVjeVjCt

VC

z

i

eIjeIjz

i

where

LC

1

2)f2(fv =

βω

=

π

λπ=λ=

C

LZ

LC

1v

o =

=

why “-” ?

Transmission Line - Dr. Ray Kwok

Fields and circuits

)rkt(j

or

)rkt(j

oi

)rkt(j

or

)rkt(j

oi

2

22

ri

ri

eHeH)t,z(H

eEeE)t,z(E

H

E

tH

E

rrrr

rrrr

rrr

rrr

r

r

r

r

⋅−ω⋅−ω

⋅−ω⋅−ω

−=

+=

∂∂

µε=

)zt(j

o

)zt(j

o

)zt(j

o

)zt(j

o

2

2

2

2

eIeI)t,z(i

eVeV)t,z(V

i

V

tLC

i

V

z

β+ω−β−ω+

β+ω−β−ω+

−=

+=

∂∂

=

∂∂

εµ

µε=

1v

C

LZ

LC

1v

o =

=

Transmission Line - Dr. Ray Kwok

What is Zo?

• Characteristic Impedance.• 50 ohms for most communications system,• 75 ohms for TV cable.• Measure 75 ohms with a ohmmeter?• Two 75Ω cables together (in series) makes a 150Ω cable?• 75 + 75 = 75 !!!!• What does Zo represent?

Transmission Line - Dr. Ray Kwok

Reflection at Load

xj

o

xj

o

xj

o

xj

o

eIeI)x(i

eVeV)x(V

β−β−+

β−β−+

−=

+=

( )

( ) ( )( ) ( )

oL

oLL

o

o

oLooLo

oooooL

oo

oooL

L

L

oo

o

ooL

ooL

ZZ

ZZ

V

V

ZZVZZV

VVZVVZ

VV

VVZZ

I

V

VVZ

1III)0(i

VVV)0(V

+−

=Γ≡

+=−

+=−

−+

=≡

−=−=≡

+=≡

+

−+

−+−+

−+

−+

−+−+

−+

lZo

l−

ZL

x = 0x =

at the load

Define normalized impedance

1Z

1Z

Z

ZZ

L

LL

o

+−

ZL≠ Zo

reflection

Transmission Line - Dr. Ray Kwok

Example

75Ω

75Ω

50Ω

does it work?

Transmission Line - Dr. Ray Kwok

Impedance at Input

xj

o

xj

o

xj

o

xj

o

eIeI)x(i

eVeV)x(V

β−β−+

β−β−+

−=

+=

lZo

l−

ZL

x = 0x =

( )

( )( ) ( )( )( )( ) ( )( )

( )( )

β+β+

=

β+β+

=

β+β+

=

β−−−β++β−−+β++

=

+−

β−β+

+−

+

β−β+

=

Γ−Γ+

=

+=

−−

=≡

β−β−

β−β−

β−β

β−β

β−−β+

β−−β+

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

ll

ll

ll

ll

ll

ll

tanjZZ

tanjZZZZ

tanZj1

tanjZZ

tanZj12

tanjZ2Z

tanj11Ztanj11Z

tanj11Ztanj11ZZ

e1Z

1Z

tanj1

tanj1e

e1Z

1Z

tanj1

tanj1e

Z

ee

eeZZ

eVeVZ

1

eVeV

)(i

)(V

I

VZ

Lo

oLoin

L

Lin

L

Lin

LL

LLin

j

L

Lj

j

L

Lj

in

j

L

j

j

L

j

oin

j

o

j

o

o

j

o

j

o

in

inin

Zin

Transmission Line - Dr. Ray Kwok

Exercise

lZo

l−

ZL

x = 0x =

Zin

Zo = 50 ΩZL = 100ΩZin = ?

For length = λ/8? λ/4? λ/2?

What if Zo = ZL = 50Ω? Would the length make any difference?

β+β+

=

β+β+

=

l

l

l

l

tanjZZ

tanjZZZZ

tanZj1

tanjZZ

Lo

oLoin

L

Lin

50Ω (-37o)

25Ω

100Ω

Zin=Zo=ZL

Transmission Line - Dr. Ray Kwok

Transmission Line Impedance

β+β+

=

β+β+

=

l

l

l

l

tanjZZ

tanjZZZZ

tanZj1

tanjZZ

Lo

oLoin

L

Lin

case 1: β = 0, or = 0tan β = 0Zin = ZL

case 2: β = π, or = λ/2tan β = 0 Zin = ZL

case 3: β = π/2, or = λ/4tan β → ∞Zin = Zo

2/ ZL

Quarter-wave transformer (impedance),real-to-real, complex-to-complex.

l l

l l

l

l l

l

lZo

l−

ZL

x = 0x =

Zin

note: at low freq, β → 0, Zin = ZL regardless of line length or line impedance.

Transmission Line - Dr. Ray Kwok

Reflection at Input

lZo

l−

ZL

x = 0x =

Zin

Γin

Z’o

1Z

1Z

ZZ

ZZ

1Z

1Z

ZZ

ZZ

tanjZZ

tanjZZZZ

tanZj1

tanjZZ

in

in

oin

oinin

'

in

'

in

'

oin

'

oinin

Lo

oLoin

L

Lin

+−

=+−

+−

=+−

β+β+

=

β+β+

=

l

l

l

l

In general

just have to know what Z to use

Transmission Line - Dr. Ray Kwok

Exercise

1Z

1Z

ZZ

ZZ

tanjZZ

tanjZZZZ

tanZj1

tanjZZ

'

in

'

in

'

oin

'

oinin

Lo

oLoin

L

Lin

+−

=+−

β+β+

=

β+β+

=

l

l

l

l

lZo

l−

ZL

x = 0x =

Zin

Γin

Z’o Zo = 50 ΩZ’o = 50 ΩZL = 100ΩLength = λ/8ΓL = ? Γin = ?What if Z’o is 75 Ω?

1/3

1/3 (-90o) only change phase !?!

0.388 (235o)

Transmission Line - Dr. Ray Kwok

Voltage wave in transmission line

( )

)x2(j

o

j

L

xj2

Lo

xj2

L

xj

o

xj

o

xj

o

e1VV

e

e1VV

e1eV)x(V

eVeV)x(V

β+θ+

θ

β+

ββ−+

β−β−+

ρ+=

ρ≡Γ

Γ+=

Γ+=

+=

l−

lZo ZL

x = 0x =

Zin

( )

( ) ( )

( )

β+θρ−ρ+=

β+θ−ρ−ρ+=

ρ+β+θρ+=

β+θρ+β+θρ+=

+

+

+

+

2

x2sin41VV

)x2cos(121VV

)x2cos(21VV

)x2(sin)x2cos(1VV

22

o

2

o

2

o

222

o

max when sine = 0

( ) ( )ρ+=ρ+= ++ 1V1VV o

2

omax

( ) ( )ρ−=ρ−ρ+= ++ 1V41VV o

2

omin

min when sine = 1

Transmission Line - Dr. Ray Kwok

Voltage Standing Wave

( )

β+θρ−ρ+= +

2

x2sin41VV 22

o

l−

ZL

x = 0x =

Vmin Vmax

max when

[ ]π

λπθ−=

π±=β+θ

4n2x

n2

x2

m

min when

[ ]π

λπ+θ−=

π+±=

β+θ

4)1n2(x

2

)1n2(

2

x2

m(x < 0)

xj

o

xj

o eVeV)x(V β−β−+ +=

standing wave

−+ = oo VVIf ,perfect standing wave with nodes

1L ±=ρ≡Γ

Transmission Line - Dr. Ray Kwok

VSWR (Voltage Standing Wave Ratio)

l−

ZL

x = 0x =

( ) ( )ρ−=ρ−ρ+= ++ 1V41VV o

2

omin

( )

β+θρ−ρ+= +

2

x2sin41VV 22

o

( ) ( )ρ+=ρ+= ++ 1V1VV o

2

omax

Vmin Vmax

Γ−

Γ+=

ρ−ρ+

=≡1

1

1

1

V

VVSWR

min

max

perfect match: ρ = 0, VSWR = 1.0

open / short: ρ = 1, VSWR → ∞

It is an indicator on how well the load matches the line.

VSWR is the standing wave pattern INSIDE the line.

Only Γ at the reflected junction that counts

Transmission Line - Dr. Ray Kwok

Exercise

lZo

l−

ZL

x = 0x =

Zin

Γin

Z’o

Zo = 50 ΩZ’o = 75 ΩZL = 100ΩLength = λ/8VSWR = ?

ΓL = 1/3VSWR = 2

Transmission Line - Dr. Ray Kwok

Return Loss

Γ−

Γ+=

ρ−ρ+

≡1

1

1

1VSWR

perfect match: ρ → 0, VSWR → 1.0, RL → ∞

open / short: ρ = 1, VSWR → ∞, RL → 0 dB

RL ≡ − 20 log ρ (dB)

Typical VSWR = 1.1 to 2ρ = 0.048 to 0.33RL = 26 dB to 9.5 dB

1VSWR

1VSWR

+−

=Γ=ρ

Transmission Line - Dr. Ray Kwok

Transmission line connecting nowhere(?)

Open stub

Short stub

Series stub

Shunt stub

Stub

(short)

(short)

Transmission Line - Dr. Ray Kwok

Open Shunt Stub

L-Band

Transmission Line - Dr. Ray Kwok

Short Shunt Stub

20 GHzInterdigitalFilter

Transmission Line - Dr. Ray Kwok

Radial

Stub

18 GHzRat Race

Transmission Line - Dr. Ray Kwok

Tuning stub (open)

Transmission Line - Dr. Ray Kwok

Short Stub

l

l

l

l

β−=≡

β=

β+β+

=

cotjZ

1Y

tanjZ

tanZj1

tanjZZ

sh

sh

sh

L

Lin

lZo ZLZin (ZL → 0)

Zin

lβπ/2 π 3π/2 2π

Zcoil = jωL

Zcap = -j/ωC

ω

−ω=LC

11LjZ

2sres

ω

−ω=

LC

11Cj

1Z

2

pres

period of π

Transmission Line - Dr. Ray Kwok

Open Stub

l

l

l

l

β=

β−=

β+β+

=

tanjY

cotjZ

tanZj1

tanjZZ

op

op

L

Lin

lZo ZLZin

(ZL → ∞)

Zin

lβπ/2 π 3π/2 2π

Zcoil = jωL

Zcap = -j/ωC

ω

−ω=LC

11LjZ

2sres

ω

−ω=

LC

11Cj

1Z

2

pres

period of π

Transmission Line - Dr. Ray Kwok

Exercise

L

L

Lin Z

tanZj1

tanjZZ =

β+β+

=l

l

50 Ωλ/2

75 Ω, λ/8

100 Ω0.1λ

Zin

50 Ωλ/2

Zin

Zsh = j Zotan(βl)= j 75 tan(45o) = j 75 Ω

Zop = -j Zocot(βl)= -j 100 cot(36o) = -j 138 Ω

Y =1/j75 = -j 0.0133

Y = j/138 = j0.0073

50 Ωλ/2

Zin Z = 1/Y = 1/(-j0.006) = j166 Ω

Zin = j 166 Ω

Find Zin & Γin.

ooo

oin

oinin 341)73107(1

50166j

50166j

ZZ

ZZ∠=−∠=

+−

=+−

Transmission Line - Dr. Ray Kwok

β+β+

=

β+β+

=

β+β+

=

β+β+

=≡

β+β+

=

l

l

l

l

l

l

l

l

l

l

tanjYY

tanjYYYY

tanYj1

tanjYY

tanjY/1

tan)Y/1(j1Y

tanjZ

tanZj1

Z

1Y

tanZj1

tanjZZ

Lo

oLoin

L

Lin

L

Lin

L

L

in

in

L

Lin

in

in

in1

in1in

1in

1inin

1in

1inin

Y1

Y1

YY

YY

Y/1Y/1

Y/1Y/1

ZZ

ZZ

+−

=+−

+−

+−

l YLY1 Yo

Γin

Yin

useful for shunt circuits

Admittance (Y = 1/Z)

Transmission Line - Dr. Ray Kwok

Earlier exercise

L

L

Lin Y

tanYj1

tanjYY =

β+β+

=l

l

50 Ωλ/2

75 Ω, λ/8

100 Ω0.1λ

Zin

50 Ωλ/2

Zin

Ysh = - j Yocot(βl)= - j (1/75) cot(45o) = - j 0.0133

Yop = j Yotan(βl)= j 0.01 tan(36o) = j 0.0073 Ω

Y = -j 0.0133

Y = j0.0073

50 Ωλ/2

Zin Y = - j 0.006

YL = - j 0.006Zin = j 166 Ω

Find Zin & Γin.

ooo

ino

inoin 341)1717(1

006.0j50/1

006.0j50/1

YY

YY∠=+∠=

−+

=+−

Transmission Line - Dr. Ray Kwok

Earlier Exercise – power consideration

1Z

1Z

ZZ

ZZ

tanjZZ

tanjZZZZ

tanZj1

tanjZZ

'

in

'

in

'

oin

'

oinin

Lo

oLoin

L

Lin

+−

=+−

β+β+

=

β+β+

=

l

l

l

l

Zo = 50 ΩZ’o = 50 ΩZL = 100ΩLength = λ/8ΓL = ? Γin = ? 1/3 1/3 (-90o)

only change phase

Power reflected = ?

%891

%113

1

V

V

2

22

2

=Γ−

==Γ=+

Power delivered = ?

Don’t double count reflection…. ΓL & Γin

Return Loss (RL) = - 20 log|ρ| = + 9.5 dB

lZo

l−

ZL

x = 0x =

Zin

Γin

Z’o

Transmission Line - Dr. Ray Kwok

High f circuit elements

1 GHz lumped elementBand pass filter

CAP

C=ID=

1 pFC1

CAP

C=ID=

1 pFC3 IND

L=ID=

1 nHL3 IND

L=ID=

1 nHL4

CAP

C=ID=

1 pFC4

CAP

C=ID=

1 pFC5

CAP

C=ID=

1 pFC6 IND

L=ID=

1 nHL7

CAP

C=ID=

1 pFC2

….. …..

CAP

C=ID=

1 pFC1

IND

L=ID=

1 nHL3

IND

L=ID=

1 nHL4

CAP

C=ID=

1 pFC6

IND

L=ID=

1 nHL7

CAP

C=ID=

1 pFC4

IND

L=ID=

1 nHL1 ….. …..

12 GHz lumped elementLow pass filtermuch smaller

A small loop of thin wire is an inductor !!

Transmission Line - Dr. Ray Kwok

High-Z Line as inductor

β+β+

=l

l

tanjZZ

tanjZZZZ

L1

1L1in

l ZLZo Z1

Γin

Zin

Z1 >> ZL

line length < λ/4 (π/2)ZL ~ Zo (order of magnitude)

θ+∠=

ϕ+∠Ψ+∠

= in1in Zb

aZZ

Zin has a positive phase → inductor-like !!!

L∆zC∆z

small C, large L, series inductor

Transmission Line - Dr. Ray Kwok

Low-Z Line as capacitor

β+β+

=l

l

tanjZZ

tanjZZZZ

L1

1L1in

l ZLZo Z1

Γin

Zin

Z1 << ZL

line length << λ/4 (π/2)ZL ~ Zo

θ+∠=

θ−∠=

Ψ+∠ϕ+∠

=

inin

in1in

YY

Zb

aZZ

Yin has a positive phase → capacitor-like !!!

L∆zC∆z

small L, large C, shunt capacitor

Transmission Line - Dr. Ray Kwok

Low pass filter

5 GHz low pass filter

CAP

C=ID=

1 pFC1

IND

L=ID=

1 nHL3

IND

L=ID=

1 nHL4

CAP

C=ID=

1 pFC6

IND

L=ID=

1 nHL7

CAP

C=ID=

1 pFC4

IND

L=ID=

1 nHL1 ….. …..

14 GHz low pass filterhigh-low impedance lineswaveguidehigh powerlow loss

Transmission Line - Dr. Ray Kwok

High-Low-Z lines

CAP

C=ID=

1 pFC1

IND

L=ID=

1 nHL3

IND

L=ID=

1 nHL4

CAP

C=ID=

1 pFC6 IND

L=ID=

1 nHL7

CAP

C=ID=

1 pFC4 IND

L=ID=

1 nHL1

IND

L=ID=

1 nHL2 IND

L=ID=

1 nHL5

IND

L=ID=

1 nHL6

20 GHz band pass filterhigh Z lines → inductorsShort shunt stubs λ/4 resonators

….. …..

13 GHz couplerTuning with stubs (shunt open)Think of them as shunt capacitors→ low Z lines

Transmission Line - Dr. Ray Kwok

Homework1. A 100 Ω tranmission line has an effective dielectric constant of 1.65. Find the

shortest open-circuited length of this line that appears at its input as a capacitor of 5 pF at 2.5 GHz. Repeat for an inductance of 5 nH.

2. A radio transmitter is connected to an antenna having an impedance 80 + j40 Ω with a 50 Ω coaxial cable. If the 50 Ω transmitter can deliver 30 W when connected to a 50 Ω load, how much power is delivered to the antenna?

3. A 75 Ω coaxial transmission line has a length of 2 cm and is terminated with a load impedance of 37.5 + j75 Ω. If the dielectric constant of the line is 2.56 and the frequency is 3 GHz, find the input impedance to the line, the reflection coefficient a the load, the reflection coefficient at the input, and the SWR on the line.

4. The VSWR on a lossless 300 Ω transmission line terminated in an unknown load impedance is 2.0, and the nearest voltage minimum is at a distance 0.3λfrom the load. Determine (a) ΓL, (b) ZL.

Transmission Line - Dr. Ray Kwok

2.50

2.00

10

1.50

0.10

1.20

1.10

30

321.05

0.01

1.01

∞0.001.00

RL (dB)ρρρρVSWR

5. Calculate VSWR, ρ, and return loss values to complete the entries in the following table.

6. Measurements on a 0.6 m losslesscoaxial cable at 100 kHz show a capacitance of 54 pF when the cable is open-circuited, and an inductance of 0.30 µH when it is short-circuited. (a) Determine Zo and εr of the medium.